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Many thanks to the organizers for the honor of giving this series of lectures, in

this lovely place.

My goal in my talks is to explain most of the nodes in the diagram on the next

page, and some of the arrows. Many of the nodes in this diagram are now

(unconditional) theorems, some of them very recently (August 2016). I will not

try to bring the story up to the present day. I think the techniques used around

these conjectures in the 50 years 1965-2015 are worth knowing, even if they are

not the ones that ended up solving the problems in general.

Caution: these notes contain errors. Some were fixed during the lectures, others

surely remain.



(From Hochster, “Current state of the homological conjectures”, 2004.)
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Lecture 1: Primary decomposition, prime avoidance, and

depth via Ext

Throughout, we work with Noetherian rings R. A local ring (R,m, k) is a Noethe-

rian ring R with unique maximal ideal m and residue field k = R/m.

This lecture is meant to be a high-speed review of primary decomposition, as-

sociated primes, and prime avoidance, with an eye toward the connections with

depth.

Definition. An ideal I of R is primary if whenever ab ∈ I, we have either a ∈ I
or bn ∈ I for some n. Equivalently, whenever ab ∈ I, either a ∈ I or b ∈

√
I.

Observation. 1. Prime ideals are obviously primary.

2. It’s easy to see that if p is a prime ideal then pn is primary for any n.

However, this is not the only source of primary ideals, as we will see in a

moment.

3. If I is primary then
√
I is a prime ideal. When I is a primary ideal with√

I = p,, we say I is p-primary. The converse is not true (consider I =

(x2, xy) ⊂ k[x, y]; its radical is (x), but it is not primary).

4. However, if
√
I is a maximal ideal then I is primary. So an ideal I is m-

primary iff
√
I = m. For example, I = (x2, y5) ⊂ k[x, y] is (x, y)-primary.

(One can also prove directly that this ideal is primary.) Notice that this is

not a power of a prime ideal.

Exercise. The primary ideals of Z are precisely the ideals (pm), where p is a

prime integer and m > 1. The radical of such an ideal is just (p).

Consequence. Any ideal I ⊂ Z is uniquely an intersection of primary ideals with

distinct radicals: I = (pm1
1 ) ∩ · · · ∩ (pmr

r ) for distinct primes p1, . . . , pr.
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Primary decomposition is a sweeping generalization of this example.

Theorem (Noether). Let R be Noetherian and I an ideal. Then I is a finite

intersection of primary ideals.

Sketch of Proof. Say that an ideal Q is irreducible if it cannot be written as a

proper intersection of two other ideals. Note that irreducible ideals are primary.

Let

Γ = {I ⊂ R | I is not a finite intersection of irred ideals} .

If Γ 6= ∅, then it has a maximal element I, which must be reducible, but then it

is an intersection of larger ideals, which must be irreducible, contradiction.

Definition. A primary decomposition of I is I = Q1 ∩ · · · ∩Qr, where each Qi

is a primary ideal. Say the decomposition is irredundant if no Qi can be omitted.

Theorem/Definition (Noether). The prime ideals
√
Qi are uniquely determined

by I, though the Qi themselves need not be. These prime ideals are called the

associated primes of I, written AssR(R/I). The associated primes are exactly

those of the form p = AnnR(x) for some x ∈ R/I; equivalently they are the

ones for which we have R/p↪→R/I.

The Qi corresponding to the minimal elements of AssR(R/I) are uniquely de-

termined, and appear in every primary decomposition of I (called the isolated

components).

Example. (x2, xy) = (x) ∩ (x2, y) = (x) ∩ (x2, xy, y2) are two primary decom-

positions of I = (x2, xy). The associated primes are (x) and (x, y).

Fact. All this can be generalized to submodules N of a Noetherian module M .

Every such N can be written as an intersection of primary submodules Qi, and

the associated primes of M/N are
√

AnnR(M/Qi). As before, they are precisely

the primes p such that R/p↪→M .
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Corollary. Let M be a finitely generated module over a Noetherian ring R. The

set of zerodivisors on M is the union of the associated primes of M :

Z(M) =
⋃

p∈AssR(M)

p .

Special case: when (R,m) is a local ring, the module M has depth 0 if and only

if m ⊆
⋃

p∈AssR(M) p. In fact this is equivalent to m ∈ AssR(M), by the next

result.

