Integration with respect to the non-commutative fractional Brownian motion

René Schott
(IECL and LORIA, Université de Lorraine, Site de Nancy, France)
Joint work with Aurélien Deya

Outline

(1) Non-commutative processes

Motivation: large random matrices
The non-commutative probability setting
The non-commutative fractional Brownian motion (NC-fBm)
(2) Integration with respect to NC-fBm

The Young case: $H>\frac{1}{2}$
The rough case: $H \leq \frac{1}{2}$
Further results when $H=\frac{1}{2}$

Outline

(1) Non-commutative processes

Motivation: large random matrices
The non-commutative probability setting
The non-commutative fractional Brownian motion (NC-fBm)
(2) Integration with respect to NC-fBm

The Young case: $H>\frac{1}{2}$
The rough case: $H \leq \frac{1}{2}$
Further results when $H=\frac{1}{2}$

Outline

(1) Non-commutative processes

Motivation: large random matrices
The non-commutative probability setting
The non-commutative fractional Brownian motion (NC-fBm)
(2) Integration with respect to NC-fBm

The Young case: $H>\frac{1}{2}$
The rough case: $H \leq \frac{1}{2}$
Further results when $H=\frac{1}{2}$

Motivation: large random matrices

Consider two independent families $(x(i, j))_{j \geq i \geq 1}$ and $(\tilde{x}(i, j))_{j \geq i \geq 1}$ of independent Brownian motions.
Then, for every fixed dimension $d \geq 1$, we define the (d-dimensional) Hermitian Brownian motion as the process $X^{(d)}$ with values in the space of the $(d \times d)$-Hermitian matrices and with upper-diagonal entries given for every $t \geq 0$ by

$$
\begin{aligned}
& X_{t}^{(d)}(i, j):=\frac{1}{\sqrt{2 d}}\left(x_{t}(i, j)+\imath \tilde{x}_{t}(i, j)\right) \quad \text { for } 1 \leq i<j \leq d, \\
& X_{t}^{(d)}(i, i):=\frac{x_{t}(i, i)}{\sqrt{d}} \text { for } 1 \leq i \leq d .
\end{aligned}
$$

Objective: to catch the behaviour, as $d \rightarrow \infty$, of the mean spectral dynamics of the process $X^{(d)}$.

Motivation: large random matrices

Observation: let A be a $(d \times d)$-matrix with complex random entries admitting finite moments of all orders. Denote the (random) eigenvalues of A by $\left\{\lambda_{i}(A)\right\}_{1 \leq i \leq d}$, and set $\mu_{A}:=\frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_{i}(A)}$. Then it is readily checked that

$$
\mathbb{E}\left[\int_{\mathbb{C}} z^{r} \mu_{A}(\mathrm{~d} z)\right]=\varphi_{d}\left(A^{r}\right)
$$

where $\varphi_{d}(A):=\frac{1}{d} \mathbb{E}[\operatorname{Tr}(A)], \operatorname{Tr}(A):=\sum_{i=1}^{d} A(i, i)$.

Based on this observation, a natural way to reach our objective is to study (the asymptotic behaviour of) the quantities

$$
\varphi_{d}\left(X_{t_{1}}^{(d)} \cdots X_{t_{r}}^{(d)}\right), \text { for all times } t_{1}, \ldots, t_{r} \geq 0
$$

Motivation: large random matrices

Theorem (Voiculescu, Invent. Math., 91'): For all $r \geq 1$ and $t_{1}, \ldots, t_{r} \geq 0$, it holds that

$$
\varphi_{d}\left(X_{t_{1}}^{(d)} \cdots X_{t_{r}}^{(d)}\right) \xrightarrow{d \rightarrow \infty} \varphi\left(X_{t_{1}} \cdots X_{t_{k}}\right)
$$

for a certain path $X: \mathbb{R}_{+} \rightarrow \mathcal{A}$, where (\mathcal{A}, φ) is a noncommutative probability space. This path is called a noncommutative Brownian motion.

Remark: this result can be extended to a more general class of Gaussian matrices.

Let us briefly recall the specific definition of the above elements (\mathcal{A}, φ).

