
Problem 1. (Polynomial interpolation, 10 pts)

a) What is the definition of the (polynomial) interpolation problem? (2 pts)

b) Write down the error estimate for the interpolation error (don’t prove it!) and discuss
briefly why it might be advantageous to use Chebyshev interpolation nodes instead of
equidistant interpolation nodes. (3 pts)

Next, consider the data points

𝑥𝑖 −2 0 1
𝑓 (𝑥𝑖) 2 2 4

c) Determine the 3 Cardinal (Lagrange basis) functions {ℓ𝑖 (𝑥)}2𝑖=0 associated with the nodes
𝑥0 = −2, 𝑥1 = 0 and 𝑥2 = 1. (3 pts)

d) Use the Cardial functions to determine the interpolation polynomial 𝑝2(𝑥) associated
with the given data points (𝑥𝑖 , 𝑓 (𝑥𝑖)) above. The final interpolation polynomial should
be written in the form

∑2
𝑖=0 𝑎𝑖𝑥

𝑖 . (2 pts)

Solution.

a) Given 𝑛 + 1 points (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=0, find a polynomial 𝑝 (𝑥) of lowest possible degree satisfying
the interpolation condition

𝑝 (𝑥𝑖) = 𝑦𝑖 , 𝑖 = 0, . . . , 𝑛.

1 pt for interpolation condition, 1 pt for lowest degree

b) Assume that {𝑥𝑖}𝑛𝑖=0 ⊂ [𝑎, 𝑏], then for 𝑓 ∈ 𝐶𝑛+1(𝑎, 𝑏) the error estimate for any 𝑥 ∈ [𝑎, 𝑏]
is given by

𝑓 (𝑥) − 𝑝𝑛 (𝑥) =
𝑓 𝑛+1(𝜉)
(𝑛 + 1)!𝜔𝑛+1(𝑥)

where 𝜔𝑛+1(𝑥) = (𝑥 − 𝑥0) · (𝑥 − 𝑥1) · · · (𝑥 − 𝑥𝑛) and 𝜉 ∈ (𝑎, 𝑏). Chebyshev nodes can be
advantageous as they usually drastically reduce the interpolation error. This is caused
by the fact that for Chebyshev nodes, the resulting polynomial 𝜔𝑛+1(𝑥) appearing in the
error estimate has a min-max property. More precisely, it is the polynomial among all
polynomials of order 𝑛 + 1 with leading coefficient 1 which minimizes its maximum norm.
1 pt for error estimate, 1 pt for mentioning error reduction when using Chebyshev nodes,
1 pt for min-max property

c) In general the Cardinal functions/Lagrange polynomials for 𝑛 + 1 nodes are given

Ł𝑖 (𝑥) =
𝑛∏

𝑗=0, 𝑗≠𝑖

𝑥 − 𝑥 𝑗

𝑥𝑖 − 𝑥 𝑗
, 𝑖 = 0, . . . , 𝑛
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. Lagrange polynomial and resulting interpolation polynomial for the given 3 data points
are thus

𝐿0 =
𝑥 (𝑥 − 1)

6

𝐿1 = − (𝑥 − 1) (𝑥 + 2)
2

𝐿2 =
𝑥 (𝑥 + 2)

3

1 pt for each Lagrange polynomial

d) The resulting interpolation polynomial can then be computed as

𝑝2(𝑥) = 2 · 𝐿9(𝑥) + 2 · 𝐿1(𝑥) + 4 · 𝐿2(𝑥)

=
𝑥 (𝑥 − 1)

3
− (𝑥 − 1) (𝑥 + 2) + 4𝑥 (𝑥 + 2)

3
=
2𝑥2

3
+ 4𝑥

3
+ 2

1 pt for linear combination of Lagrange polynomials, 1 pt for correct final form
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Problem 2. (Quadrature, 10 pts)

a) Explain what the degree of exactness for a general quadrature rule is. (1 pts)

b) Given the quadrature points 𝑥0 = −2, 𝑥1 = 0 and 𝑥2 = 1. Determine the corresponding
weights𝜔0, 𝜔1, 𝜔2 such that the quadrature rule defined by {(𝑥𝑖 , 𝜔𝑖)}2𝑖=0 has at least degree
of exactness 2 on the interval [−2, 1].