Theorem (Prime Avoidance). Let p1, . . . , pn be prime ideals of a Noetherian ring

R. (Actually, one can get away with only n− 2 of them being prime.) If I is an

ideal such that

I ⊆
n⋃
i=1

pi ,

then I ⊆ pi for some i.

Support: For any ideal I of a ring R, let V (I) be the set of prime ideals

containing I.

The support of a module M is the set of prime ideals p so that Mp 6= 0. We

always have V (AnnRM) ⊆ SuppM , that is, if a prime p contains AnnRM then

Mp 6= 0. If M is finitely generated, then equality holds.

Special case: If (R,m) is a local ring and M is a finitely generated module, then

SuppRM = {m} if and only if M has finite length.

From our point of view, the main reason to cover the preceding material is the

Ext-criterion for computing depth.

First, a turbo review of Ext and Tor, with no proofs. (I will skip most of this in
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lecture, but include it here in these notes.) Fix a ring R and two R-modules M

and N .

Ext: The functor HomR(M,−) is a covariant left-exact functor, meaning that if

0 −→ A −f−→ B −g−→ C −→ 0

is a short exact sequence of R-modules, then

0 −→ HomR(M,A) −f∗−→ HomR(M,B) −g∗−→ HomR(M,C)

is also an exact sequence of R-modules. (But we cannot always put a 0 at the

far right.) Here the R-module structure on, for example, HomR(M,A) is defined

by

(rϕ)(m) = ϕ(rm) = r(ϕ(m))

and the induced maps are defined by, for example,

f∗(ϕ : M −→ A) = f ◦ ϕ : M −→ B .

Therefore, by general categorical nonsense, there exist right derived functors

ExtiR(M,−) for all i = 0, 1, . . . , which are defined on a module N by apply-

ing HomR(M,−) to an injective resolution of N , and taking homology of the

resulting complex.

If M is projective, then in fact HomR(M,−) is an exact functor (we can put in

the 0 on the right). (This is basically the definition of projectivity.) It follows

that ExtiR(M,N) = 0 for all i > 0 and all N .

OTOH, HomR(−, N) is a contravariant left-exact functor, so transforms a short

exact sequence

0 −→ A −f−→ B −g−→ C −→ 0

into

0 −→ HomR(C,N) −g
∗

−→ HomR(B,N) −f
∗

−→ HomR(A,N)
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where, for example, g∗(ϕ : C −→ N) = ϕ ◦ g : B −→ N .

Therefore, the same categorical nonsense gives us right derived functors ExtiR(−, N)

for all i = 0, 1, . . . . They are defined on a module M by applying HomR(−, N)

to a projective resolution of M and taking homology of the resulting complex.

If N is injective, then HomR(−, N) is exact, so ExtiR(M,N) = 0 for i > 0 and

all M .

Fact. ExtiR(M,N) = ExtiR(M,N). That is, you can compute Ext via either a

projective resolution of M or an injective resolution of N .

Properties.

• Ext0R(M,N) = HomR(M,N).

• If M is projective, or N is injective, then ExtR(M,N) = 0 for all i > 0.

More generally, if M has projective dimension 6 n (resp., N has injective

dimension 6 n) then ExtiR(M,N) = 0 for i > n.

• elements of Ext1R(M,N) are in 1-1 correspondence with equivalence classes

of “extensions” (short exact sequences)

0 −→ N −→ X −→M −→ 0

under a certain equivalence relation (which is stronger than isomorphism of

exact sequences =⇒ smaller equivalence classes than isomorphism classes).

• (most important one) There is a long exact sequence of Ext: for any short

exact sequence

0 −→ A −→ B −→ C −→ 0
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of R-modules, there is an exact sequence

0 //HomR(M,A) //HomR(M,B) //HomR(M,C)

// Ext1R(M,A) // Ext1R(M,B) // Ext1R(M,C)

// · · · · · · // Exti(M,C)

// Exti+1
R (M,A) // Exti+1

R (M,B) // · · ·

and another one

· · · // ExtiR(B,N) // Exti(A,N)

// Exti+1
R (C,N) // Exti+1

R (B,N) // · · · .

Tor: The functor M ⊗R − is right-exact and covariant. If M is projective, it is

exact. (If it is exact, we define M to be flat.)

