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Time-stretch invariants

Assume there is a discrete deterministic time-series

(X1,X2, ..,XM) ∈ RM ,

that we want to know about.
But! We only get noisy observations

Y (`)
n = Xn + W (`)

n , ` = 1, . . . L,

where W (`) are iid samples of a random walk.

Of course

1
L

L∑
`=1

Y (`)
m →L→∞ Xm, m = 1, . . . ,M.

So: if we observe often enough, we can recover X .
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Time-stretch invariants

Now still assume X ∈ RM unknown, but additionally
we do not know the speed at which it is run .

To be specific,

Y (`)
n = Xτ (`)(n) + W (`)

n , ` = 1, . . . L, n = 1, . . . ,N,

where

τ (`) : {1, ..,N} → {1, ..,M},

are non-decreasing, surjective and unknown .
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Time-stretch invariants

Fig: Original Fig: Time-stretched Fig: Time-stretched

Fig: Time-stretched +
noise

Fig: Time-stretched +
noise
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Time-stretch invariants

Y (`)
n = Xτ (`)(n) + W (`)

n , ` = 1, . . . L, n = 1, . . . ,N.

How to recover X now ?

Current available method.
1. Align the different samples.
2. Average.

This works for large signal-to-noise ratio .
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Time-stretch invariants

It was no chance of working for small signal-to-noise ratio .

Fig: Time-stretched +
noise

Fig: Time-stretched +
noise

Our strategy
1. Calculate time-strecth invariant features of the time-series.
2. Average them. Law of large numbers  noise disappears.
3. Invert the first step: find time-series that matches the

averaged features.
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Time-stretch invariants

First idea Use iterated-integrals signature on the linearly
interpolated path,

Sig(Y )0,N =
(

1,
∫ N

0
dY ,

∫ N

0
dY ⊗ dY ,

∫ N

0
dY ⊗ dY ⊗ dY , ..

)

=
(

1,Y0,N ,
1
2!(Y0,N)2,

1
3!(Y0,N)3, . . .

)
For d = 1 one only gets one feature: the total displacement.

(There are ways to turn a one-dim time series into a multi-dim one
though; more on this later.)

Instead: we look for all polynomials on time-series that are
invariant in the desired sense.
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Time-stretch invariants
Example

f
(

Y (`)
)

:=

N∑
n=2

(
Y (`)

n − Y (`)
n−1

)2
.

Then

E
[

f
(

Y (`)
)]

= E
[ N∑

n=2

(
X (`)
τ(`)(n)

− X (`)
τ(`)(n−1)

)2
+ 2

N∑
n=2

(
X (`)
τ(`)(n)

− X (`)
τ(`)(n−1)

)(
W (`)

n − W (`)
n−1

)
+

N∑
n=2

(
W (`)

n − W (`)
n−1

)2 ]
=

N∑
n=2

(
X (`)
τ(`)(n)

− X (`)
τ(`)(n−1)

)2
+ (N − 1) · σ2

=

M∑
m=2

(
Xm − Xm−1

)2
+ (N − 1) · σ2

.
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Time-stretch invariants

We now work on sequences of real numbers that eventually are
zero, Y ∈ RN

0 . Define, Stilln : RN
0 → RN

0 for example as

Still4: 7→

Relation to previous consideration: embed X in RN
0 and then Xτ(·)

can be realized as standing still a couple of times.

We call F : RN
0 → R invariant to standing still if for all Y ∈ RN

0 ,
all n ≥ 1

F (Stilln(Y )) = F (Y ).
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Time-stretch invariants

It simplifies matters to think in terms of increments
yi := Yi − Yi−1. “Standing still” then becomes “inserting zeros”.

Zero4: 7→

Definition
We call G : RN

0 → R invariant to inserting zeros if for all
y ∈ RN

0 , all n ≥ 1

G(Zeron(y)) = G(y).
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Time-stretch invariants

Lemma
All polynomial invariants to inserting zeros are given by the
quasisymmetric functions∑

i1<···<ip
yα1

i1 · · · · · y
αp
ip , p ≥ 1, α ∈ Np

≥1.

Example We have already seen α = (2).

α = (5, 7, 2) gives ∑
i1<i2<i3

y5
i1y7

i2y2
i3 .
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Time-stretch invariants

Goal Store these features in a Hopf algebra structure , as is done
for the classical iterated-integrals signature.

Let H be the space of formal inifinite linear combinations of
integer compositions. Define

DiscreteSig(y) :=
∑
α

∑
i1<···<ip

yα1
i1 · · · · · y

αp
ip · α ∈ H

= () +
∑
i1

yi1 · (1) +
∑
i1

y2
i1 · (2) +

∑
i1<i2

yi1yi2 · (1, 1)

+
∑
i1<i2

yi1y2
i2 · (1, 2) + ...