Outline

(1) Non-commutative processes

The non-commutative probability setting
The non-commutative fractional Brownian motion (NC-fBm)
(2) Integration with respect to NC-fBm

The Young case: $H>\frac{1}{2}$
The rough case: $H \leq \frac{1}{2}$
Further results when $H=\frac{1}{2}$

The non-commutative probability setting

Definition: We call a non-commutative (NC) probability space any pair (\mathcal{A}, φ) where:
(i) \mathcal{A} is a unital algebra over \mathbb{C} endowed with an antilinear *operation $X \mapsto X^{*}$ such that $\left(X^{*}\right)^{*}=X$ and $(X Y)^{*}=Y^{*} X^{*}$ for all $X, Y \in \mathcal{A}$.
In addition, there exists a norm $\|\cdot\|: \mathcal{A} \rightarrow[0, \infty[$ which makes \mathcal{A} a Banach space, and such that for all $X, Y \in \mathcal{A},\|X Y\| \leq\|X\|\|Y\|$ and $\left\|X^{*} X\right\|=\|X\|^{2}$.
(ii) $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi(1)=1, \varphi(X Y)=$ $\varphi(Y X), \varphi\left(X^{*} X\right) \geq 0$ for all $X, Y \in \mathcal{A}$, and $\varphi\left(X^{*} X\right)=0 \Leftrightarrow X=0$. We call φ the trace of the space ("analog of the expectation").

We call a non-commutative process any path with values in a non-commutative probability space \mathcal{A}.

Outline

(1) Non-commutative processes

The non-commutative probability setting
The non-commutative fractional Brownian motion (NC-fBm)
(2) Integration with respect to NC-fBm

The Young case: $H>\frac{1}{2}$
The rough case: $H \leq \frac{1}{2}$
Further results when $H=\frac{1}{2}$

Reminder: the (commutative) fractional Brownian motion

Definition: In a (classical) probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and for $H \in$ $(0,1)$, we call a fractional Brownian motion of Hurst index H any centered gaussian process $X: \Omega \times[0, \infty) \rightarrow \mathbb{R}$ with covariance function

$$
\mathbb{E}\left[X_{s} X_{t}\right]=c_{H}(s, t):=\frac{1}{2}\left(s^{2 H}+t^{2 H}-|t-s|^{2 H}\right)
$$

When $H=\frac{1}{2}$, we recover the definition of the standard Brownian motion. Thus, the fractional Brownian motion is a natural (and extensively studied!) generalization of the Brownian motion.

Reminder: the (commutative) fractional Brownian motion

Due to Wick formula, the joint moments of the fractional Brownian motion (of Hurst index H) are given, for all $r \geq 1$ and $t_{1}, \ldots, t_{r} \geq 0$, by the expression

$$
\mathbb{E}\left[X_{t_{1}} \cdots X_{t_{r}}\right]=\sum_{\pi \in \mathcal{P}_{2}(r)} \prod_{\{p, q\} \in \pi} c_{H}\left(t_{p}, t_{q}\right)
$$

where $\mathcal{P}_{2}(r)$ the set of the pairings of $\{1, \ldots, r\}$.

The NC-fractional Brownian motion

Definition: In a NC-probability space (\mathcal{A}, φ), and for $H \in(0,1)$, we call a non-commutative (NC) fractional Brownian motion of Hurst index H any path $X: \mathbb{R}_{+} \rightarrow \mathcal{A}$ such that, for all $r \geq 1$ and $t_{1}, \ldots, t_{r} \geq 0$,

$$
\varphi\left(X_{t_{1}} \cdots X_{t_{r}}\right)=\sum_{\pi \in N C_{2}(r)} \prod_{\{p, q\} \in \pi} c_{H}\left(t_{p}, t_{q}\right)
$$

with

$$
c_{H}(s, t)=\frac{1}{2}\left(s^{2 H}+t^{2 H}-|t-s|^{2 H}\right) .
$$

The above notation $N C_{2}(r)$ refers to the set of the non-crossing pairings of $\{1, \ldots, r\}$: for instance,

The NC-fractional Brownian motion

This (family of) process(es) was first considered in
I. Nourdin and M.S. Taqqu: Central and non-central limit theorems in a free probability setting. J. Theoret. Probab. (2011),
and then further studied in
I. Nourdin: Selected Aspects of Fractional Brownian Motion. Springer, New York, 2012.

Classical approach to non-commutative integration, as developed in P. Biane and R. Speicher: Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. PTRF (1998) cannot be applied as soon as $H \neq \frac{1}{2}$.

The NC-fractional Brownian motion

Proposition: For every fixed $H \in(0,1)$, there exists a NC-fractional Brownian motion of Hurst index H. (In other words, there exists a NC-probability space (\mathcal{A}, φ) and a NC-fBm $X:[0, T] \rightarrow \mathcal{A}$.)

A NC-fractional Brownian motion of Hurst index $H=\frac{1}{2}$ is called a NC Brownian motion.