Hint: You might want to solve Problem 1c) first to save you some time. (4 pts)

c) Let 𝐵𝑄 [𝑓 ] (𝑎, 𝑏) be the so-called Boole’s quadrature rule which computes an approxima-
tion of the integral 𝐼 [𝑓 ] (𝑎, 𝑏) :=

∫ 𝑏

𝑎
𝑓 (𝑥) d𝑥 and satisfies for any 𝑓 ∈ 𝐶6 [𝑎, 𝑏] an error

estimate of the form

|𝐵𝑄 [𝑓 ] (𝑎, 𝑏) − 𝐼 [𝑓 ] (𝑎, 𝑏) | = 8
945

(
𝑏 − 𝑎

4

)7
𝑓 (6) (𝜉)

with some 𝜉 ∈ (𝑎, 𝑏). Which degree of exactness has Boole’s quadrature rule and why?
(2 pts)

d) Assume that you now use Boole’s quadrature rule to create a composite Boole’s quadrature
rule 𝐶𝐵𝑄 [𝑓 ](a,b) on the interval [𝑎, 𝑏] using𝑚 equally spaced subintervals 𝐼𝑖 = [𝑥𝑖−1, 𝑥𝑖]
where 𝑥𝑖 = 𝑎 + ℎ𝑖 , 𝑖 = 0, . . . ,𝑚 and ℎ = (𝑏 − 𝑎)/𝑚. Prove then the following estimate for
the quadrature error holds:

|𝐶𝐵𝑄 [𝑓 ] (𝑎, 𝑏) − 𝐼 [𝑓 ] (𝑎, 𝑏) | ⩽ 8
945 · 47 (𝑏 − 𝑎)ℎ6 max

𝜉∈[𝑎,𝑏 ]
|𝑓 (6) (𝜉) |

(3 pts)

Solution.

a) A numerical quadrature has degree of exactness 𝑑 if𝑄 [𝑝] (𝑎, 𝑏) = 𝐼 [𝑝] (𝑎, 𝑏) for all 𝑝 ∈ P𝑑
and there is at least one 𝑝 ∈ P𝑑+1 such that 𝑄 [𝑝] (𝑎, 𝑏) ≠ 𝐼 [𝑝] (𝑎, 𝑏). 1 pt for definition

b) We need to compute the Lagrange polynomials 𝐿0, 𝐿1 and 𝐿2 associatedwith the quadrature
points 𝑥0, 𝑥1, 𝑥2. Then 𝜔𝑖 are determined by

𝜔𝑖 =

∫ 1

−2
𝐿𝑖 (𝑥)𝑑𝑥

Note that we had the same points in the Problem 1, so we do not need to recompute 𝐿𝑖 ,
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we only need to integrate the computed Lagrange polynomials

𝜔0 =

∫ 1

−2

𝑥 (𝑥 − 1)
6

𝑑𝑥 = 3/4

𝜔1 = −
∫ 1

−2

(𝑥 − 1) (𝑥 + 2)
2

𝑑𝑥 = 9/4

𝜔2 =

∫ 1

−2

𝑥 (𝑥 + 2)
3

𝑑𝑥 = 0

1 pt for general weight formula, 1 pt for each weight

c) Boole’s quadrature rule has degree of exactness equal to 5, because the right-hand side
of its error estimate involves the 6th derivative of 𝑓 which vanishes for all polynomials
of degree less or equal to 5, showing that in that case the quadrature error is 0. 1 pt for
correct degree of exactness, 1 pt for reasoning

