Noncommutative Wick polynomials

Nikolas Tapia

NTNU Trondheim
May. 8th, 2019 @ Trondheim, Norway

Goals

(1) Classical Wick polynomials
(2) Moments and cumulants
(3) Wick polynomials
(9) Modification of products
(0) Relation to power series

Classical Wick polynomials

Let X be a r.v. with $\mathbb{E} X^{n}<\infty$ for all $n>0$.

Let X be a r.v. with $\mathbb{E} X^{n}<\infty$ for all $n>0$.
Recursive definition:

$$
W_{n}^{\prime}(x)=n W_{n-1}(x), \quad \mathbb{E} W_{n}(X)=0 .
$$

Let X be a r.v. with $\mathbb{E} X^{n}<\infty$ for all $n>0$.
Recursive definition:

$$
W_{n}^{\prime}(x)=n W_{n-1}(x), \quad \mathbb{E} W_{n}(X)=0 .
$$

For example:

$$
W_{1}(x)=x-\mathbb{E} X, \quad W_{2}(x)=x^{2}-2 x \mathbb{E} X+2(\mathbb{E} X)^{2}-\mathbb{E} X^{2}, \ldots
$$

Let X be a r.v. with $\mathbb{E} X^{n}<\infty$ for all $n>0$.
Recursive definition:

$$
W_{n}^{\prime}(x)=n W_{n-1}(x), \quad \mathbb{E} W_{n}(X)=0 .
$$

For example:

$$
W_{1}(x)=x-\mathbb{E} X, \quad W_{2}(x)=x^{2}-2 x \mathbb{E} X+2(\mathbb{E} X)^{2}-\mathbb{E} X^{2}, \ldots
$$

Multivariate generalization:

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} W_{n}\left(x_{1}, \ldots, x_{n}\right) & =W_{n-1}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right), \\
\mathbb{E} W_{n}\left(x_{1}, \ldots, x_{n}\right) & =0
\end{aligned}
$$

Definition

A noncommutative probability space is a tuple (A, φ) where A is an associative algebra and $\varphi: A \rightarrow k$ is unital, i.e. $\varphi\left(1_{A}\right)=1$.

Definition

A noncommutative probability space is a tuple (A, φ) where A is an associative algebra and $\varphi: A \rightarrow k$ is unital, i.e. $\varphi\left(1_{A}\right)=1$.

On $T(A):=\bigoplus_{n>0} A^{\otimes n}$ define $\Delta: T(A) \rightarrow T(A) \otimes T(A)$ by

$$
\Delta^{Ш}\left(a_{1} \cdots a_{n}\right):=\sum_{S \subseteq[n]} a_{S} \otimes a_{[n] \backslash S} .
$$

Definition

A noncommutative probability space is a tuple (A, φ) where A is an associative algebra and $\varphi: A \rightarrow k$ is unital, i.e. $\varphi\left(1_{A}\right)=1$.

On $T(A):=\bigoplus_{n>0} A^{\otimes n}$ define $\Delta: T(A) \rightarrow T(A) \otimes T(A)$ by

$$
\Delta^{Ш}\left(a_{1} \cdots a_{n}\right):=\sum_{S \subseteq[n]} a_{S} \otimes a_{[n] \backslash S} .
$$

This induces a product on $T(A)^{*}$:

$$
\mu ш v:=(\mu \otimes v) \Delta^{Ш} .
$$

Define $\phi: T(A) \rightarrow k$ by $\phi\left(a_{1} \cdots a_{n}\right):=\varphi\left(a_{1} \cdot{ }_{A} \cdots A_{A} a_{n}\right)$ and extend to $\bar{T}(A):=k 1 \oplus T(A)$ by $\phi(1)=1$.

Define $\phi: T(A) \rightarrow k$ by $\phi\left(a_{1} \cdots a_{n}\right):=\varphi\left(a_{1} \cdot A \cdots A_{A} a_{n}\right)$ and extend to $\bar{T}(A):=k 1 \oplus T(A)$ by $\phi(1)=1$.

