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1 Introduction

All living cells in multicellular organisms, such as ourselves, contain a number of specific
structures called organelles (‘little organs’). This allows the cells to physically separate
(compartmentalize) function and components. Examples of organelles are the nucleus,
which contains the genetic information, the rough endoplasmic reticulum, where many
proteins are synthesized, and lysosomes, that contain enzymes that digest and degrade
unwanted cellular components and pathogens (Fig. 1).

Figure 1: Schematic representation of an eukaryotic (animal) cell, highlighting the organelles.
Adapted from “Structural Overview of an Animal Cel”, by BioRender.com (2021). Retrieved
from https://app.biorender.com/biorender-templates

All mentioned organelles are membrane-enclosed bodies, that is, a lipid membrane
separates the cytosol of the cell from the interior of the organelles. Lipid membranes,
with their hydrophobic interior, work as permeability barriers, allowing only the passage
of small uncharged molecules. This allows the cells to control the transport of molecules
across the membranes and their concentration within the different compartments.

While the best-known organelles are membrane-bound structures, cells also con-
tain many organelles without membranes that have diverse biological functions. In this
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project you will study some of the conditions necessary to form these structures. These
membrane-free organelles can be described as liquid droplets formed by the spontaneous
phase separation of some of the components present in the cell. Nucleoli, are an ex-
ample of membrane-less organelles that appear in transcriptionally-active regions of the
nucleus, that is, regions where the genes are transcribed to RNA (see figure in the cover
page depicting cells observed using confocal microscopy. The DNA is marked with blue,
the microtubules (skeleton of the cells) in red and the protein of interest in green [1].)
Nucleoli are composed of RNA and a variety of proteins and formed when the concen-
tration of certain proteins reach some threshold value [2, 3]. It is, however possible to
induce the formation of liquid droplets in vitro using only two components [4].

One ‘everyday example’ of a liquid-liquid phase separation can be appreciated in
mayonnaise. To make mayonnaise one mixes vinegar and other water-based components
with, for example, olive oil and shakes it vigorously. The energy is used to break the oil
into small droplets that mix in the water. These droplet are stabilized by the addition of
egg. In vinegar/oil salad dressing without a stabilizer the oil and water quickly separate
into two visible phases. While the interactions that are present in these examples are
different to those forming the membrane-less organelles, the formation of liquid droplets
(containing a larger concentration of some proteins than the surroundings, see cover
figure) can be depicted in the same way.

Studies on the composition of these droplets have highlighted the importance of
electrostatic interactions in these systems [5]. Electrostatic interactions are long ranged
but their intensity decreases in aqueous solution (high dielectric permitivitty) and in
the presence of small ions (screening of the interaction). The ionization of molecular
groups (e.g., −COOH ⇔ −COO− + H+, or −NH2 + H+ ⇔ −NH+

3 ) depend on the
concentration of H+ (i.e., pH), which contribute to control the strength of interaction
between molecules by varying their charge. Furthermore, cells possess a number of
proteins that catalyse reactions such as acetylation and phosphorylation that, in practice,
switch off a positive charge or introduces a negative one, respectively. This allows a more
precise control of the interactions in a biological setting.

Other modes of intermolecular interactions have been found to be relevant for the
formation of membrane-less organelles [6] however, in this project, we will solely focus
on the charge-charge interactions.

As mentioned above, nucleoli are composed of RNA and proteins. These are ex-
amples of biopolymers (or biomacromolecules), that is molecules that possess repeating
units (monomers) that are connected by covalent bonds. If each monomer possesses
one interaction point (a charge, in this context), such connectivity between monomers
allows for multiple interaction points within the same molecule (multivalency), which
will increase the interaction strength between the polymer and other charged particles.

Recall that these multiple interaction points can be regulated biologically by, for ex-
ample, switching on and off the charge of the biopolymer, as mentioned above. This way
the cell can amplify or suppress phase separation and, consequently, organelle formation
[7].