(The Hopf algebra of quasisymmetric function was studied by
Malvenuto/Reutenauer 1994.)
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Time-stretch invariants

Lemma (Chen’s identity)
For y , y ′ ∈ RN

0 let denote y t y ′ ∈ RN
0 their concatenation. Then:

DiscreteSig(y t y ′) = DiscreteSig(y) •DiscreteSig(y ′).

Here • is the concatenation product on H. For example

(2, 3, 1) • (7, 4) = (2, 3, 1, 7, 4).
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Time-stretch invariants

Lemma (Shuffle identity)

〈
α,DiscreteSig(y)

〉
·
〈
β,S(y)

〉
=
〈
α

q
� β,DiscreteSig(y)

〉
,

Here
q
� is the quasi-shuffle on H∗. For example

(1, 2)
q
� (3) = (1, 2, 3) + (1, 3, 2) + (3, 1, 2) + (1, 5) + (4, 2).

So: just as for classical signature, the discrete signature is a
character on some Hopf algebra.
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Time-stretch invariants

What about Chow’s theorem?

Recall:

Theorem (Chow’s theorem for classical signature)
For every L ∈ g, the free Lie algebra, for every n ≥ 1, there exists a
piecewise linear path X such that

proj≤n Signature(X )0,1 = proj≤n exp(L).
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Time-stretch invariants

This is not true here anymore!

To wit: up to degree 2 the Lie algebra of H is spanned by two
vectors L(1) and L(2). The logarithm of the discrete signature up to
degree 2 is given by

log DiscreteSig(y) =
∑
i1

yi1 · L(1) +
∑
i1

y2
i1 · L(2).

Since the coefficient of L(2) is non-negative, not every element of
the Lie algebra can be reached!

(The problem seems to evaporate over C ...)
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Multidimensional / Relation to other signatures
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Multidimensional / Relation to other signatures

For a times-series in y ∈ (Rd )N0 something similar works.
Let us look at the first few terms of the discrete signature for
d = 2. Introduce commuting variables a1, a2, then

DiscreteSig(y) = () +
∑
i1

y (1)
i1 (a1) +

∑
i1

y (2)
i1 (a2)

+
∑
i1

(y (1)
i1 )2(a2

1) +
∑
i1

y (1)
i1 y (2)

i1 (a1a2) +
∑
i1

(y (2)
i1 )2(a2

2)

+
∑
i1<i2

y (1)
i1 y (1)

i2 (a1, a1) +
∑
i1<i2

y (1)
i1 y (2)

i2 (a1, a2)

+
∑
i1<i2

y (2)
i1 y (1)

i2 (a2, a1) +
∑
i1<i2

y (2)
i1 y (2)

i2 (a2, a2) + ...

Then: Chen’s lemma X, shuffle identity X.
(It fits nicely into the algebraic framework of quasi-shuffle algebras
of Hoffman 2000.)
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Multidimensional / Relation to other signatures

The discrete signature contains all (polynomial) time-stretch
invariants, so it must contain the classical signature .

Denote Sig(X ) the classical signature of the linearly inerpolated
path.
Lemma
There exists a map

Φ : H → T ((Rd ))

such that

Sig(X ) = Φ(DiscreteSig(∆X ))

Remark 1. It is (the dual of) the isomorphism of Hoffman.
2. The other direction is not possible (DiscreteSig

contains strictly more information).Joscha Diehl The discrete signature 19



Multidimensional / Relation to other signatures

For one-dimensional signals, the classical signature is not very
interesting. There exist several ways to enhance a 1d curve to a
multidim curve though:

1. Add time. (Destroys time-stretch invariance.)
2. Add 1-variation. (Not poynomial.)
3. Lead-lag procedure of Flint/Hambly/Lyons 2016.

Lemma
1. There is a map from our discrete signature to the lead-lag
signature.
2. For d ≥ 2 (the logarithm of) the lead-lag signature contains
redundant terms.
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Open questions / Observations
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Open questions / Observations

Open questions
I Weaker statement of Chow type (image is Zariski dense,

image has positive measure, ..).
I Inverting DiscreteSig numerically.
I Multi-parameter case.
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Open questions / Observations

Observation
Sample a continuous path X discretely  X n. Then, if X is
smooth,

DiscreteSig(X n) “→ ” Sig(X ).

In particular: for a one-dim signal in the limit there is no
information (apart from the increment).

On the other hand: for a martginale X

DiscreteSig(X n) “→ ” Sig(X , 〈X 〉),

which gives a lot more information .

What is going on here?
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Open questions / Observations

Thank you!
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