SUMMER SCHOOL EXERCISES

- (1) Let \mathcal{A} be an abelian category and $0 \to A \to B \to C \to 0$ a short exact sequence in \mathcal{A} . Show that $A \to B \to C \xrightarrow{(1)} A$ is a distinguished triangle in $D(\mathcal{A})$.
- (2) Describe the derived category of a field.
- (3) Understanding the octahedral axiom. Let \mathcal{T} be a triangulated category. Convince yourself that if we assume TR1-TR3 then TR4 is equivalent to the following: given morphisms

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

and triangles

$$X \xrightarrow{f} Y \to Z' \xrightarrow{(1)} X$$
$$X \xrightarrow{gf} Z \to Y' \xrightarrow{(1)} X$$
$$Y \xrightarrow{g} Z \to X' \xrightarrow{(1)} Y$$

we can complete this to a commutative diagram

$$\begin{array}{c|c} X \xrightarrow{f} Y \longrightarrow Z' \xrightarrow{(1)} X \\ id & g & \downarrow & \downarrow & \downarrow \\ X \xrightarrow{gf} Z \longrightarrow Y' \xrightarrow{(1)} X \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 0 \longrightarrow X' \xrightarrow{id} X' \xrightarrow{(1)} 0 \\ (1) & (1) & (1) & (1) \\ X \xrightarrow{f} Y \longrightarrow Z' \xrightarrow{(1)} X \end{array}$$

- (4) Let \mathcal{T} be a triangulated category and consider a diagram $X \xrightarrow{f} Y \xrightarrow{g} Z \to hU$ with gf = 0, hg = 0. Show that the set $\langle h, g, f \rangle$ is a coset of $h \operatorname{Hom}(X, Z)_{-1} + \operatorname{Hom}(Y, U)_{-1}f$ inside $\operatorname{Hom}(X, U)_{-1}$.
- (5) Let k be a field. Compute $HH^n(k[x_1,\ldots,x_n])$ and $HH^n(k(x_1,\ldots,x_n))$.
- (6) Let A be a k-algebra and $\eta : A \otimes A \to M$ a bilinear function. Then η defines a multiplication on $E = A \oplus M$ via

$$(a_1, m_1) \cdot (a_2, m_2) = (a_1 a_2, a_1 m_2 + m_1 a_2 + \eta(a_1, a_2)).$$

Show that this multiplication is associative if and only if η is a Hochschild cocycle i.e. $d_{\text{Hoch}}(\eta) = 0$.

(7) Now let A be a k-algebra and $\eta : A \otimes \ldots \otimes A \to M$ a n-multilinear function. Show that the A_{η} we defined in class is an A_{∞} algebra if and only if $d_{\text{Hoch}}(\eta) = 0$.

SUMMER SCHOOL EXERCISES

- (8) Keeping in mind that an A_{∞} -category is just an A_{∞} -algebra with several objects, write down the definition of an A_{∞} -module over an A_{∞} -category.
- (9) Let \mathcal{A} be a DG category, and let f be a closed morphism in $\operatorname{Tw}(\mathcal{A})$, $f \in \operatorname{Tw}(\mathcal{A})((M, \delta_M), (N, \delta_N))$. Then show that $\operatorname{Cone}(f) \in \operatorname{Tw}(\mathcal{A})$.
- (10) Show that if \mathcal{A} is an A_n -category and $m \leq n$ then $\operatorname{Tw}_{\leq m}(\mathcal{A})$ is an $A_{\lfloor \frac{n-m}{m+1} \rfloor}$ category.

 2