Proposition. For every fixed $H \in(0,1)$, it holds that

$$
\left\|X_{t}-X_{s}\right\| \lesssim|t-s|^{H}
$$

Outline

(1) Non-commutative processes

The non-commutative probability setting
The non-commutative fractional Brownian motion (NC-fBm)
(2) Integration with respect to NC-fBm

The Young case: $H>\frac{1}{2}$
The rough case: $H \leq \frac{1}{2}$
Further results when $H=\frac{1}{2}$

Objective: given a NC fractional Brownian motion X (of Hurst index H) in (\mathcal{A}, φ), provide a natural interpretation of the integral

$$
\int Y_{t} d X_{t} Z_{t}
$$

for $Y, Z:[0, T] \rightarrow \mathcal{A}$ in a suitable class of integrands. At least

$$
\int P\left(X_{t}\right) d X_{t} Q\left(X_{t}\right) \text { for all polynomials } P, Q \text {. }
$$

Related questions:

- Itô formula, Wong-Zakaï approximation.
- Differential equation $d Y_{t}=P\left(Y_{t}\right) d X_{t} Q\left(Y_{t}\right)$.

Outline

(1) Non-commutative processes

Votivation: large random matrices
The non-commutative probability setting
The non-commutative fractional Brownian motion (NC-fBm)
(2) Integration with respect to NC-fBm

The Young case: $H>\frac{1}{2}$
The rough case: $H \leq \frac{1}{2}$
Further results when $H=\frac{1}{2}$

Prop.: Let H, γ be such that $H+\gamma>1$. Then, for all γ-Hölder paths $Y, Z:[0, T] \rightarrow \mathcal{A}$, all times $0 \leq s \leq t$ and every subdivision $\Delta_{s t}=\left\{t_{0}=s<t_{1}<\ldots<t_{\ell}=t\right\}$ of $[s, t]$ with mesh $\left|\Delta_{s t}\right|$ tending to 0 , the Riemann sum

$$
\sum_{t_{i} \in \Delta_{\text {st }}} Y_{t_{i}}\left(X_{t_{i+1}}-X_{t_{i}}\right) Z_{t_{i}}
$$

converges in \mathcal{A} as $\left|\Delta_{s t}\right| \rightarrow 0$. Denoting the limit by $\int_{s}^{t} Y_{u} d X_{u} Z_{u}$, one has, if $H>\frac{1}{2}$,

$$
\int_{s}^{t} P\left(X_{u}^{(n)}\right) d X_{u}^{(n)} Q\left(X_{u}^{(n)}\right) \xrightarrow{n \rightarrow \infty} \int_{s}^{t} P\left(X_{u}\right) d X_{u} Q\left(X_{u}\right) \quad \text { in } \mathcal{A}
$$

where $X^{(n)}$ is the linear interpolation of X in \mathcal{A}. As a result,

$$
P\left(X_{t}\right)-P\left(X_{s}\right)=\int_{s}^{t} \partial P\left(X_{u}\right) \sharp d X_{u}
$$

Outline

(1) Non-commutative processes

Notivation: large random matrices
The non-commutative probability setting
The non-commutative fractional Brownian motion (NC-fBm)
(2) Integration with respect to NC-fBm

The Young case: $H>\frac{1}{2}$
The rough case: $H \leq \frac{1}{2}$
Further results when $H=\frac{1}{2}$

$$
H<\frac{1}{2}
$$

For simplicity, let us first consider the integral $\int P\left(X_{t}\right) d X_{t}$, for some polynomial P.

Idea: corrected Riemann sums

$$
\int P\left(X_{t}\right) d X_{t}:=\lim \sum_{t_{i}}\left\{P\left(X_{t_{i}}\right)\left(X_{t_{i+1}}-X_{t_{i}}\right)+C_{t_{i}, t_{i+1}}\right\} .
$$

When $H \in\left(\frac{1}{3}, \frac{1}{2}\right]$, a natural (potential!) definition:

$$
\begin{aligned}
& \int P\left(X_{t}\right) d X_{t} ":=" \\
& \lim \sum_{t_{k}}\left\{P\left(X_{t_{k}}\right)\left(X_{t_{k+1}}-X_{t_{k}}\right)+\int_{t_{k}}^{t_{k+1}} \nabla P\left(X_{t_{k}}\right)\left(X_{u}-X_{t_{k}}\right) d X_{u}\right\} .
\end{aligned}
$$