The usual abstract nonsense therefore provides us with left derived functors

TorRi (M,−) for all i = 0, 1, . . . . We compute ToriR(M,N) by applying M ⊗R−
to a projective resolution of N and taking homology of the resulting complex.

(Actually, we can take any flat resolution of N .)

Properties.

• TorR0 (M,N) = M ⊗R N .

• TorRi (M,N) = TorRi (N,M), that is, we can compute it via projectively

resolving either M or N . This is surprisingly difficult to prove.

• If M has projective dimension 6 n (or even flat dimension 6 n), then

TorRi (M,N) = 0 for all i > n and every N .
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• There is once again a long exact sequence (love typesetting these) associated

to every short exact sequence 0 −→ A −→ B −→ C −→ 0:

· · · //TorRi+1(M,B) //TorRi+1(M,C)

//TorRi (M,A) // · · · · · ·

//TorR1 (M,A) //TorR1 (M,B) //TorR1 (M,C)

//M ⊗R A //M ⊗R B //M ⊗R C // 0

One more thing.

Definition. A functor F from R-modules to R-modules is called multiplicative

if for any x ∈ R,

F (M −x−→M) = F (M) −x−→ F (M) .

In other words, F applied to multiplication by x is again multiplication by x.

Examples.

1. M ⊗R − is multiplicative.

2. HomR(M,−) and HomR(−, N) are both multiplicative.

Fact. If F is multiplicative and has left or right derived functors, then those are

multiplicative as well.

So, applying ExtiR(M,−) to N −x−→ N gives

ExtiR(M,N) −x−→ ExtiR(M,N) ,

and similarly for the other variable, as well as Tor.
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Consequence. AnnR(ExtiR(M,N)) ⊇ AnnRM+AnnRN and AnnR(TorRi (M,N)) ⊇
AnnRM + AnnRN .

Theorem. Let R be a Noetherian ring, I an ideal, and M a finitely generated

module such that IM 6= M . Then the following are equivalent.

1. ExtiR(R/I,M) 6= 0 for i = 0, 1, . . . , n− 1

2. There is an M -regular sequence x1, . . . , xn in I.

Sketch of Proof. For n = 1, use associated primes and prime avoidance to show

that HomR(R/I,M) 6= 0 iff every element of I is a zerodivisor on M . One

direction is straightforward; for the other, if I ⊆ Z(M) then I ⊆ p for some

p ∈ AssR(M), so R/I � R/p↪→M is a nonzero homomorphism.

For the inductive step, use the long exact sequence of Ext arising from a short

exact sequence 0 −→M −x1−→M −→M/x1M −→ 0.

Corollary. If (R,m) is a local ring, then the depth of a finitely generated module

M is

depthM = inf
{
i > 0

∣∣ ExtiR(R/m,M) 6= 0
}
.

Quick aside on the Koszul complex

Throughout R is a ring.

Definition. Let x ∈ R. The Koszul complex on x is

K•(x;R) : 0 −→ R −x−→ R −→ 0 ,

indexed homologically (decreasing indices left to right) in degrees 1 and 0.
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Notice two things immediately:

1. H0(K•(x;R)) = R/(x);

2. H1(K•(x;R)) = 0 if and only if x is a nonzerodivisor in R.

To extend the construction to more than one element, a quick reminder on tensor

products of complexes. To ease the notation a bit, we suppress the ring on all

⊗s

Definition. Let C• : · · · −→ Cn −
dC−→ Cn−1 −→ · · · and D• : · · · −→ Dn −

dD−→
Dn−1 −→ · · · be two complexes of R-modules. Define a complex C• ⊗D• by

(C• ⊗D•)n =
⊕
p+q=n

Cp ⊗Dq

and, if x ∈ Cp, y ∈ Dq, then the differential is defined by

dC⊗D(x⊗ y) = dC(x)⊗ y + (−1)qx⊗ dD(y) .

Exercise. d2C⊗D = 0.

Definition. For a sequence of elements x1, . . . , xn ∈ R, the Koszul complex is

defined inductively:

K•(x1, . . . , xn;R) = K•(x1, . . . , xn−1;R)⊗K•(xn;R) ;

equivalently,

K•(x1, . . . , xn;R) =
n⊗
i=1

K•(xi;R) .