There is $c: \bar{T}(A) \rightarrow k$ with $c(1)=0$ such that $\phi=\exp ^{Ш}(c)$. In particular

$$
\phi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in P(n)} \prod_{B \in \pi} c\left(a_{B}\right) .
$$

Since ϕ is invertible, we set $W:=\left(\mathrm{id} \otimes \phi^{-1}\right) \Delta^{\amalg}$.

Since ϕ is invertible, we set $W:=\left(\right.$ id $\left.\otimes \phi^{-1}\right) \Delta^{\amalg}$.

Theorem

The map $W: \bar{T}(A) \rightarrow \bar{T}(A)$ is the unique linear map such that $\partial_{a} \circ W=W \circ \partial_{a}$ and $\phi \circ W=\varepsilon$. Its inverse is given by $W^{-1}=(i d \otimes \phi) \Delta^{山}$.

Since ϕ is invertible, we set $W:=\left(\right.$ id $\left.\otimes \phi^{-1}\right) \Delta^{山}$.

Theorem

The map $W: \bar{T}(A) \rightarrow \bar{T}(A)$ is the unique linear map such that $\partial_{a} \circ W=W \circ \partial_{a}$ and $\phi \circ W=\varepsilon$. Its inverse is given by $W^{-1}=(i d \otimes \phi) \Delta^{山}$.

Example:

$$
\begin{gathered}
W(a)=a-\varphi(a), \quad W\left(a^{\otimes 2}\right)=a^{\otimes 2}-2 a \varphi(a)+2 \varphi(a)^{2}-\varphi\left(a \cdot{ }_{A} a\right), \ldots \\
W(a b)=a b-a \varphi(b)-b \varphi(a)+2 \varphi(a) \varphi(b)-\varphi\left(a \cdot{ }_{A} b\right)
\end{gathered}
$$

Moments and cumulants

In the noncommutative case, we have several notions of independence: freeness, boolean idependence, monotone independence, etc. . .

In the noncommutative case, we have several notions of independence: freeness, boolean idependence, monotone independence, etc...

Each is characterised by a set of cumulants: κ, β, ρ resp.

In the noncommutative case, we have several notions of independence: freeness, boolean idependence, monotone independence, etc. . .

Each is characterised by a set of cumulants: κ, β, ρ resp.
On the double tensor algebra $\bar{T}(T(A))$ consider

$$
\Delta\left(a_{1} \cdots a_{n}\right):=\sum_{S \subseteq[n]} a_{S} \otimes a_{J_{1} s}|\cdots| a_{J_{k}} .
$$

In the noncommutative case, we have several notions of independence: freeness, boolean idependence, monotone independence, etc...

Each is characterised by a set of cumulants: κ, β, ρ resp.
On the double tensor algebra $\bar{T}(T(A))$ consider

$$
\Delta\left(a_{1} \cdots a_{n}\right):=\sum_{S \subseteq[n]} a_{S} \otimes a_{J_{1}}|\cdots| a_{J_{k}} .
$$

This splits as

$$
\begin{aligned}
& \Delta_{<}\left(a_{1} \cdots a_{n}\right):=\sum_{1 \in S \subseteq[n]} a_{S} \otimes a_{\rho_{1}^{s}}|\cdots| a_{j_{k}^{s}}, \\
& \Delta_{\succ}\left(a_{1} \cdots a_{n}\right):=\sum_{1 \notin S \subseteq[n]} a_{S} \otimes a_{J_{1}}|\cdots| a_{j_{k}^{s}} .
\end{aligned}
$$

Therefore, the convolution product $\mu * \nu:=(\mu \otimes v) \Delta$ also splits:

$$
\mu<v:=(\mu \otimes v) \Delta_{<}, \quad \mu>v:=(\mu \otimes v) \Delta_{>}
$$

Therefore, the convolution product $\mu * v:=(\mu \otimes v) \Delta$ also splits:

$$
\mu<v:=(\mu \otimes v) \Delta_{<}, \quad \mu>v:=(\mu \otimes v) \Delta_{>} .
$$

Consider $\Phi: \bar{T}(T(A)) \rightarrow k$ the unique character extension of ϕ.