d) Use the additivity of the usual integral w 𝐼 [𝑓 ] (𝑎, 𝑏) = ∑𝑚
𝑖=1 𝐼 [𝑓 ] (𝑥𝑖−1, 𝑥𝑖), the definition

of the composite quadrature rule and the error estimate for the Boole quadrature above
on a single interval to deduce that

|𝐶𝐵𝑄 [𝑓 ] (𝑎, 𝑏) − 𝐼 [𝑓 ] (𝑎, 𝑏) | = |
𝑚∑︁
𝑖=1

𝐵𝑄 [𝑓 ] (𝑥𝑖−1, 𝑥𝑖) − 𝐼 [𝑓 ] (𝑥𝑖−1, 𝑥𝑖) | (1)

⩽
𝑚∑︁
𝑖=1

| 8
945

(𝑥𝑖 − 𝑥𝑖−1
4

)7
𝑓 (6) (𝜉) | (2)

⩽
8

945 · 47
𝑚∑︁
𝑖=1

ℎ7𝑀𝑖 ⩽
8𝑀

945 · 47𝑚ℎ7 =
8𝑀

945 · 47 (𝑏 − 𝑎)ℎ6 (3)

where we used the notation 𝜉𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖),𝑀𝑖 = max𝜉∈[𝑥𝑖−1,𝑥𝑖 ] |𝑓 (𝜉) |,𝑀 = max𝑖=1,...,𝑚 𝑀𝑖 .
1 pt for additivity of integral, 1 pt for using BQ on each subinterval, 1 pt for correct final
estimate
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Problem 3. (Numerical methods for ODEs, 15 points)

For an ordinary differential equation of the form

𝑑𝑦

𝑑𝑡
= 𝑓 (𝑡, 𝑦), 𝑦 (0) = 𝑦0

the Crank-Nicolson method to approximate the solution defined by the following scheme

𝑦𝑛+1 = 𝑦𝑛 +
𝜏

2
(𝑓 (𝑡𝑛, 𝑦𝑛) + 𝑓 (𝑡𝑛+1, 𝑦𝑛+1))

a) Explain the connection between the Crank-Nicolson method and the trapezoidal rule.
(1 pts)

b) Rewrite the Crank-Nicolson method into the form of a Runge-Kutta method and derive
the Butcher tableau. (4 pts)

c) Determine the stability function 𝑟 (𝑧) of the Crank-Nicolson method. (3 pts)

d) Determine the stability region of the Crank-Nicolson method. (4 pts)

e) Use the order conditions for Runge-Kutta methods as summarized in the table below,

𝑝 conditions
1

∑𝑠
𝑖=1 𝑏𝑖 = 1

2
∑𝑠

𝑖=1 𝑏𝑖𝑐𝑖 = 1/2
3

∑𝑠
𝑖=1 𝑏𝑖𝑐

2
𝑖 = 1/3∑𝑠

𝑖, 𝑗=1 𝑏𝑖𝑎𝑖 𝑗𝑐 𝑗 = 1/6
4

∑𝑠
𝑖=1 𝑏𝑖𝑐

3
𝑖 = 1/4∑𝑠

𝑖, 𝑗=1 𝑏𝑖𝑐𝑖𝑎𝑖 𝑗𝑐 𝑗 = 1/8∑𝑠
𝑖, 𝑗=1 𝑏𝑖𝑎𝑖 𝑗𝑐

2
𝑗 = 1/12∑𝑠

𝑖, 𝑗,𝑘=1 𝑏𝑖𝑎𝑖 𝑗𝑎 𝑗𝑘𝑐𝑘 = 1/24

to determine the consistency order of the Crank-Nicolson method. (3 pts)

Solution.

a) The Crank-Nicolsonmethod can be derived by rewriting the ODE into an integral equation
and applying the trapezoidal rule to the integral:

𝑦 (𝑡 + 𝜏) − 𝑦 (𝑡) =
∫ 𝑡+𝜏

𝑡

𝑦 ′(𝑠) d𝑠

=

∫ 𝑡+𝜏

𝑡

𝑓 (𝑠, 𝑦 (𝑠)) d𝑠 ≈ 𝜏

2
(𝑓 (𝑡, 𝑦 (𝑡)) + 𝑓 (𝑡 + 𝜏, 𝑦 (𝑡 + 𝜏))).