If M is any R-module, then we set K•(x1, . . . , xn;M) = K•(x1, . . . , xn;R)⊗M .

Easy computation: the module in degree i in the Koszul complex K•(x1, . . . , xn;R)

is free of rank
(
n
i

)
.
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Write Hi(x1, . . . , xn;M) for the homology of K•(x1, . . . , xn;M), and call it the

Koszul homology. The main result we need here is the depth-sensitivity of Koszul

homology:

Proposition. Let R be a Noetherian ring, M a finitely generated module, and

x = x1, . . . , xn a sequence of elements of R.

1. H0(x;M) = M/xM ;

2. Hn(x;M) = AnnR(x);

3. If x is an M -regular sequence, then Hi(x;M) = 0 for all i > 1.

4. Assuming that x is contained in rad(R), the converse holds.

The ideal (x) contains an M -regular sequence of length g if and only if Hi(x;M) =

0 for i > n− g.

Buchsbaum-Eisenbud Acyclicity Criterion

Later we will need a very general form of the Acyclicity theorem, but here is the

basic version. Let R be a ring. A complex

G• : · · · −→ Gm −
dm−→ Gm−1 −→ · · · −→ G1 −

d1−→ G0 −→ 0

is called acyclic if Hi(G•) = 0 for all i > 0. It is split acyclic if the image of each

dm is a direct summand of Gm−1.

Theorem. Let R be a Noetherian ring and

F• : 0 −→ Fs −
ϕs−→ Fs−1 −→ · · · −→ F1 −

ϕ1−→ F0 −→ 0

a complex of finite free R-modules. Set ri =
∑s

ji(−1)j−i rankFj. (This is called

the expected rank of the map ϕi.) The following are equivalent.
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1. F• is acyclic.

2. For each i = 1, . . . , s, the ideal Iri(ϕi) contains a regular sequence of length

i. (Here, if X is a matrix, It(X) is the ideal generated by t × t minors of

X.)
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Lectures 2-3: Basics of Algebraic Geometry and Intersection

Theorems

In this lecture, we work over a field k.

Definition. Affine n-space over k is An
k = kn, the n-dimensional k-vector

space, viewed as a geometric space. Points of this space have coordinates:

p = (a1, . . . , an).

Let S be any subset of the polynomial ring k[x1, . . . , xn]. The vanishing set of

S is

V (S) = {p = (a1, . . . , an) ∈ An
k | f(a1, . . . , an) = 0 for all p ∈ S} .

On the other hand, for any subset U ⊆ An
k , the ideal of U is

I(U) = {polynomials f ∈ k[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ U} .

An (affine) variety is any subset of An
k of the form V (S).

Observation. 1. One checks easily that I(U) is always an ideal. In fact I(U)

is always a radical ideal (since k has no nilpotent elements).

2. V (S) = V (〈S〉) is determined by the ideal generated by S. By Hilbert’s

Basis Theorem, every ideal of the polynomial ring is finitely generated. It

follows that an affine variety is the set of common zeros of a finite set of

polynomials.

3. The functions V (−) and I(−) are order-reversing: if S ⊆ S ′ then V (S) ⊇
V (S ′), and if U ⊆ U ′ then I(U) ⊇ I(U ′).

4. The compositions IV and V I act like “closures”: I(V (S)) ⊇ S and

V (I(U)) ⊇ U . (It follows formally that I(V (I(U))) = I(U) and V (I(V (S))) =

V (S), so doing either IV or V I twice is the same as doing it once.)
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5. V (
∑

α Iα) =
⋂
α V (Iα)

6. V (IJ) = V (I) ∪ V (J).

Theorem (Nullstellensatz). Assume k is algebraically closed. Then I(V (I)) =√
I for every ideal I. Hence there is an order-reversing bijection

{algebraic varieties in An
k} ←→ {radical ideals of k[x1, . . . , xn]} .

In particular the maximal ideals of k[x1, . . . , xn] are all of the form (x1−a1, . . . , xn−
an) for a point (a1, . . . , an) ∈ An

k .

An affine variety V is irreducible if and only if I(V ) is a prime ideal. (Exercise.)

It follows from primary decomposition (or topology) that any V is a finite union

of irreducible varieties, corresponding to the minimal (or associated) primes of its

ideal.

Now we can start on one thread of the Homological Conjectures: the Intersection

Theorems.