Theorem (Ebrahimi-Fard,Patras; 2014, 2017)

The cumulants κ, β, ρ are the unique infinitesimal characters of $\bar{T}(T(A))$ such that

$$
\begin{aligned}
\Phi & =\varepsilon+\kappa<\Phi \\
& =\varepsilon+\Phi>\beta
\end{aligned}
$$

and $\Phi=\exp _{*}(\rho)$.

Theorem (Speicher; 1997)

$$
\varphi\left(a_{1} \cdot A \cdots A_{A} a_{n}\right)=\sum_{\pi \in N C(n)} \prod_{B \in \pi} \kappa\left(a_{B}\right) .
$$

Theorem (Speicher, Woroudi; 1997)

$$
\varphi\left(a_{1} \cdot A \cdots A_{A} a_{n}\right)=\sum_{\pi \in \operatorname{Int}(n)} \prod_{B \in \pi} \beta\left(a_{B}\right) .
$$

Theorem (Hasebe, Saigo; 2011)

$$
\varphi\left(a_{1} \cdot A_{A} \cdots{ }_{A} a_{n}\right)=\sum_{(\pi, \lambda) \in M(n)} \frac{1}{|\pi|!} \prod_{B \in \pi} \rho\left(a_{B}\right)
$$

We write

$$
\Phi=\mathscr{E}_{<}(\kappa)=\mathscr{E}_{>}(\beta)=\exp _{*}(\rho)
$$

We write

$$
\Phi=\mathscr{E}_{<}(\kappa)=\mathscr{E}_{>}(\beta)=\exp _{*}(\rho)
$$

Every character has an inverse for $*$. For Φ we have

$$
\Phi^{-1}=\mathscr{E}_{>}(-\kappa)=\mathscr{E}_{<}(-\beta)=\exp _{*}(-\rho)
$$

We write

$$
\Phi=\mathscr{E}_{<}(\kappa)=\mathscr{E}_{>}(\beta)=\exp _{*}(\rho) .
$$

Every character has an inverse for $*$. For Φ we have

$$
\Phi^{-1}=\mathscr{E}_{>}(-\kappa)=\mathscr{E}_{<}(-\beta)=\exp _{*}(-\rho) .
$$

In fact, characters on $\bar{T}(T(A))$ form a group denoted by G.

We write

$$
\Phi=\mathscr{E}_{<}(\kappa)=\mathscr{E}_{>}(\beta)=\exp _{*}(\rho) .
$$

Every character has an inverse for $*$. For Φ we have

$$
\Phi^{-1}=\mathscr{E}_{>}(-\kappa)=\mathscr{E}_{<}(-\beta)=\exp _{*}(-\rho)
$$

In fact, characters on $\bar{T}(T(A))$ form a group denoted by G.
Observe that $\Delta: T(A) \rightarrow T(A) \otimes \bar{T}(T(A))$, i.e. we have a coaction.

We write

$$
\Phi=\mathscr{E}_{<}(\kappa)=\mathscr{E}_{>}(\beta)=\exp _{*}(\rho) .
$$

Every character has an inverse for $*$. For Φ we have

$$
\Phi^{-1}=\mathscr{E}_{>}(-\kappa)=\mathscr{E}_{<}(-\beta)=\exp _{*}(-\rho)
$$

In fact, characters on $\bar{T}(T(A))$ form a group denoted by G.
Observe that $\Delta: T(A) \rightarrow T(A) \otimes \bar{T}(T(A))$, i.e. we have a coaction.
Thus, the character group G acts on $\operatorname{End}(T(A))$.

