The discrete signature of a time series

Joscha Diehl (Universität Greifswald)
joint with Kurusch Ebrahimi-Fard (NTNU), Nikolas Tapia (TU Berlin), Max Pfeffer (MPI Leizpig)

10. May

Time-stretch invariants

Assume there is a discrete deterministic time-series

$$
\left(X_{1}, X_{2}, . ., X_{M}\right) \in \mathbb{R}^{M}
$$

that we want to know about.
But! We only get noisy observations

$$
Y_{n}^{(\ell)}=X_{n}+W_{n}^{(\ell)}, \quad \ell=1, \ldots L
$$

where $W^{(\ell)}$ are iid samples of a random walk.

Of course

$$
\frac{1}{L} \sum_{\ell=1}^{L} Y_{m}^{(\ell)} \rightarrow_{L \rightarrow \infty} X_{m}, \quad m=1, \ldots, M
$$

So: if we observe often enough, we can recover X.

Time-stretch invariants

Now still assume $X \in \mathbb{R}^{M}$ unknown, but additionally we do not know the speed at which it is run .

To be specific,

$$
Y_{n}^{(\ell)}=X_{\tau^{(\ell)}(n)}+W_{n}^{(\ell)}, \quad \ell=1, \ldots L, n=1, \ldots, N
$$

where

$$
\tau^{(\ell)}:\{1, . ., N\} \rightarrow\{1, . ., M\}
$$

are non-decreasing, surjective and unknown .

Time-stretch invariants

Fig: Original

Fig: Time-stretched

Fig: Time-stretched + noise

Fig: Time-stretched

Fig: Time-stretched + noise

Time-stretch invariants

$$
Y_{n}^{(\ell)}=X_{\tau^{(\ell)}(n)}+W_{n}^{(\ell)}, \quad \ell=1, \ldots L, n=1, \ldots, N .
$$

How to recover X now ?

Current available method.

1. Align the different samples.
2. Average.

This works for large signal-to-noise ratio.

Time-stretch invariants

It was no chance of working for small signal-to-noise ratio .

Fig: Time-stretched + noise

Fig: Time-stretched + noise

Our strategy

1. Calculate time-strecth invariant features of the time-series.
2. Average them. Law of large numbers \rightsquigarrow noise disappears.
3. Invert the first step: find time-series that matches the averaged features.

Time-stretch invariants

First idea Use iterated-integrals signature on the linearly interpolated path,

$$
\begin{aligned}
\operatorname{Sig}(Y)_{0, N} & =\left(1, \int_{0}^{N} d Y, \int_{0}^{N} d Y \otimes d Y, \int_{0}^{N} d Y \otimes d Y \otimes d Y, . .\right) \\
& =\left(1, Y_{0, N}, \frac{1}{2!}\left(Y_{0, N}\right)^{2}, \frac{1}{3!}\left(Y_{0, N}\right)^{3}, \ldots\right)
\end{aligned}
$$

For $d=1$ one only gets one feature: the total displacement.

Time-stretch invariants

First idea Use iterated-integrals signature on the linearly $\operatorname{Sig}(Y)_{0, N}=\left(1, \int_{0}^{N} d Y, \int_{0}^{N} d Y \& d Y, \int_{0}^{N} d Y \otimes d Y \otimes d Y, ..\right)$

For $d=1$ one only gets one feature: the total displacement.
(There are ways to turn a one-dim time series into a multi-dim one though; more on this later.)

Instead: we look for all polynomials on time-series that are invariant in the desired sense.

Time-stretch invariants

Example

$$
f\left(Y^{(\ell)}\right):=\sum_{n=2}^{N}\left(Y_{n}^{(\ell)}-Y_{n-1}^{(\ell)}\right)^{2}
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[f\left(Y^{(\ell)}\right)\right]= & \mathbb{E}\left[\sum_{n=2}^{N}\left(x_{\tau(\ell)}^{(\ell)}-x_{\tau(\ell)}^{(\ell)}\right)_{(n-1)}\right)^{2}+2 \sum_{n=2}^{N}\left(x_{\tau(\ell)(n)}^{(\ell)}-x_{\tau}^{(\ell)}{ }_{(n-1)}^{(\ell)}\right)\left(w_{n}^{(\ell)}-w_{n-1}^{(\ell)}\right) \\
& \left.+\sum_{n=2}^{N}\left(w_{n}^{(\ell)}-w_{n-1}^{(\ell)}\right)^{2}\right] \\
= & \sum_{n=2}^{N}\left(x_{\tau}^{(\ell)}(\ell)_{(n)}-x_{\tau(\ell)(n-1)}^{(\ell)}\right)^{2}+(N-1) \cdot \sigma^{2} \\
= & \sum_{m=2}^{M}\left(x_{m}-x_{m-1}\right)^{2}+(N-1) \cdot \sigma^{2} .
\end{aligned}
$$

Time-stretch invariants

We now work on sequences of real numbers that eventually are zero, $Y \in \mathbb{R}_{0}^{\mathbb{N}}$. Define, Still $n: \mathbb{R}_{0}^{N} \rightarrow \mathbb{R}_{0}^{N}$ for example as

Relation to previous consideration: embed X in \mathbb{R}_{0}^{N} and then $X_{\tau(\cdot)}$ can be realized as standing still a couple of times.