If U and V are two subspaces of a vector space W , then

dimU ∩ V > dimU + dimV − dimW .

It follows from the Nullstellensatz that an analogue is true for algebraic varieties

in An
k (k algebraically closed): loosely speaking, if two algebraic varieties intersect

only at the origin, their dimensions cannot be “too large”.

Theorem (Serre’s Intersection Theorem 1961). Let (R,m) be a regular local

ring and let p, q be prime ideals. Then

height(p + q) 6 height p + height q .
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This is not true for prime ideals in arbitrary rings. For example, in k[x, y, s, t]/(xy−
st), we have prime ideals p = (x, s) and q = (y, t) of height one, but height p+

q = height(x, y, s, t) = 3.

Corollary. Let (R,m) be a regular local ring and M , N finitely generated modules

such that M ⊗R N has finite length. Then dimM + dimN 6 dimR.

Proof. Recall that M ⊗R N has finite length if and only if SuppR(M ⊗R N) =

{m}, if and only if AnnR(M ⊗R N) is m-primary. Also it’s not hard (using the

multiplicativity of the tensor product functor) to see that
√

AnnR(M ⊗R N) =
√

AnnRM + AnnRN . Take primes p and q minimal over AnnRM and AnnRN ,

respectively. Then p + q is m-primary, so we have

dimR = height(p + q) 6 height p + height q = 2 dimR− dimM − dimN ,

and the claimed inequality follows.

Serre’s Intersection Theorem is actually one-third of a cluster of statements of

Serre, referred to as the “Multiplicity Conjectures”. Stating them gives a nice

illustration of why Cohen-Macaulay rings are worth considering, so I take a quick

side trip.

Let f, g ∈ k[x, y] be two polynomials without any common factors. Then

V (f) and V (g) are plane curves in A2
k without common components. Suppose

that these curves intersect at the origin. We want to compute the intersection

multiplicity of the curves at this point.

If k = C, we can talk about small complex numbers ε, and count the number of

distinct intersection points of f = 0 and g = ε that lie in a small neighborhood

of the origin.
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For arbitrary k, the same value can be computed algebraically by working in the

localized polynomial ring R = k[x, y](x,y) and computing the length of the module

R/(f, g) ∼= R/(f)⊗R/(g) .

(Localizing is necessary so that we don’t count any other points of intersection

away from the origin.)

For an easy example, if f = y−x2 and g = y defines the x-axis, then the length

is 2.

In higher dimensions, we can mimic this construction. Let X = V (I) and Y =

V (J) be affine varieties in k[x1, . . . , xn] with an isolated intersection point at the

origin. Set R = k[x1, . . . , xn](x1,...,xn), and consider the length of the module

R/(I + J) = R/I ⊗R/J .

Unfortunately, this does not give the same answer as perturbing the equations

and counting distinct intersection points.

Example. For I = (x3 − w2y, x2z − wy2, xy − wz, y3 − xz2) and J = (w, z)

in C[x, y, z, w], the “correct” (geometric) answer is 4, while the length of the

tensor product is 5.

Serre observed that difference can be reconciled by adding (and subtracting) error

terms.

Definition. For I and J as above, the (Serre’s) intersection multiplicity of I and

J is

χ(R/I,R/J) =
dimR∑
i=0

(−1)i length(TorRi (R/I,R/J)) .

More generally, we can replace R/I and R/J by any finitely generated modules

M and N to define χ(M,N).
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Serre proved that χ has many of the properties we want from an intersection

multiplicity; for example, Bézout’s theorem holds, and χ is additive on short

exact sequences. Also, the need for the correction terms is attributable to the

failure of the Cohen-Macaulay property:

Theorem (Serre). Let (R,m) be a localized polynomial ring and I, J ideals such

that I + J is m-primary. Then we have

χ(R/I,R/J) = length(R/I ⊗R R/J)

if and only if R/I and R/J are Cohen-Macaulay rings. More generally, let M and

N be modules over R/I and R/J , respectively; then χ(M,N) = length(M ⊗R
N) if and only if M and N are maximal Cohen-Macaulay modules over each ring

respectively.