1 pt for integral equation and application of trapezoidal rule
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b) To rewrite the Crank-Nicolson method as a general Runge-Kutta method, define,

𝑘1 := 𝑓 (𝑡𝑘 , 𝑦𝑘 ) = 𝑓 (𝑡𝑘 + 0︸︷︷︸
𝑐1

·𝜏𝑘 , 𝑦𝑘 + 𝜏𝑘 0︸︷︷︸
𝑎11

·𝑘1 + 𝜏𝑘 0︸︷︷︸
𝑎21

·𝑘2) ⇒ 𝑐1 = 𝑎11 = 𝑎21 = 0

and
𝑘2 := 𝑓 (𝑡𝑘 + 𝜏𝑘 , 𝑦𝑘 + 𝜏𝑘 1

2𝑘1 + 𝜏𝑘
1
2𝑘2)

so that next step can be computed by

𝑦𝑘+1 := 𝑦𝑘 + 𝜏𝑘 (
1
2
𝑘1 +

1
2
𝑘2) = 𝑦𝑘 + 𝜏𝑘

1
2︸︷︷︸
𝑏1

𝑘1 + 𝜏𝑘
1
2︸︷︷︸
𝑏2

𝑘2

Thus, the Butcher table is
0 0 0

1
1
2

1
2

1
2

1
2

1 pt for 𝑘1, 1 pt for 𝑘2, 1 pt for rewriting 𝑦𝑛+1 1 pt for Butcher tableau

c) To compute the stability function for the Crank-Nicolson method, simply apply the

scheme to the test equation
𝑑𝑦

𝑑𝑡
= 𝜆𝑦 . Then

𝑦𝑛+1 = 𝑦𝑛 +
𝜏

2
𝜆𝑦𝑛 +

𝜏

2
𝜆𝑦𝑛+1

⇔𝑦𝑛+1 =
1 + 𝜏𝜆

2

1 − 𝜏𝜆
2

𝑦𝑛

Setting 𝑧 = 𝜏𝜆, we see that the stability function is given by

𝑟 (𝑧) =
1 + 𝑧

2
1 − 𝑧

2

d) To determine the stability region 𝑆 = {𝑧 ∈ C | |𝑟 (𝑧) | ⩽ 1}, we first determine its boundary

𝜕𝑆 = {𝑧 ∈ C | |𝑟 (𝑧) | = 1}

Now |𝑟 (𝑧) | = 1 ⇔ |𝑟 (𝑧) |2 = 1. Writing 𝑟 (𝑧) = 𝑎 + 𝑏𝑖

|𝑟 (𝑧) |2 = 1 ⇔ |1 − 𝑧/2|2 = |1 + 𝑧/2|2

⇔ (1 − 𝑎/2)2 + (𝑏/2)2 = (1 + 𝑎/2)2 + (𝑏/2)2

⇔ (1 − 𝑎/2)2 = (1 + 𝑎/2)2

⇔ 1 − 2𝑎 + 𝑎2 = 1 + 2𝑎 + 𝑎2 ⇔ 4𝑎 = 0

So the boundary is given by the 𝑦-axis, 𝜕𝑆 = {𝑧 ∈ C|Re(𝑧) = 0}. Moreover, we for
real 𝑧 < 0, we see immediately that that |𝑟 (𝑧) | < 1, so it is the left half-plane which is
contained in the stability region. 1 pt for stating the right test ODE, 1 pt for applying it to
C-N, 1 pt for final stability function
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e) Checking the consistency order using the order conditions we see that