Another interesting property of polymers is their flexibility, thus the ability to adapt

3



their shape to best interact with surfaces and other molecules. The covalent bonds
between monomers allow, most often, for an almost free-rotation around the bonds
which allows the polymer to adopt many different conformations that have about the
same potential energy

In this project you will use Monte Carlo to assess the importance of monomer connec-
tivity (multivalency) in the formation of membrane-less organelles (clusters, see below)
in systems composed of oppositely charged polymers.

2 How to describe a polymer-system numerically

A polymer consists of many monomers, bound to each other by covalent bonds. In order
to see how they can be represented on a computer, let us first consider a system where
monomers are placed in a solvent. This monomer-system has M positively charged
monomers, and M negatively charged monomers. We confine their movement to two
dimensions, such that their positions can be described using two coordinates, x and y. In
order to ease the numerical implementation, we further restrict their movement, such the
monomers can only be positioned at grid points (Norsk: oppdeling/kvadratisk gitter).
Thus a general point on the grid, rk, can be written as rk = a(ix̂ + jŷ), i, j ∈ [1, N ],
with i, j being integers, and where a is the distance between adjacent grid points. It
follows immediately that subtracting dimensionful vectors is equivalent to

rk − rl = a(ikx̂+ jkŷ)− a(ilx̂+ jlŷ) = a
(
(ik − il)x̂+ (jk − jl)ŷ

)
. (1)

Equation (1) might seem trivial, but the concept of transforming real coordinates to
discrete coordinates is extremely useful in physics and engineering in general. There is
an equal number of grid points in the horizontal and vertical direction, so the grid is
essentially an N ×N matrix.

The magnitude of the charge of the monomers is always equal to the elementary
charge e, and we denote the charge as q. Thus, the charge of an arbitrary monomer, qi,
can be written as

qi = wie, (2)

so that the magnitude of the charge is contained in e, while wi is only the sign of the
charge. Note that because there are no interactions between a monomer and the solvent,
it is convenient to use wi = 0 for the solvent. The possible choices of wi for a monomer
is of course just {1,−1}.

Even though it would be perfectly fine to represent all monomers as a collection of 1s
and –1s, we act with foresight to accommodate future implementations of polymers. We
give all positively charged monomers a unique positive number. WithM such monomers,
the obvious choice is to enumerate the monomers from 1 to M . Similarly, we enumerate
the negatively charged monomers from −1 to −M . So to summarize: The magnitude
of the charge of all monomers is always equal to e. Each monomer is represented by a
unique number, where the sign of the number contains the information about the sign
of the monomer charge.
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We are now ready to discuss how to deal with the inclusion of polymers. The number
of monomers making up a polymer is denoted by L. For simplicity, interactions between
monomers belonging to the same polymer are considered to be zero. Similarly to the
case of a monomer-system, we enumerate each polymer by a unique number (again, the
sign of this number represents the charge of the polymer), and all monomers belonging
to the polymer are assigned the same number. Note that putting L equal to 1, the
implementation reduces naturally to the monomer-system described previously. Then
all “polymers” are just constituted by a single monomer.

In this project we will only study polymers that never break, which is a reasonable
assumption. We define an unbroken polymer as a polymer where there exists a path
between any pair of monomers belonging to the polymer, where the path is piece-wise
horizontal or vertical (not diagonal!), and that the path only touches grid points where
there are monomers belonging to the same polymer. An illustration of a broken polymer
is given in Figure 2.

Figure 2: Illustration of a broken polymer. The light blue, the green, and the violet represent the
solvent, positively charged monomers, and negatively charged monomers, respectively. Different
shades of violet and green represent different polymers. In the left panel, the original system
with N = 16, M = 2, L = 20 is illustrated. In the right panel, the violet polymer is moved
downwards, causing three monomers to loose their connection to the rest of the polymer.

2.1 Pseudo-code for initializing a system of polymers

An algorithm for generating an N ×N grid with M positvely charged, unbroken, poly-
mers, with L monomers constituting each polymer, is given in Algorithm 1. A placement
is illegal if is attempted to place a monomer on an already occupied grid point. In the
algorithm, we have used for-loops, but in practice you should use while-loops. A visual-
ization of the output of this function can bee seen in the left panel in Figure 2.