But: Remember that in the classical finite-dimensional situation,

$$
\int_{s}^{t} \nabla f\left(x_{s}\right)\left(x_{u}-x_{s}\right) d x_{u}=\partial_{i} f_{j}\left(x_{s}\right) \int_{s}^{t} \int_{s}^{u} d x_{v}^{(i)} d x_{u}^{(j)}
$$

This separation is no longer possible for $\int_{s}^{t} \nabla P\left(X_{s}\right)\left(X_{u}-X_{s}\right) d X_{u} \cdots$

For instance, when $P(x)=x^{p}$,

$$
\begin{aligned}
& \int_{s}^{t} \nabla P\left(X_{s}\right)\left(X_{u}-X_{s}\right) d X_{u} \\
& =\sum_{i=0}^{p-1} X_{s}^{i} \int_{s}^{t}\left(X_{u}-X_{s}\right) X_{s}^{p-1-i} d X_{u} \\
& =\sum_{i=0}^{p-1} X_{s}^{i} \int_{s}^{t} \int_{s}^{u} d X_{v} X_{s}^{p-1-i} d X_{u}
\end{aligned}
$$

Let \mathcal{A}_{s} be the algebra generated by $\left\{X_{u}: 0 \leq u \leq s\right\}$.
We would like to construct a Lévy-area-operator, along the formal expression: for all $s \leq t$ and $U \in \mathcal{A}_{s}$,

$$
\mathbb{X}_{s, t}^{2}[U]:=\int_{s}^{t} \int_{s}^{u} d X_{v} U d X_{u}
$$

If we can exhibit such an element $\mathbb{X}_{s, t}^{2}$ (with suitable roughness properties), then we will be in a position to define, if $P(x)=x^{p}$,

$$
\begin{aligned}
& \int P\left(X_{t}\right) d X_{t}^{\prime \prime}:=" \\
& \lim \sum_{t_{k}}\left\{P\left(X_{t_{k}}\right)\left(X_{t_{k+1}}-X_{t_{k}}\right)+X_{t_{k}}^{i} \mathbb{X}_{t_{k}, t_{k+1}}^{2}\left[X_{t_{k}}^{p-1-i}\right]\right\}
\end{aligned}
$$

Construction of the Lévy area

$X_{t}^{(n)}:=X_{t_{i}^{n}}+2^{n}\left(t-t_{i}^{n}\right)\left\{X_{t_{i+1}^{n}}-X_{t_{i}^{n}}\right\} \quad$ for $n \geq 1$ and $t \in\left[t_{i}^{n}, t_{i+1}^{n}\right]$.
Then we set

$$
\mathbb{X}_{s t}^{2,(n)}[U]:=\int_{s}^{t} \int_{s}^{u} \mathrm{~d} X_{v}^{(n)} U \mathrm{~d} X_{u}^{(n)}, \quad 0 \leq s \leq t .
$$

Construction of the Lévy area

Proposition (Deya-S.): Assume that $H>\frac{1}{4}$. Then, for all $0 \leq$ $s \leq t$ and $U \in \mathcal{A}_{s}$, the sequence $\mathbb{X}_{s t}^{2,(n)}[U]$ converges in \mathcal{A} as $n \rightarrow \infty$. The limit, that we denote by $\mathbb{X}_{s t}^{2}[U]$, satisfies the following properties:
(i) For all $0 \leq s \leq u \leq t \leq 1$ and $U \in \mathcal{A}_{s}$,

$$
\mathbb{X}_{s t}^{2}[U]-\mathbb{X}_{s u}^{2}[U]-\mathbb{X}_{u t}^{2}[U]=\left(X_{u}-X_{s}\right) U\left(X_{t}-X_{u}\right)
$$

(ii) There exists a constant $c_{H}>0$ such that for all $0 \leq s \leq t \leq 1$, $m \geq 0$ and $0 \leq u_{j} \leq v_{j} \leq s(j=1, \ldots, m)$,

$$
\left\|\mathbb{X}_{s t}^{2}\left[\left(X_{v_{1}}-X_{u_{1}}\right) \cdots\left(X_{v_{m}}-X_{u_{m}}\right)\right]\right\| \leq c_{H}^{m}|t-s|^{2 H} \prod_{j=1, \ldots, m}\left|u_{j}-v_{j}\right|^{H}
$$