𝑝 = 1 𝑏1 + 𝑏2 =
1
2
+ 1
2
= 1 OK

𝑝 = 2 𝑏1𝑐1 + 𝑏2𝑐2 =
1
2
· 0 + 1

2
· 1 = 1

2
OK

𝑝 = 3 𝑏1𝑐
2
1 + 𝑏2𝑐22 =

1
2
· 02 + 1

2
· 12 = 1

2
≠

1
3

Not satisfied

We don’t need to check the second condition for order 3, since the first condition for
order 3 is already not satisfied. Thus, the method is of order 2. 1 pt for each check of the
order conditions
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TMA4320_2025v_code_solution

May 28, 2025

1 Problem 4 A Fourier spectral solver for the heat equation (15
pts)

Consider the homogenenous heat equation

𝜕𝑡𝑢 − Δ𝑢 = 0.

(proj:time-dep-biharmonic)

to be solved on a given rectangular domain Ω = [0, 2𝜋) × [0, 2𝜋) ⊂ ℝ2 with periodic boundary
conditions. Moreover, the problem is supplemented with initial conditions 𝑢(0, 𝑥, 𝑦) = 𝑢0(𝑥, 𝑦),
which we also assume to satisfy periodic boundary conditions.

1.1 Task 1
Provide a mathematical description of the numerical solver for the time-dependent heat equation
which combines a Fourier spectral method/discrete Fourier transform in space with Crank-Nicolson
(given in the previous problem) method in time. In particular, * explain how the (discrete) Fourier
transform is used to transform the heat equation into an ODE in time * write down the equation
for how a new solution in Fourier space is computed from the previous solution for each time step
when the Crank-Nicolson method is a

(3 pts)

Solution:

a) Applying the Fourier transform to the −Δ𝑢(𝑥, 𝑦, 𝑡) , we have in general

(Δ𝑢)∧(𝑘𝑥, 𝑘𝑦, 𝑡) = −|k̃|2𝑢̂(k, 𝑡).

where k̃ = (𝑘𝑥, 𝑘𝑦) and k̃ = 2𝜋(𝑘𝑥/𝐿𝑥, 𝑘𝑦/𝐿𝑦) and (𝐿𝑥, 𝐿𝑦) are the lengths of the domain in the 𝑥
and 𝑦 directions, respectively. (Note that in the given case, we have 𝐿𝑥 = 𝐿𝑦 = 2𝜋, so the wave
vector k̃ is simply given by (𝑘𝑥, 𝑘𝑦).) Thus

(𝜕𝑡𝑢 − Δ𝑢)∧(𝑘𝑥, 𝑘𝑦, 𝑡) = 𝜕𝑡𝑢̂(𝑘𝑥, 𝑘𝑦, 𝑡) + |k̃|2𝑢̂(𝑘𝑥, 𝑘𝑦, 𝑡) = 0.

This is now an ordinary differential equation (ODE) in time for each Fourier mode (𝑘, 𝑙), which can
be solved independently for each mode.

To discretize in space, we simply replace the continuous Fourier transform with a discrete Fourier
transform (DFT).

1 pt for Fourier transform of Laplacian, 1 pt for replacement with DFT and final ODE
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b) Applying the Crank-Nicolson method to ODE (assuming a constant time step 𝜏), we compute
the solution at 𝑡𝑛+1 from the solution at 𝑡𝑛 as follows

𝑢̂(𝑘𝑥, 𝑘𝑦, 𝑡𝑛+1) + 𝜏
2 |k̃|2𝑢̂(𝑘𝑥, 𝑘𝑦, 𝑡𝑛+1) = 𝑢̂(𝑘𝑥, 𝑘𝑦, 𝑡𝑛) − 𝜏

2 |k̃|2𝑢̂(𝑘𝑥, 𝑘𝑦, 𝑡𝑛)

𝑢̂(𝑘𝑥, 𝑘𝑦, 𝑡𝑛+1) = 1 − 𝜏
2 |k̃|2

1 + 𝜏
2 |k̃|2

𝑢̂(𝑘𝑥, 𝑘𝑦, 𝑡𝑛)

1 pt for applying Crank-Nicolson and rearranging

1.2 Task 2
Implement the solver from the previous task by completing the code snippet provided below.
As in Project 3, the solver is implemented as a generator function using the yield statement
to return the discrete Fourier transform of the solution at each time step together with the
current time.