2.2 Energy

As stated in the introduction, we will only consider electrostatic interactions between the
monomers. Using Coulomb’s law together with equation (2), we can write the interaction
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Algorithm 1 Initialization of system with only positively charged polymer

grid← N ×N array of zeros
for i = 1 to M do

randomPosition← Random position on grid
if illegalPlacement then

Try again with new random position
else

grid(randomPosition)← i
monomerPositionsArray ← L× 2 array of zeros
monomerPositionsArray(0)← randomPosition
for j = 1 to L− 1 do

randomMonomer ← position of a random monomer
in monomerPositionArray

if no legal placement of neighbors then
Try again with new randomMonomer

else
randomNeighbor ← position of a random grid point filled with solvent,

adjacent to randomMonomer
grid(randomNeighbor)← i
monomerPositionsArray(j)← randomNeighbor

end if
end for

end if
end for

between two monomers as

Vkl = wkwl
e2

4πε0εra2
a2

|rk − rl|
≡ wkwlα

a2

|rk − rl|
, (3)

where Vkl denotes the interaction between the monomers situated at rk and rl, and ε0
and εr denote the vacuum and the relative permittivity, respectively. and α is a constant
with unit Joule.

Now we will make a rather crude approximation. We will put the interactions between
any monomer pair to zero, unless they are situated directly next to each-other on the grid,
i.e. they have to be nearest neighbors 1. Assuming that rk and rl are nearest neighbors
(NN) and using equation (1), it follows that the interactions between monomers situated

1While this may seem like an oversimplification, it can be justified by the fact that the solvent screens
the electric field emitted from the monomers, effectively quenching any long range interactions. This
approximation has applications in many areas in physics, e.g. a similar effect can be derived in the
context of solid state physics using quantum field theory, and is used to predict the conductivity of
metals.
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at rk and rl can be written as

Vkl =

{
wkwlα if rk and rl are NN,

0 otherwise
. (4)

Note that on our grid, each grid point has four NNs.
NB! One caveat with equation (4) is that it does not distinguish between monomers

belonging to the same or to different polymers. Recall that we want to restrict the
interactions to monomers that belong to different polymers, as it is less computationally
demanding. Thus, all interactions between monomers belonging to the same polymer
are always zero. The total energy of a polymer-system is then given by

E =
∑
k,l

Vkl, (5)

where the sum is over all NN pairs of monomers that belong to different polymers.

2.3 Boundary conditions

Because the system is represented on a N × N grid, one might ask the question, what
are the neighboring sites of grid points situated on the edge of the grid? We will make
use of periodic boundary conditions (PBCs), where the grid points situated to the right
of the rightmost column is simply the leftmost column. Analogously, south from the
bottom row, is the top row. This can be imagined as a torus/donut, as illustrated in
Figure 3. If you make two cuts along the two red lines with a scissor, you would get
back your original grid, without PBCs.

Figure 3: Illustration of the geometry arising from periodic boundary conditions.

We stress that even though the geometry (more specifically, the topology) might
seem complicated, you should think of this is a ”programming trick” that will ease the
numerical implementation. In real life, polymers do not live on the surface of such
complex structures! On the other hand, having hard walls along the edges of the grid
induces ‘surface effects’ (not present in a ‘real’ solution), which may strongly affect the
polymer conformation (that is, the relative position of the monomers in the polymer).

3 Monte Carlo methods

Monte Carlo (MC) methods is a term that incorporates a wide variety of algorithms.
The defining trait of these algorithms is that they make use of random sampling. In
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this project we will use the Metropolis algorithm, which is a Markov chain Monte Carlo
(MCMC) method. It is instructive to understand a Markov chain using an example,
which we borrow from Haakon Thømt Simensen.