Wick polynomials

By analogy, define $W: T(A) \rightarrow T(A)$ by

$$
W:=\left(\mathrm{id} \otimes \Phi^{-1}\right) \Delta .
$$

By analogy, define $W: T(A) \rightarrow T(A)$ by

$$
W:=\left(\mathrm{id} \otimes \Phi^{-1}\right) \Delta .
$$

Examples:

$$
\begin{aligned}
W(a)= & a-\phi(a) 1 \\
W(a b)= & a b-a \phi(b)-b \phi(a)+(2 \phi(a) \phi(b)-\phi(a \cdot b)) 1 \\
W(a b c)= & a b c-\varphi(c) a b-\varphi(b) a c-\varphi(a) b c \\
& -[\phi(b \cdot c)-2 \phi(b) \phi(c)] a+\phi(a) \phi(c) b-[\phi(a \cdot b)-2 \phi(a) \phi(b)] c \\
& -[\phi(a \cdot b \cdot c)-2 \phi(a) \phi(b \cdot c)-2 \phi(c) \phi(a \cdot b)-\phi(b) \phi(a \cdot c) \\
& +5 \phi(a) \phi(b) \phi(c)] 1
\end{aligned}
$$

By definition

$$
\Phi \circ W=\left(\Phi \otimes \Phi^{-1}\right) \Delta=\varepsilon
$$

that is, $\Phi\left(W\left(a_{1} \ldots a_{n}\right)\right)=0$ for any $a_{1}, \ldots, a_{n} \in A$.

By definition

$$
\Phi \circ W=\left(\Phi \otimes \Phi^{-1}\right) \Delta=\varepsilon
$$

that is, $\Phi\left(W\left(a_{1} \ldots a_{n}\right)\right)=0$ for any $a_{1}, \ldots, a_{n} \in A$.
It's easy to check that W is invertible with $W^{-1}=(i d \otimes \Phi) \Delta$.

By definition

$$
\Phi \circ W=\left(\Phi \otimes \Phi^{-1}\right) \Delta=\varepsilon
$$

that is, $\Phi\left(W\left(a_{1} \ldots a_{n}\right)\right)=0$ for any $a_{1}, \ldots, a_{n} \in A$.
It's easy to check that W is invertible with $W^{-1}=(\mathrm{id} \otimes \Phi) \Delta$.
In particular

$$
a_{1} \cdots a_{n}=\sum_{S \subseteq[n]} W\left(a_{s}\right) \Phi\left(a_{J_{1}}\right) \cdots \Phi\left(a_{J_{k}}\right)
$$

But also $W=\left(\operatorname{id} \otimes \mathscr{C}_{\succ}(-\kappa)\right) \Delta$, so
Theorem (Anshelevich, 2004)

$$
W\left(a_{1} \cdots a_{n}\right)=\sum_{S \subseteq[n]} a_{\substack{ }} \sum_{\substack{\pi \in[\operatorname{lnt}([n] \mid S) \\ \pi \cup S \in N C(n)}}(-1)^{|\pi|} \prod_{B \in \pi} \kappa\left(a_{B}\right) .
$$

Theorem

The Wick polynomials satisfy the recursion

$$
W\left(a_{1} \cdots a_{n}\right)=a_{1} W\left(a_{2} \cdots a_{n}\right)-\sum_{j=0}^{n-1} W\left(a_{j+1} \cdots a_{n}\right) \kappa\left(a_{1} \cdots a_{j}\right)
$$

Proof.

$$
\begin{aligned}
W & =\left(\mathrm{id} \otimes \Phi^{-1}\right) \Delta \\
& =\mathrm{id}<\Phi^{-1}+\mathrm{id}>\Phi^{-1} \\
& =\mathrm{id}<\Phi^{-1}-\mathrm{id}>\left(\Phi^{-1}>\kappa\right) \\
& =\mathrm{id}<\Phi^{-1}-W>\kappa .
\end{aligned}
$$

Theorem

The Wick polynomials can be expressed in terms of boolean cumulants

$$
W=(\text { id }-\mathrm{id}>\beta)<\Phi^{-1}
$$

Proof.

Previous theorem plus the fact that $\kappa=\Phi\rangle \beta<\Phi^{-1}$.