Hint: Write the code as simply as possible, and in particular taylor-made for the specific problem at
hand. There is not need to handle general non-zero right-hand side, or different domain sizes or spac-
ing for each direction! That’s why the signature of the generator function heat_equation_solver
below is rather simple and short.

Hint: The numpy fuctions linspace and meshgrid might come in handy, as well as the function
fft2, ifft2, fftfreq from the module scipy.fft.

Hint: Below, a plotting function is provided to visualize the solution at a given time step. You will
use it in the 3rd task, but it might be useful to visually test your implementation in this task as
well.

(6 pts) No detail breakdown for point distribution is given to allow for flexibility in grading when
assessing individual implementations.

[78]: import numpy as np
from scipy.fft import fft2, ifft2, fftfreq

Code outline:

[ ]: def heat_equation_solver(N, d, U0, t0, T, Nt):
"""
Solve the heat equation using the Crank-Nicolson method in Fourier space.

Parameters:
-----------
N : int

Number of grid points in each spatial direction (same for each␣
↪dimension)

d : float (same for each dimension)
Grid spacing.

U0 : numpy.ndarray
Initial condition evaluated on meshgrid.
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t0 : float
Initial time.

T : float
Final time.

Nt : int
Number of time steps.

Yields:
-------
tuple

A tuple containing the discrete Fourier transform of the solution at␣
↪the current time step (U_hat)

and the current time (t).
"""

# Compute wave number grid
# ...

# Compute Fourier transform of initial value and yield initial solution for␣
↪convenience

# ...
yield U_hat, t

# Time-stepping
while t < T-dt/2:

# Update U_hat and time step
# ...

yield U_hat, t

[75]: def heat_equation_solver(N, d, U0, t0, T, Nt):
"""
Solve the heat equation using the Crank-Nicolson method in Fourier space.

Parameters:
-----------
N : int

Number of grid points in each spatial direction (same for each␣
↪dimension)

d : float (same for each dimension)
Grid spacing.

U0 : numpy.ndarray
Initial condition evaluated on meshgrid.

t0 : float
Initial time.

T : float
Final time.
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Nt : int
Number of time steps.

Yields:
-------
tuple

A tuple containing the discrete Fourier transform of the solution at␣
↪the current time step (U_hat)

and the current time (t).
"""

# Compute wave number grids
kx = fftfreq(N,d=d)*2*np.pi
ky = fftfreq(N,d=d)*2*np.pi
KX, KY = np.meshgrid(kx, ky, sparse=True)
K2 = KX**2 + KY**2

# Define multiplier operator
t = t0
dt = (T-t0)/Nt
mo = (1 - dt/2*K2)/(1+dt/2*K2)

# Compute Fourier transform of initial value
U_hat = fft2(U0)
yield U_hat, t

# Time-stepping
while t < T-dt/2:

t += dt
U_hat = mo*U_hat
yield U_hat, t

1.3 Task 3
Study the convergence order in time of your solver implementation using the manufactured solution
function

𝑢ex(𝑥, 𝑦, 𝑡) = sin(𝑥) cos(𝑦) exp(−2𝑡)
with satisfies the homogenenous heat equation.

Set * 𝑁 = 20 sampling points/subintervals in each space direction * 𝑡0 = 0, 𝑇 = 1.
Now solve the problem successively for 𝑁𝑡 = 10, 20, 40, 80 time steps with equidistant time steps
𝜏 = 𝑇 /𝑁𝑡. For each run calculate the error in the so-called 𝐿∞𝐿∞ norm defined by

‖𝐸𝑘‖𝐿∞𝐿∞ = max
𝑘∈{0,𝑁𝑡}

max
𝑖,𝑗∈{1,…,𝑁}

|𝑢ex(𝑥𝑖, 𝑦𝑗, 𝑡𝑘) − 𝑈𝑘(𝑥𝑗, 𝑦𝑗)|,

Print the errors and compute (or estimate) the experimentally observed convergence rate (EOC)

4



with respect to the time step size 𝜏 (Just do a simple print, no fancy formatting is needed!).