”A Markov chain can be defined as a sequence of events, in which the next event only
depends upon the present event. That is, for any event there is a probability distribution
for the next events. There is a finite amount of possible events, and all events must
somehow be within the reach from any other event. However, there is no requirement
that all events must be within one step from any given event. A simple example of a
Markov chain is if you decide to buy a random plane ticket (from a pool of all available
tickets) at Værnes Airport, and fly to whatever destination you got. At your arrival, you
immediately buy another random ticket, and fly to your next destination. During your
journey, you keep record of which airports you visit. This is a Markov process, as the
next possible destinations only depend on where you are, that is, on the tickets available
in your current location, and not where you have been (we neglect difference in weekdays,
time of day and such complicating factors). If you look at your record of airports after
having travelled for a long time, you will probably see that airports such as Frankfurt,
Dubai, Chicago O’Hare, Los Angeles, Beijing, Heathrow etc. are well represented, while
you have been lucky if you have had the opportunity to visit e.g. Funafuti International
Airport. Now, if we make a bar graph of airports vs. number of visits, what exactly are
we looking at? We are looking at an empirical sample of the probability distribution of
where to find you after a long time of travelling in the way described above! The law of
large numbers states that if we have sampled over a sufficiently long time, the sample
distribution will approach the real equilibrium distribution of the Markov chain.

If you don’t like flying that much, we are able to reproduce the distribution above
only by knowing the plane ticket distribution at each airport, and then simulate the
ticket lottery on a computer with the use of random numbers. Instead of travelling
for years, we only need a couple of seconds to obtain a good approximation of the real
probability distribution. Now, that’s an improvement in computation time! This is an
example of a Markov chain Monte Carlo method.”

If we know the mechanisms that govern a physical system, we can simulate the
system in a similar way as with the airport example. Let us now turn our attention
towards the polymer systems we introduced earlier. The polymers interact with each
other through electrostatic interactions, and by equation (5), we know how to calculate
the energy E of a system configuration S. In the case of polymer-systems, S represents
how the polymers are arranged in the solvent. In our numerical implementation, the grid
describes the system configuration, as it contains all information about the placement
of the polymers. Say we want to calculate some interesting real physical property of the
system (e.g. how many clusters the polymers form) denoted x, and that for any system
configuration, we know how to calculate x(S). The expression for the mean value of x,
denoted ⟨x⟩, is then given by

⟨x⟩ =
∑

S ∈ states

f(S)x(S), (6)

where f(S) is the probability that the system has a system configuration S. The sum is
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over all possible states the system can find itself in. Thus, in order to calculate ⟨x⟩ we
need an expression for f(S).

Using thermal and statistical physics (which we will not go into detail in this project,
it is covered in the course TFY4230), one can derive that in physical systems, f(S) only
depends on the energy of the configuration S, and the inverse temperature of the system
(often denoted as β = 1

kBT ). NB! In this project we always assume the temperature to
be in Kelvin, not Celsius. The expression for f(S) is equal to

f(S) =
1

Z
e−βE(S), (7)

where Z is a quantity named the partition function. The partition function is much used
in theoretical physics, but for our purposes we can treat it a constant that normalizes
the probability distribution f(S).

In general, Z is hard to calculate. However, consider what the ratio between the
probability of the system being in state Sn and Si

f(Sn)

f(Si)
= e−β(E(Sn)−E(Si)). (8)

In order to find the probability ratio between two states, we thus only need to evaluate
the change of energy ∆E = E(Sn)− E(Si), the scary quantity, Z, cancels!

3.1 The Metropolis algorithm

To numerically find an approximation for f(S), we will use equation (8) as a guiding
principle. We study a system, initialized in some random state, denoted S0. Imagine
that a polymer is chosen at random, we move it in a direction (horizontally or vertically),
also chosen at random. The new, imagined, system configuration where the polymer has
been moved is denoted Sn. In the Metropolis algorithm, there are two ways the system
can actually change from S0 into the new imagined configuration. Let’s consider them
in detail:

1. As most of you already have an intuition of, a physical system seeks to minimize
its energy. Thus, if ∆E = E(Sn) − E(S0) < 0, the imagined move is physically
realized, the polymer moves, and the system configuration thus changes.

2. Even if ∆E > 0, the polymer may still move due to thermal fluctuations. We ac-
count for this possibility by comparing exp(−β∆E) with a random decimal number
between 0 and 1, denoted p. If exp(−β∆E) > p, the imagined move is realized,
even though the move is energetically unfavorable.