Definition

The Boolean Wick map is defined by

$$
W^{\prime}:=\mathrm{id}-\mathrm{id}>\beta .
$$

Definition

The Boolean Wick map is defined by

$$
W^{\prime}:=\mathrm{id}-\mathrm{id}>\beta .
$$

Therefore

$$
W^{\prime}\left(a_{1} \cdots a_{n}\right)=a_{1} \cdots a_{n}-\sum_{j=1}^{n} a_{j+1} \cdots a_{n} \beta\left(a_{1} \cdots a_{j}\right)
$$

Definition

The Boolean Wick map is defined by

$$
W^{\prime}:=\mathrm{id}-\mathrm{id}>\beta .
$$

Therefore

$$
W^{\prime}\left(a_{1} \cdots a_{n}\right)=a_{1} \cdots a_{n}-\sum_{j=1}^{n} a_{j+1} \cdots a_{n} \beta\left(a_{1} \cdots a_{j}\right)
$$

Theorem

Boolean Wick polynomials are centered

Proof.

$\Phi \circ W^{\prime}=\Phi-\Phi>\beta=\varepsilon$

Theorem

We have

$$
a_{1} \cdots a_{n}=W^{\prime}\left(a_{1} \cdots a_{n}\right)+\sum_{j=1}^{n-1} \Phi\left(a_{1} \cdots a_{j}\right) W^{\prime}\left(a_{j+1} \cdots a_{n}\right)
$$

From a previous computation

$$
W^{\prime}=W \prec \Phi
$$

that is

$$
W^{\prime}\left(a_{1} \cdots a_{n}\right)=\sum_{1 \in S \subseteq[n]} W\left(a_{S}\right) \Phi\left(a_{J_{1}^{s}}\right) \cdots \Phi\left(a_{J_{k}^{s}}\right)
$$

Assume we have a second state $\psi: A \rightarrow k$.

Definition

Two-state cumulants are defined implicitly by

$$
\varphi\left(a_{1} \cdot A \cdots A_{A} a_{n}\right)=\sum_{\pi \in N C(n)} \prod_{B \in \operatorname{Outer}(\pi)} R^{\varphi, \psi}\left(a_{B}\right) \prod_{B \in \ln \operatorname{ner}(\pi)} \kappa^{\psi}\left(a_{B}\right) .
$$

Theorem (Ebrahimi-Fard, Patras; 2018)

$R^{\varphi, \psi}$ is the unique infinitesimal character of $\bar{T}(T(A))$ such that

$$
\Phi=\varepsilon+\Phi>\left(\Psi^{-1}>R^{\varphi, \psi}<\Psi\right) .
$$

Directly,

$$
R^{\varphi, \psi}=\Psi>\beta^{\varphi} \prec \Psi^{-1}
$$

Directly,

$$
R^{\varphi, \psi}=\Psi>\beta^{\varphi} \prec \Psi^{-1}
$$

In particular,

$$
\begin{aligned}
R^{\varphi, \varphi} & =\Phi>\beta^{\varphi}<\Phi^{-1}=\kappa^{\varphi} \\
R^{\varphi, \varepsilon} & =\beta^{\varphi}
\end{aligned}
$$

Definition

The conditionally-free Wick polynomials are defined as

$$
W^{c}:=W<\left(\Phi * \Psi^{-1}\right)
$$

Definition

The conditionally-free Wick polynomials are defined as

$$
W^{c}:=W<\left(\Phi * \Psi^{-1}\right)
$$

This means

$$
W^{c}=\left(\mathrm{id}-\mathrm{id}>\Theta_{\psi}\left(R^{\varphi, \psi}\right)\right)<\Psi^{-1}
$$

where $\Theta_{\Psi}(\mu):=\Psi^{-1}>\mu<\Psi$.