Finally, for 𝑁𝑡 = 80, plot the exact solution 𝑢𝑒𝑥, the discrete solution 𝑈 and the error 𝐸 = 𝑈 − 𝑈𝑒𝑥
at 𝑡 = 1 using the imshow_plot_u defined below.

(6 pts) No detail breakdown for point distribution is given to allow for flexibility in grading when
assessing individual implementations.

[64]: import matplotlib.pyplot as plt

def imshow_plot_u(U, Lx, Ly, cblabel=r'$U$'):
"""
Visualizes a 2D array `U` as a heatmap using matplotlib's imshow function.
Parameters:
-----------
U : numpy.ndarray

A 2D array representing the data to be visualized.
Lx : float

The length of the domain in the x-direction.
Ly : float

The length of the domain in the y-direction.
cblabel : str, optional

Label for the colorbar. Default is r'$U$'.
Returns:
--------
fig : matplotlib.figure.Figure

The figure object containing the plot.
ax : matplotlib.axes._subplots.AxesSubplot

The axes object containing the plot.
Notes:
------
- The colormap used is 'RdBu_r', which is a diverging colormap.
- The color limits are set to the minimum and maximum values of `U`.
- The x and y axes are labeled as r'$x$' and r'$y$', respectively.
- The colorbar is added to the plot with the specified label.
"""

fig = plt.figure()
ax = fig.add_subplot(111)
img = ax.imshow(U, cmap='RdBu_r', interpolation='bilinear', extent=[-Lx/2,␣

↪Lx/2, -Ly/2, Ly/2])
ax.set_xlabel(r'$x$')
ax.set_ylabel(r'$y$')
cbar = plt.colorbar(img, ax=ax)
cbar.set_label(cblabel)
img.set_clim(vmin=U.min(), vmax=U.max())
return fig, ax

Solution
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[ ]: def u_ex(x,y,t):
return np.sin(x)*np.cos(y)*np.exp(-2*t)

N = 20
d = 2*np.pi/N

t0, T = 0, 1

# Prepare grid and initial data
x = np.linspace(0, 2*np.pi, N, endpoint=False)
y = np.linspace(0, 2*np.pi, N, endpoint=False)
X, Y = np.meshgrid(x,y, sparse=True)
U0 = u_ex(X, Y, t0)

err = []
for Nt in [10, 20, 40, 80]:
# for Nt in [10]:

solver = heat_equation_solver(N, d, U0, t0, T, Nt)

err_t = []
for U_hat, t in solver:

U = ifft2(U_hat).real
U_ex = u_ex(X, Y, t)
err_t.append(np.abs(U-U_ex).max())

err_t = np.array(err_t)
err.append(err_t.max())
print(f"Err = {err[-1]}")

err = np.array(err)
eoc = np.log(err[:-1]/err[1:])/np.log(2)
print(eoc)

imshow_plot_u(U_ex, 2*np.pi, 2*np.pi, cblabel=r'$U_{ex}$')
imshow_plot_u(U, 2*np.pi, 2*np.pi, cblabel=r'$U$')
imshow_plot_u(U-U_ex, 2*np.pi, 2*np.pi, cblabel=r'$U_{ex}-U$')

Err = 0.0012316091182420497
Err = 0.0003068987885736507
Err = 7.666231473058005e-05
Err = 1.9161684992885508e-05
[2.0047096 2.00117349 2.00029313]

[ ]: (<Figure size 640x480 with 2 Axes>, <Axes: xlabel='$x$', ylabel='$y$'>)
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