In this project, we define the process above as one MC time step, denoted by t. A
large scale Monte Carlo simulation is often just a matter of carrying out a large amount
of MC steps. For the interested reader, we refer to [8] for more details regarding the
Metropolis algorithm.
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Before you start solving the exercises, it might be instructive to consider how you
expect a high temperature simulation will be different from a low temperature simulation.
Think of how the inequality exp(−β∆E) > p depends on the temperature, and how the
system may get stuck at local energy minima at low temperatures.

3.2 Pseudo-code for Monte Carlo algorithm

In Algorithm 2, we have provided a possible pseudo-code for an MC simulation of a
polymer system. As will be clear from the exercises, the necessary functionality to run
the simulations should be developed before you implement the algorithm in full.

Algorithm 2 MC simulation of interacting polymers and their total energy

grid← N ×N array of zeros
grid← initializeGrid(grid)
ϵ← Ns array of zeros
E ← energy of grid
ϵ(0)← E
for i = 0 to Ns − 1 do

E ← energy of grid
Pick a random polymer
Pick a random direction
if illegalMove then

Do nothing
else

newGrid← Copy of grid but with the polymer moved
Enew ← energy of newGrid
if Enew < E then

grid← newGrid
E ← Enew

else if RAND(0, 1) < exp(−β(Enew − E)) then
grid← newGrid
E ← Enew

else
Do nothing

end if
end if
ϵ(i)← E

end for

3.3 A crash course in statistical aspects of Monte Carlo simulations

Monte Carlo simulations are often used to calculate some interesting physical property
in parameter regimes that are inaccessible through brute-force numerics. However, as
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the systems we study increase in size, the number of Monte Carlo steps (which we will
often describe as time) required to obtain accurate results grows rapidly. Let’s use our
polymer system as an example. Again, let x be some physical quantity that we know
how to calculate if we know the system configuration (i.e. we can calculate x(S)).

Firstly, as will become clear in the exercises, if the system is initialized in a random
state, it will take some time before the system finds itself in a state that is representative
for the system’s natural state. Typically, if the energy of the system is plotted, it will
start out being close to zero, but as time passes, the energy will be lowered, until it
reaches and fluctuates around a mean value. These fluctuations may be quite large,
but we still say that the system has reached its equilibrium. The number of MC steps
required to reach equilibrium from a random state is denoted as tequil. Note that because
MC simulations are stochastic in nature, tequil will not always be the same, so it is often
a good idea to overestimate it, such that you are certain that the system has indeed
reached its equilibrium after tequil MC steps. Typically, tequil increases with system size
(i.e. N for our system).

Once we have done tequil MC steps, we are ready to calculate ⟨x⟩. This will be done
by calculating x as a function of grid(t) at different t, and then taking the average x̄.
However, if x is calculated for the grid at t = tequil, it is superfluous to also calculate
x at t = tequil + 1. Why? Because the system at t = tequil + 1 is essentially the same
as at t = tequil as, at most, they differ by having moved one polymer. You might
recall from statistics that the average of some stochastic variable is a good estimator
for the true value of the variable, but this is only true if the average is made up by
independent stochastic variables. Clearly, x(grid(t = tequil)) and x(grid(t = tequil + 1))
are not independent, so one should not use both when calculating x̄. This is remedied
by waiting tr MC steps between measurements of x(grid). One can optimize how long
one should wait between measurements, see e.g. [8], but to keep it simple, we will always
wait tr = 1000 between measurements of physical quantities (unless we calculate the
energy, in which case we will keep all measurements).

Lastly, as you also might recall from statistics, the accuracy of using x̄ as an estimator
for x increases with the number of measurements used to calculate x̄. We denote this
number by n. You should choose n such that the run time of your code is reasonable,
but be aware that increasing n will increase the validity of your results.

3.3.1 Summary of useful variables for a Monte Carlo simulation

• tequil: The number of time steps done before measurements of the systems starts.

• tr: The number of time steps between each measurement.

• n: The number of measurements made after the equilibration of the system.

• Ns: The total number of time steps of the Monte Carlo simulations. Note that
Ns = tequil + trn.
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4 Exercises

The exercises follow below. The exercises where you are supposed to give an explicit
figure or answer a specific question are underlined. For your convenience, you may refer
directly to specific questions (such as e.g. 1e)) in your text, but still try to write a
cohesive text. In particular, include a small introduction of the project which does not
overly rely on the project description. In some exercises you are asked to implement a
function, but you will need more functions than the ones we explicitly ask for. It might
be useful to quantify your uncertainty by calculating the standard error and standard
deviation when appropriate.