We call $F: \mathbb{R}_{0}^{\mathbb{N}} \rightarrow \mathbb{R}$ invariant to standing still if for all $Y \in \mathbb{R}_{0}^{\mathbb{N}}$, all $n \geq 1$

$$
F\left(\operatorname{Still}_{n}(Y)\right)=F(Y)
$$

Time-stretch invariants

It simplifies matters to think in terms of increments $y_{i}:=Y_{i}-Y_{i-1}$. "Standing still" then becomes "inserting zeros".

Definition

We call $G: \mathbb{R}_{0}^{\mathbb{N}} \rightarrow \mathbb{R}$ invariant to inserting zeros if for all $y \in \mathbb{R}_{0}^{\mathbb{N}}$, all $n \geq 1$

$$
G\left(\operatorname{Zero}_{n}(y)\right)=G(y) .
$$

Time-stretch invariants

Lemma

All polynomial invariants to inserting zeros are given by the quasisymmetric functions

$$
\sum_{i_{1}<\cdots<i_{p}} y_{i_{1}}^{\alpha_{1}} \cdots \cdots y_{i_{p}}^{\alpha_{p}}, \quad p \geq 1, \alpha \in \mathbb{N}_{\geq 1}^{p} .
$$

Example We have already seen $\alpha=(2)$.
$\alpha=(5,7,2)$ gives

$$
\sum_{i_{1}<i_{2}<i_{3}} y_{i_{1}}^{5} y_{i_{2}}^{7} y_{i_{3}}^{2}
$$

Time-stretch invariants

Goal Store these features in a Hopf algebra structure, as is done for the classical iterated-integrals signature.

Let H be the space of formal inifinite linear combinations of integer compositions. Define
$\operatorname{DiscreteSig}(y):=\sum_{\alpha} \sum_{i_{1}<\cdots<i_{p}} y_{i_{1}}^{\alpha_{1}} \cdots \cdot y_{i_{p}}^{\alpha_{p}} \cdot \alpha \in H$

$$
\begin{aligned}
=() & +\sum_{i_{1}} y_{i_{1}} \cdot(1)+\sum_{i_{1}} y_{i_{1}}^{2} \cdot(2)+\sum_{i_{1}<i_{2}} y_{i_{1}} y_{i_{2}} \cdot(1,1) \\
& +\sum_{i_{1}<i_{2}} y_{i_{1}} y_{i_{2}}^{2} \cdot(1,2)+\ldots
\end{aligned}
$$

(The Hopf algebra of quasisymmetric function was studied by Malvenuto/Reutenauer 1994.)

Time-stretch invariants

Lemma (Chen's identity)
For $y, y^{\prime} \in \mathbb{R}_{0}^{\mathbb{N}}$ let denote $y \sqcup y^{\prime} \in \mathbb{R}_{0}^{\mathbb{N}}$ their concatenation. Then:

$\operatorname{DiscreteSig}\left(y \sqcup y^{\prime}\right)=\operatorname{DiscreteSig}(y) \bullet \operatorname{DiscreteSig}\left(y^{\prime}\right)$.

Here • is the concatenation product on H. For example

$$
(2,3,1) \bullet(7,4)=(2,3,1,7,4)
$$

Time-stretch invariants

Lemma (Shuffle identity)

$$
\langle\alpha, \boldsymbol{D i s c r e t e S i g}(y)\rangle \cdot\langle\beta, \boldsymbol{S}(y)\rangle=\langle\alpha \stackrel{\mathfrak{q}}{\amalg} \beta, \mathbf{D i s c r e t e S i g}(y)\rangle,
$$

Here $\stackrel{q}{\amalg}$ is the quasi-shuffle on H^{*}. For example

$$
(1,2) \stackrel{\mathrm{q}}{\uplus}(3)=(1,2,3)+(1,3,2)+(3,1,2)+(1,5)+(4,2) .
$$

So: just as for classical signature, the discrete signature is a character on some Hopf algebra.

Time-stretch invariants

What about Chow's theorem?

Recall:
Theorem (Chow's theorem for classical signature)
For every $L \in \mathfrak{g}$, the free Lie algebra, for every $n \geq 1$, there exists a piecewise linear path X such that

$$
\operatorname{proj}_{\leq n} \text { Signature }(X)_{0,1}=\operatorname{proj}_{\leq n} \exp (L) .
$$

Time-stretch invariants

This is not true here anymore!
To wit: up to degree 2 the Lie algebra of H is spanned by two vectors $L_{(1)}$ and $L_{(2)}$. The logarithm of the discrete signature up to degree 2 is given by

$$
\log \operatorname{DiscreteSig}(y)=\sum_{i_{1}} y_{i_{1}} \cdot L_{(1)}+\sum_{i_{1}} y_{i_{1}}^{2} \cdot L_{(2)} .
$$

Since the coefficient of $L_{(2)}$ is non-negative, not every element of the Lie algebra can be reached!
(The problem seems to evaporate over $\mathbb{C} \ldots$...)