Prop.: Fix $H \in\left(\frac{1}{3}, \frac{1}{2}\right]$, and let P be a polynomial. For all $0 \leq s \leq t$ and every subdivision $\Delta_{s t}=\left\{t_{0}=s<t_{1}<\ldots<t_{\ell}=t\right\}$ of $[s, t]$ with mesh $\left|\Delta_{s t}\right|$ tending to 0 , the corrected Riemann sum

$$
\sum_{t_{i} \in \Delta_{s t}}\left\{P\left(X_{t_{i}}\right)\left(X_{t_{i+1}}-X_{t_{i}}\right)+\left(\partial P\left(X_{t_{i}}\right) \sharp \mathbb{X}_{t_{i} t_{i+1}}^{2}\right)\right\}
$$

converges in \mathcal{A} as $\left|\Delta_{s t}\right| \rightarrow 0$. The limit, that we denote by $\int_{s}^{t} P\left(X_{u}\right) d X_{u}$, is such that

$$
\int_{s}^{t} P\left(X_{u}^{(n)}\right) d X_{u}^{(n)} \xrightarrow{n \rightarrow \infty} \int_{s}^{t} P\left(X_{u}\right) d X_{u} \quad \text { in } \mathcal{A}
$$

We can extend this construction to define $\int P\left(X_{t}\right) d X_{t} Q\left(X_{t}\right)$, for all polynomials P, Q. Then, if $P(x)=x^{p}$, one has

$$
P\left(X_{t}\right)-P\left(X_{s}\right)=\sum_{i=0}^{p-1} \int_{s}^{t} X_{u}^{i} d X_{u} X_{u}^{p-1-i}
$$

$$
H \leq \frac{1}{3}
$$

When $H \in\left(\frac{1}{4}, \frac{1}{3}\right]$, we can (certainly) extend the previous considerations through the involvement of some third-order object, morally

$$
\mathbb{X}_{s, t}^{3}[U, V]:=\int_{s}^{t} \int_{s}^{u} \int_{s}^{V} d X_{w} U d X_{v} V d X_{u}, U, V \in \mathcal{A}_{s}
$$

Proposition: In a NC probability space (\mathcal{A}, φ), consider a NCfractional Brownian motion $\left\{X_{t}\right\}_{t \geq 0}$ of Hurst index $H \leq \frac{1}{4}$. Then

$$
\left\|\mathbb{X}_{01}^{2,(n)}[1]\right\| \xrightarrow{n \rightarrow \infty} \infty .
$$

Outline

(1) Non-commutative processes

```
Niotivation: large random matrices
The non-commutative probability setting
The non-commutative fractional Brownian motion (NC-fBm)
```

(2) Integration with respect to NC-fBm

The Young case: $H>\frac{1}{2}$
The rough case: $H \leq \frac{1}{2}$
Further results when $H=\frac{1}{2}$

Construction of the Lévy area

Proposition (Deya-S.): Assume that $H=\frac{1}{2}$. Then, for all $0 \leq$ $s \leq t$ and $U \in \mathcal{A}_{s}$, the sequence $\mathbb{X}_{s t}^{2,(n)}[U]$ converges in \mathcal{A} as $n \rightarrow \infty$. The limit, that we denote by $\mathbb{X}_{s t}^{2}[U]$, satisfies the following properties:
(i) For all $0 \leq s \leq u \leq t \leq 1$ and $U \in \mathcal{A}_{s}$,

$$
\mathbb{X}_{s t}^{2}[U]-\mathbb{X}_{s u}^{2}[U]-\mathbb{X}_{u t}^{2}[U]=\left(X_{u}-X_{s}\right) U\left(X_{t}-X_{u}\right)
$$

(ii) There exists a constant $c_{H}>0$ such that for all $0 \leq s \leq t \leq 1$ and $U \in \mathcal{A}_{s}$,

$$
\left\|\mathbb{X}_{s t}^{2}[U]\right\| \leq c_{H}|t-s|^{2 H}\|U\|
$$

Consequences

When $H=\frac{1}{2}$, we can extend the previous construction and define the more general integral

$$
\int f\left(Y_{t}\right) d X_{t} g\left(Y_{t}\right)
$$

for a large class of functions $f, g: \mathbb{C} \rightarrow \mathbb{C}$ and for a suitable class of controlled paths $Y:[0, T] \rightarrow \mathcal{A}$.

With this definition in hand, we can solve the equation

$$
d Y_{t}=f\left(Y_{t}\right) \cdot d X_{t} \cdot g\left(Y_{t}\right)
$$

Continuity: $Y=\Phi\left(X, \mathbb{X}^{2}\right)$, with Φ continuous.

Related publications

A. Deya and R. S.

On the rough-paths approach to non-commutative stochastic calculus.
Journal of Functional Analysis, Vol 265, Issue 4, 594-628, 2013.
A. Deya and R. S.

Integration with respect to non-commutative fractional Brownian motion.
To appear in Bernoulli.

Thanks!