Exercise 1: Monomers

In order to acquaint ourselves with Monte Carlo simulations, we will start with the
simplest physical system, namely a system of monomers in solvent. Thus, you work
with a multivalency, L, equal to one for the entirety of exercise 1. However, a lot of
the functionality you develop here can be reused for the polymer-systems, so try to keep
your code flexible when possible.

This system also serves as a control for assessing the impact of monomer connectivity
(i.e. the polymers we will study in the next exercise) in the formation of membrane-less
organelles (here referred to as clusters).

Parameters

In the monomer-part of the exercise, as parameter for your systems, use relative permit-
tivity εr = 78, which is the relative permittivity of water at room temperature. For the
distance between grid points, use a = 23 µm. Because the distance between grid points
is essentially the length of the monomer, this value of a is orders of magnitude larger
than realistic values for a. We close our eyes to this problem, as using realistic values of
a would result in a dramatic increase in required computational run time. However, the
physics in the problem remains the same. Look up the tabulated values for the other
necessary parameters.

1a) Write a function that takes as input the grid size, N , and the number of monomers
we wish to consider M . The function should return a grid with the monomers placed
randomly. Monomers can only be placed in the solvent, not on top of other monomers.
Check that the grid has 2M non-zero values. M of these values represent positively
charged monomers, the other M represent negatively charged monomers.

1b) Use plt.pcolormesh (or a similiar function) to visualize a system with grid

size N . Include a figure of the system you created in 1a). It should be clear from
the figure what N and M you have chosen. Tip: If you decide to use the function
plt.pcolormesh , you might notice that the rows are interchanged in the plot and in

matrix form. An easy fix for this is to use grid[::-1,] as input to plt.pcolormesh .
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1c) Write a function that takes the size of the grid N , and the matrix indices i and j
as input, and returns an array containing the coordinates of the four nearest neighbors.
Remember to account for the periodic boundary conditions as described in subsection
2.3.

1d) Write a function that takes the grid as input, and returns the total energy of the
system. Tip: For all monomers, use equation (4) to calculate the energy between the
monomer and all of its nearest neighbors. The energy of the system is the sum of all
the monomer energies (divided by some integer that account for the overcounting of
interactions). You may introduce a dimensionless quantity E/α if you wish. Calculate
the energy of the grid you presented in 1b).

1e) Implement the Monte Carlo algorithm described in Algorithm 2. The input pa-
rameters should be the number of Monte Carlo steps in the simulation, Ns, as well as N ,
M , T and any other parameters you find necessary. It will be convenient to also have a
grid as an argument to the function. This grid is the initial system configuration before
the simulation starts. For monomer-systems, the only illegal move is trying to move a
monomer on top of another monomer.

1f) Run two simulations, both with, Ns = 50000, N = 15 and M = 25, but with
differing T . Use T = 200K and T = 500K. We note that while such temperature
variations are not realistic from a biological point of view, it is still interesting to consider
its impact. After the last MC step is complete, save the grid configuration from the low
T simulation (Using e.g. np.savez ). Plot how the energy develops as a function of t for
both simulations in the same figure. Determine visually how many MC steps are needed
for the system to reach its equilibrium2 for the two temperatures. We denote this value
as tequil. Explain why tequil is different for the two temperatures. Hint: You might want
to relate this to the concept of local energy minima.

We will now turn our attention to the formation of aggregates, that is, the clustering
of monomers. We define a cluster of monomers as a group of monomers where there
exists a continuous path between any monomer belonging to the group. The path can
only be piece-wise horizontal or vertical, and crucially, the path can only be along other
monomers belonging to the same group (i.e. the path cannot be across any solvent). In
Figure 4 we have provided an example for the different clusters of the system.

