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Time-stretch invariants

Assume there is a discrete deterministic time-series
M
(XlaX27 7XM) €R )

that we want to know about.
But! We only get noisy observations

YO =X, + WO, =1L,
where W) are iid samples of a random walk.

Of course

YO S e X, m=1,..., M.

M~

1
L (=1

So: if we observe often enough, we can recover X.
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Time-stretch invariants

Now still assume X € RM unknown, but additionally
we do not know the speed at which it is run .

To be specific,
Y =X+ WO, £=1,...Lin=1,...,N,
where

7O {1, N}y = {1,.., M},

are non-decreasing, surjective and unknown .
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Time-stretch invariants

Fig: Original Fig: Time-stretched Fig: Time-stretched

Fig: Time-stretched +  Fig: Time-stretched +
noise noise
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Time-stretch invariants

YISK)ZXT(@(H)—FWISZ)? 6217"'L7n:17"-

How to recover X now ?

Current available method.
1. Align the different samples.
2. Average.

This works for large signal-to-noise ratio .
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Time-stretch invariants

It was no chance of working for small signal-to-noise ratio .

Fig: Time-stretched +  Fig: Time-stretched +
noise noise

Our strategy
1. Calculate time-strecth invariant features of the time-series.
2. Average them. Law of large numbers ~~ noise disappears.

3. Invert the first step: find time-series that matches the
averaged features.
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Time-stretch invariants

First idea Use iterated-integrals signature on the linearly
interpolated path,

N N N
SQYMN:<L/‘dK/)dY®dK/TdY®dY®dK“>
0

<1nN,(mN)34nNLHD

For d = 1 one only gets one feature: the total displacement.
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Time-stretch invariants

se iterated-integrals signature on the linearly
interpolated pa

Sig(Y)on =

only gets one feature: the total displacements

(There are ways to turn a one-dim time series into a multi-dim one
though; more on this later.)

Instead: we look for all polynomials on time-series that are
invariant in the desired sense.
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Time-stretch invariants

Example

F(v®) = Z (v - Ylff)l)Z.

2
@\ = E ©  _ x0 E © 0 (&) _
E [f (Y )] - ]E[ (XTM)(,,) Xf(l)(nq)) 2 (X-r(@)(n) XT(Z)(na)) (W”

n=2 n=2
N
(2) () )2
+ E (W anl) ]
n=2
N 2
_ 0 _x® B 2
*§:<X7<e)(n) Tw)(nfl)) W=
n=2
M
= (= Xoa) = 1)
m=2
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Time-stretch invariants

We now work on sequences of real numbers that eventually are
zero, Y € RY. Define, Still, : RY — R} for example as

Stillg:

Relation to previous consideration: embed X in RY and then Xe()
can be realized as standing still a couple of times.

We call F : R} — R invariant to standing still if for all Y € R,
alln>1

F(Still,(Y)) = F(Y).
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Time-stretch invariants

It simplifies matters to think in terms of increments
yi := Y; — Y;_1. “Standing still” then becomes “inserting zeros".

Definition
We call G : Rl — R invariant to inserting zeros if for all
y € RN alln>1

G(Zeron(y)) = G(y).
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Time-stretch invariants

Lemma
All polynomial invariants to inserting zeros are given by the
quasisymmetric functions

Z y’l 'apa pzlaaeNgl

’p
i1 <+<ip

Example We have already seen a = (2).
a = (5,7,2) gives

2
> viyvivi

1<ip<i3
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Time-stretch invariants

Goal Store these features in a Hopf algebra structure , as is done
for the classical iterated-integrals signature.

Let H be the space of formal inifinite linear combinations of
integer compositions. Define

DiscreteSig(y) :==> >y yab-a€eH

O jp<<p

=0+ Y () + Y72 (2)+ 3 v (11)

i1<ip

+ Z y,-lyg (1,2)+ ..

i <ip

(The Hopf algebra of quasisymmetric function was studied by
Malvenuto/Reutenauer 1994.)
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Time-stretch invariants

Lemma (Chen's identity)
Fory,y" € RY let denote y L'y’ € RY their concatenation. Then:

DiscreteSig(y LI y') = DiscreteSig(y) ¢ DiscreteSig(y’).