Multidimensional / Relation to other signatures

Time-stretch invariants

Multidimensional / Relation to other signatures

Open questions / Observations

Multidimensional / Relation to other signatures

For a times-series in $y \in\left(\mathbb{R}^{d}\right)^{\mathbb{N} 0}$ something similar works. Let us look at the first few terms of the discrete signature for $d=2$. Introduce commuting variables a_{1}, a_{2}, then
$\operatorname{DiscreteSig}(y)=()+\sum_{i_{1}} y_{i_{1}}^{(1)}\left(a_{1}\right)+\sum_{i_{1}} y_{i_{1}}^{(2)}\left(a_{2}\right)$

$$
\begin{aligned}
& +\sum_{i_{1}}\left(y_{i_{1}}^{(1)}\right)^{2}\left(a_{1}^{2}\right)+\sum_{i_{1}} y_{i_{1}}^{(1)} y_{i_{1}}^{(2)}\left(a_{1} a_{2}\right)+\sum_{i_{1}}\left(y_{i_{1}}^{(2)}\right)^{2}\left(a_{2}^{2}\right) \\
& +\sum_{i_{1}<i_{1}} y_{i_{1}}^{(1)} y_{i_{2}}^{(1)}\left(a_{1}, a_{1}\right)+\sum_{i_{1}<i_{2}} y_{i_{1}}^{(1)} y_{i_{2}}^{(2)}\left(a_{1}, a_{2}\right) \\
& +\sum_{i_{1}<i_{2}} y_{i_{1}(2)}^{y_{i_{2}}^{(1)}\left(a_{2}, a_{1}\right)+\sum_{i_{1}<i_{2}} y_{i_{1}}^{(2)} y_{i_{2}}^{(2)}\left(a_{2}, a_{2}\right)+\ldots}
\end{aligned}
$$

Then: Chen's lemma \checkmark, shuffle identity \checkmark.
(It fits nicely into the algebraic framework of quasi-shuffle algebras of Hoffman 2000.)

Multidimensional / Relation to other signatures

The discrete signature contains all (polynomial) time-stretch invariants, so it must contain the classical signature .

Denote $\operatorname{Sig}(X)$ the classical signature of the linearly inerpolated path.
Lemma
There exists a map

$$
\Phi: H \rightarrow T\left(\left(\mathbb{R}^{d}\right)\right)
$$

such that

$$
\operatorname{Sig}(X)=\Phi(\operatorname{DiscreteSig}(\Delta X))
$$

Remark 1. It is (the dual of) the isomorphism of Hoffman.
2. The other direction is not possible (DiscreteSig
nontninn f+rintly marn information)

Multidimensional / Relation to other signatures

For one-dimensional signals, the classical signature is not very interesting. There exist several ways to enhance a $1 d$ curve to a multidim curve though:

1. Add time. (Destroys time-stretch invariance.)
2. Add 1-variation. (Not poynomial.)
3. Lead-lag procedure of Flint/Hambly/Lyons 2016.

Lemma

1. There is a map from our discrete signature to the lead-lag signature.
2. For $d \geq 2$ (the logarithm of) the lead-lag signature contains
redundant terms.

Multidimensional / Relation to other signatures

For one-dimensional signals, the classical signature is not very interesting. There exist several ways to enhance a $1 d$ curve to a multidim curve though:

1. Add time. (Destroys time-stretch invariance.)
2. Add 1-variation. (Not poynomial.)
3. Lead-lag procedure of Flint/Hambly/Lyons 2016.

Lemma

1. There is a map from our discrete signature to the lead-lag signature.
2. For $d \geq 2$ (the logarithm of) the lead-lag signature contains redundant terms.

Open questions / Observations

> Time-stretch invariants

> Multidimensional / Relation to other signatures

Open questions / Observations

Open questions / Observations

Open questions

- Weaker statement of Chow type (image is Zariski dense, image has positive measure, ..).
- Inverting DiscreteSig numerically.
- Multi-parameter case.

Open questions / Observations

Observation
Sample a continuous path X discretely $\rightsquigarrow X^{n}$. Then, if X is smooth,

$$
\operatorname{DiscreteSig}\left(X^{n}\right) \quad " \rightarrow " \quad \operatorname{Sig}(X)
$$

In particular: for a one-dim signal in the limit there is no information (apart from the increment).

On the other hand: for a martginale X

$$
\operatorname{DiscreteSig}\left(X^{n}\right) \quad " \rightarrow " \quad \operatorname{Sig}(X,\langle X\rangle),
$$

which gives a lot more information.
What is going on here?

Open questions / Observations

Thank you!