In order to create a data structure that keeps track of where the clusters are, it
is convenient to create a new grid/matrix, of equal size with the grid keeping track of
the monomer-positions. Let’s call this grid for the cluster grid. At any position in the
original grid where there is a monomer (represented by a non-zero value), there will be
a positive number at the same position in the cluster grid. Each cluster is represented
by a unique positive number, so all monomers belonging to a cluster will have the same
positive number in the cluster grid.

2Here, equilibrium means that the energy fluctuates around a stable mean value.
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Figure 4: Left: A system consisting of monomers situated on a grid. The light blue, the green, and
the violet represent the solvent, positively charged monomers, and negatively charged monomers,
respectively.
Right: The corresponding grid cluster of the system. Different clusters are represented by differ-
ent colors. Note that clusters may cross the boundaries, due to the periodic boundary conditions.

1g) Write a function that takes a grid as input, and returns the corresponding cluster
grid. Hint: Using recursion in combination with the function you wrote in 1c) may be a
good idea here. Use the data you saved in 1f) to visualize the grid and the corresponding
cluster grid side-by-side (i.e. a similar figure to Figure 4).

You are now ready to do your first large scale Monte Carlo simulation. The phys-
ical property of interest is the mean cluster size, ⟨d⟩, where the size of a cluster is
defined as the total number of monomers belonging to the cluster. In the next sim-
ulation, use N = 15, M = 25. Consider 10 evenly spaced temperatures between
Tl = 100K and Th = 1000K. As discussed in subsection 3.3, it is necessary to
let the system reach its equilibrium before you start making measurements. Choose
tequil(T ) = tmax exp(−s(T − Tl))+C with tmax = 100000, s = 1/200, C = 10, 000, as this
will result in reasonable run times. Note that this is a slightly optimistic estimate for
how many MC steps that are required to reach equilibrium for low temperatures, so if
the run time is manageable, you might consider to increase tmax. However, if the run
time of your code with tmax is too long, you may use a lower value. Use tr = 1000, and
choose a suitable n. Use different initial grids at different temperatures.

1h) Plot ⟨d⟩ as a function of T . Why is ⟨d⟩ larger at small T? Discuss if your choice
of n will yield reliable results. Are any of your results surprising? In order to observe
how the initial conditions of the grid affects the clustering size, redo the simulation,
and compare the results of the two simulations. Why is the discrepancy between the
simulations larger at lower temperatures?
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Exercise 2: Polymers

We will now turn our attention to polymers, and observe how the introduction of
monomer connectivity (i.e. covalent bonds between monomers) affect aggregate forma-
tion/clustering. Furthermore, you will be asked to evaluate how the polymer’s flexibility
affects this clustering.

Parameters

Continue to use εr = 78, but change the value of a to a = 91 µm.

2a) Write a similar function as you did in 1a), but now you should also take the
multivalency L as input. This is an extension of Algorithm 1 where you place M posi-
tively and M negatively charged polymers. The function should return a grid with 2M
polymers, each with multivalency L. Include a figure of a system with L > 20.

2b) Extend the energy function you wrote in exercise 1d), so it can calculate the
energy of polymer-systems. As mentioned in the introduction, covalent bonds bind
monomers within the same polymer, thus, for simplicity, you may put interactions be-
tween monomers belonging to the same polymer to zero.

There are many ways to computationally mimic how polymers move. In the interest
of keeping the programming complexity manageable, in this project we will avoid twisting
the polymers. In the following exercises, you are asked to write two functions that can
move polymers. The different moves will give the polymers a varying degree of flexibility.
See Figure 5 for illustrations of different types of moves. One of these types of moves,
is called a rigid move. This move has the following simple rules (We use moving to the
right as an example): Every monomer belonging to the polymer is moved one step to
the right. If any of these monomers collides with a monomer belonging to a different
polymer, the move is prohibited, and the entire polymer remains in its original position.

2c) Implement a function that rigidly moves an input-specified polymer in an input-
specified direction. In order to specify direction, one possible choice is to specify the
direction by integers: [Right,Left,Up,Down] ⇐⇒ [0, 1, 2, 3].