Since W is invertible, one can induce a product on $T(A)$ by

$$
x \bullet y=W\left(W^{-1}(x) W^{-1}(y)\right)
$$

Since W is invertible, one can induce a product on $T(A)$ by

$$
x \bullet y=W\left(W^{-1}(x) W^{-1}(y)\right)
$$

Proposition

The \bullet product admits the closed-form expression: for $x=a_{1} \cdots a_{n}, y=a_{n+1} \cdots a_{n+m}$

$$
x \bullet y=\sum_{s \subseteq[n+m]} a_{S} \Phi\left(a_{J_{1}^{s}}\right) \cdots \Phi\left(a_{J_{k}^{s}}\right) .
$$

Power series

The relations between moments and cumulants can also be encoded by power series.

The relations between moments and cumulants can also be encoded by power series.
In the classical case, one uses exponential generating functions:

$$
\sum_{n \geq 0} m_{n} \frac{\lambda^{n}}{n!}=\exp \left(\sum_{k>0} c_{k} \frac{\lambda^{k}}{k!}\right)
$$

The relations between moments and cumulants can also be encoded by power series.
In the classical case, one uses exponential generating functions:

$$
\sum_{n \geq 0} m_{n} \frac{\lambda^{n}}{n!}=\exp \left(\sum_{k>0} c_{k} \frac{\lambda^{k}}{k!}\right)
$$

In the noncommutative setting, these are replaced by ordinary generating functions.

In the noncommutative setting, these are replaced by ordinary generating functions.
Let

$$
M(w):=1+\sum_{\alpha} \varphi\left(a_{\alpha}\right) w_{\alpha}, \quad R(w):=\sum_{\alpha} \kappa\left(a_{\alpha}\right) w_{\alpha}, \quad \eta(w):=\sum_{\alpha} \beta\left(a_{\alpha}\right) w_{\alpha} .
$$

In the noncommutative setting, these are replaced by ordinary generating functions.
Let

$$
M(w):=1+\sum_{\alpha} \varphi\left(a_{\alpha}\right) w_{\alpha}, \quad R(w):=\sum_{\alpha} \kappa\left(a_{\alpha}\right) w_{\alpha}, \quad \eta(w):=\sum_{\alpha} \beta\left(a_{\alpha}\right) w_{\alpha} .
$$

Considering a new set of variables $z_{i}=w_{i} M(w)$ we have

$$
M(w)=1+R(z), \quad M(w)=1+\eta(w) M(w) .
$$

It turns out that the Hopf-algebraic language above describes two operations on power series.

It turns out that the Hopf-algebraic language above describes two operations on power series.

Let G^{p} and G^{c} denote the group of invertible power series and formal diffeomorphisms, resp.

It turns out that the Hopf-algebraic language above describes two operations on power series.

Let G^{p} and G^{c} denote the group of invertible power series and formal diffeomorphisms, resp.

For $f, g \in G^{p}$ define

$$
f^{g}(w):=g(w) f(z), \quad z_{i}=w_{i} g(w) .
$$

Also let

$$
(f \curvearrowleft g)(w):=f(z), \quad z_{i}=w_{i} g(w) .
$$

Given $F: T(A) \rightarrow k$ let $\Lambda(F) \in k[[w]]$ be given by

$$
\Lambda(F)(w)=F(1)+\sum_{\alpha} F\left(a_{\alpha}\right) w_{\alpha} .
$$

Given $F: T(A) \rightarrow k$ let $\Lambda(F) \in k[[w]]$ be given by

$$
\Lambda(F)(w)=F(1)+\sum_{\alpha} F\left(a_{\alpha}\right) w_{\alpha} .
$$

Theorem

$$
\wedge(F * G)=\wedge(F)^{\wedge(G)}
$$

Given $F: T(A) \rightarrow k$ let $\Lambda(F) \in k[[w]]$ be given by

$$
\Lambda(F)(w)=F(1)+\sum_{\alpha} F\left(a_{\alpha}\right) w_{\alpha} .
$$

Theorem

$$
\wedge(F * G)=\wedge(F)^{\wedge(G)}
$$

Theorem

$$
\wedge(F<G)=\Lambda(F) \curvearrowleft \wedge(G) .
$$

Thank you!