Here e is the concatenation product on H. For example

(2,3,1) 0 (7,4) = (2,3,1,7,4).
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Time-stretch invariants

Lemma (Shuffle identity)

<a, DiscreteSig(y)> : <5, S(y)> = <a 4 B, DiscreteSig(y)>,
Here 111 is the quasi-shuffle on H*. For example

(1,2) D (3) = (1,2,3) + (1,3,2) + (3,1,2) + (1,5) + (4, 2).

So: just as for classical signature, the discrete signature is a
character on some Hopf algebra.
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Time-stretch invariants

What about Chow’s theorem?

Recall:

Theorem (Chow's theorem for classical signature)

For every L € g, the free Lie algebra, for every n > 1, there exists a
piecewise linear path X such that

proj<, Signature(X)o,1 = proj<, exp(L).

Joscha Diehl The discrete signature

15



Time-stretch invariants

This is not true here anymore!

To wit: up to degree 2 the Lie algebra of H is spanned by two
vectors L(1) and L(). The logarithm of the discrete signature up to
degree 2 is given by

log DiscreteSig(y) = Zy,-l Ly + Zyﬁ - L(p)-
i

i1

Since the coefficient of L, is non-negative, not every element of
the Lie algebra can be reached!

(The problem seems to evaporate over C ...)
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Multidimensional / Relation to other signatures

Multidimensional / Relation to other signatures
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Multidimensional / Relation to other signatures

For a times-series in y € (RY)No something similar works.
Let us look at the first few terms of the discrete signature for
d = 2. Introduce commuting variables a;, a», then

DiscreteSig(y ) + Z y,1 (a1) + Z y,1 (a2)
1 2
+Z yl(1) +Zy11 y’l (a1 +Z yl(1)

+ Z vy W e a) + 30 yMyS )(81‘82)

i1<ip h<ip

+ Z y11 yl2 32. 31) + Z yi(12)yi(22)(82, 82) 4+ ...

i1<ip i1 <iz

Then: Chen's lemma v/, shuffle identity v".
(It fits nicely into the algebraic framework of quasi-shuffle algebras
of Hoffman 2000.)

Joscha Diehl The discrete signature

33)

18



Multidimensional / Relation to other signatures

The discrete signature contains all (polynomial) time-stretch
invariants, so it must contain the classical signature .

Denote Sig(X) the classical signature of the linearly inerpolated
path.

Lemma
There exists a map

®:H— T((RY))
such that
Sig(X) = ¢(DiscreteSig(AX))

Remark 1. It is (the dual of) the isomorphism of Hoffman.
2. The other direction is not possible (DiscreteSig

PRI JRP RTINS DA RN T SRR PR
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Multidimensional / Relation to other signatures

For one-dimensional signals, the classical signature is not very
interesting. There exist several ways to enhance a 1d curve to a
multidim curve though:

1. Add time. (Destroys time-stretch invariance.)
2. Add 1-variation. (Not poynomial.)
3. Lead-lag procedure of Flint/Hambly/Lyons 2016.
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Multidimensional / Relation to other signatures

For one-dimensional signals, the classical signature is not very
interesting. There exist several ways to enhance a 1d curve to a
multidim curve though:

1. Add time. (Destroys time-stretch invariance.)
2. Add 1-variation. (Not poynomial.)
3. Lead-lag procedure of Flint/Hambly/Lyons 2016.

Lemma

1. There is a map from our discrete signature to the lead-lag
signature.

2. For d > 2 (the logarithm of) the lead-lag signature contains
redundant terms.
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Open questions / Observations

Open questions / Observations
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Open questions / Observations

Open questions

» Weaker statement of Chow type (image is Zariski dense,
image has positive measure, ..).
> Inverting DiscreteSig numerically.

» Multi-parameter case.
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Open questions / Observations

Observation
Sample a continuous path X discretely ~» X". Then, if X is
smooth,

DiscreteSig(X") “ — " Sig(X).

In particular: for a one-dim signal in the limit there is no
information (apart from the increment).

On the other hand: for a martginale X
DiscreteSig(X") “— " Sig(X, (X)),
which gives a lot more information .
What is going on here?
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Open questions / Observations

Thank you!
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