2d) Implement Algorithm 2 and use it to run a Monte Carlo simulation of a system
with L > 10, 2 < M < 6, T = 200K. Choose N freely, and use the rigid move from
2c) to move the polymers. Include a figure of the grid after 30000 MC steps. Comment
on why the system looks the way it does. Explain, using both quantitative results from
your simulation and from an “algorithmic” point of view, how and why the run time
requirements have changed in comparison with the monomer-systems you studied in
exercise 1). Tip: It might be convenient to have the function that moves the polymers
as an optional argument to the Monte Carlo function. In this way, you can reuse your
MC function when you introduce new move functions.
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Other types of moves are more challenging to implement, but will give more realistic
simulations. You are now asked to implement the medium flexibility move, illustrated in
the bottom left panel in Figure 5. It has the following rules: Every monomer belonging
to the polymer is moved one step in the same horizontal (vertical) direction. If any
of these monomers collide with a monomer belonging to a different polymer, the entire
row (column) where this occurs is not moved, it remains in place. Collision-free rows
(columns) move as normal. In order to highlight the difference between this type of move,
and a full flexibility move (which you are not asked to implement!), an illustration of a
full flexibility move is also included in Figure 5.

2e) Implement the medium flexibility move. Tip: It might be useful to do this exercise
in tandem with 2f).

If the medium flexibility move is used, there is a chance that the polymers breaks.
A broken polymer is defined using our definitions of clusters in exercise 1g): If the
path (fulfilling the same requirements as in exercise 1g)) between any two monomers
belonging to the polymer is broken, so is the polymer. An illustration of this is given in
Figure 2.

2f) Write a function that checks if a polymer is broken. Hint: This function will be
almost identical to the one you wrote in exercise 1g). Improve your implementation of
the medium flexibility move, such that it checks if the polymer is broken after the move
is completed. If it is broken, the function should instead return the original grid (i.e.
the grid where the polymer is not moved).

2g) Redo the simulation in exercise 2d) with the same parameters, but using the
medium flexible move. Compare the grid produced with flexible polymers to the one
you presented in 2d). Plot the energy as a function of MC steps from the two simulations,
and comment on your results. How does the energy of the system relate to the physical
placement of the polymers?

As mentioned in the introduction, liquid-liquid phase separation drives the forma-
tion of membrane-less compartments in eukaryotic cells. The droplet-like compartments
possess a large concentration of biopolymers. Now you are asked to study how the size
of polymers (which is closely linked to multivalency) impacts the clustering, and thus
also the formation of organelles.

In the last large scale simulation, you are asked to calculate two quantities related
to phase-separation, as a function of L. The first being the average cluster size divided
by L, ⟨d⟩/L. The second quantity is the average number of clusters, denoted ⟨m⟩. Each
cluster represents an organelle/compartment.

2h) Use T = 300K, tr = 1000, N = 30 and M = 5 to calculate ⟨d⟩/L and ⟨m⟩
as a function of L. For L, use 13 evenly spaced values between 3 and 39. Use the
medium flexibility move. You decide yourself the values of tequil and n, but justify your
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choices. Plot ⟨d⟩/L and ⟨m⟩ as a function of L. Discuss your results. How and why
do you think your results would change if you used the rigid move? Because the initial
grid in each system is randomly generated, redoing the simulations might yield quite
different quantitative results. For which values of L do you expect the results to vary
the most? Lastly, choose a different system parameter3 than L, and discuss qualitatively
how changing this parameter will induce/destroy aggregate formation.

Original system configuration After attempted rigid move

After completed medium flexibility move After completed full flexibility move

Figure 5: A system configuration with N = 16, M = 2, and L = 20 is demonstrated in the upper
left panel. The results of three different ways of moving polymers are illustrated in the other
panels. The dark green polymer in the center of the grid tries to move upwards. If the move
is rigid (upper right panel), the move is prohibited due to the collision between the dark green
polymer and the violet polymer. In the case of the two flexible moves, the polymer moves in a
similar manner, expect in the column where there is a collision and solvent below the collision.
With medium flexibility, the entire column remains in place. With full flexibility, only the two
upper monomers in the column remains in place, the rest of the column moves upwards.

3Some system parameters: N , M , T , α. Recall that α control the strength of interactions. Physically,
changing α can be accomplished by changing the pH of the solvent, which subsequently changes εr. This
can be done in real biological systems.
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