Conjecture (Serre). Let R be a regular local ring and M , N finitely generated

modules. Assume that M ⊗R N has finite length. Then

1. dimM + dimN 6 dimR (We saw this already!);

2. (Nonnegativity) χ(M,N) > 0;

3. (Vanishing) If dimM + dimN < dimR, then χ(M,N) = 0;

4. (Positivity) If dimM + dimN = dimR, then χ(M,N) > 0.

Serre proved the first statement, as we have seen, for all regular local rings. He

proved the rest for “unramified” regular local rings (roughly speaking, localized

polynomial rings). Vanishing was proved by Gillet-Soulé and Paul Roberts in

the 1980s using K-theory, and Nonnegativity by Gabber in the 90s. Positivity

remains open in general.

Looking ahead a bit, the recent advances that prove the Direct Summand Con-

jecture (perfectoid things) do not seem to apply to Serre’s Positivity conjecture.
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On the other hand, existence of small CM modules does imply Positivity (big CM

modules are not enough).

Back to the Intersection Theorem: dimM+dimN 6 dimR for finitely generated

modules M and N over a regular local ring R.

It is a standard guess that a theorem for regular local rings might remain true

over arbitrary local rings as long as the modules have finite projective dimension.

Conjecture (Peskine-Szpiro ’74). Let R be a local ring and M , N finitely

generated modules with pdRM < ∞ and M ⊗R N has finite length. Then

dimM + dimN 6 dimR.

This is still open. We can weaken it a bit by remembering that depth 6 dim, and

by the Auslander-Buchsbaum formula, if pdRM <∞ then pdRM = depthR−
depthM . This gives

Conjecture (“Intersection Theorem”, Peskine-Szpiro ’74). Let (R,m) be local

and M , N finitely generated modules such that pdRN < ∞ and M ⊗R N has

finite length. Then

dimN 6 pdRM .

Example. Suppose x1, . . . , xk is a regular sequence in R. Then M = R/(x1, . . . , xk)

is resolved by the Koszul complex, so has pdRM = k. For any N , we have

M⊗RN = N/(x1, . . . , xk)N . For this to have finite length, the ideal AnnRN+

(x1, . . . , xk) must be m-primary. Equivalently, in the ring R/AnnRN , the

ideal (x1, . . . , xk) is primary to the maximal ideal. By Krull’s Height Theorem,

height(x1, . . . , xk) 6 k, so we have dimN = dimR/AnnRN 6 k = pdRM ,

which is exactly the Intersection Theorem in this case.
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Peskine and Szpiro proved the Intersection Theorem when R contains a field of

positive characteristic, and in many cases in characteristic zero by reducing to

positive characteristic. (More on this in the next lecture.)

They also used the Intersection Theorem to resolve two (at the time) open con-

jectures:

Conjecture (Auslander’s zerodivisor conjecture). Let (R,m) be a local ring and

M a nonzero finitely generated module of finite projective dimension. Then every

zerodivisor in R is a zerodivisor on M .

Proof sketch, assuming the Intersection Theorem. We want to show that every

associated prime p of R is contained in an associated prime of M . If M has finite

length, we’re done, so induct on dimM . There are two cases. If p ⊆ q ( m for

some q ∈ SuppM , then localize at q and we’re done by induction. If not, then

p + AnnRM is m-primary, so by the Intersection Theorem dimR/p 6 pdRM .

It is known that depthR 6 dimR/p for all p ∈ AssR, and some arithmetic

shows that depthM 6 0. Therefore m ∈ AssRM and we’re done.

Conjecture (Bass’ Question). Let (R,m) be a local ring and suppose there is a

finitely generated R-module E of finite injective dimension. Then R is Cohen-

Macaulay.

(The proof of this one is fairly involved.)

Peskine-Szpiro and Roberts, independently, proved a stronger version of the In-

tersection Theorem.

Theorem (New Intersection Theorem, Peskine-Szpiro, Roberts). Let R be a

local ring and suppose that F : 0 −→ Fs −→ · · · −→ F1 −→ F0 −→ 0 is
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a complex of finitely generated free R-modules. Assume that all the homology

modules have finite length and that H0(F ) 6= 0. Then s > dimR.

Proof of IT, assuming NIT. Let M be an R-module of finite projective dimen-

sion; we want to prove that if M ⊗RN has finite length, then dimN 6 pdRM .

Let G be a minimal free resolution of M , with s = pdRM . Set I = AnnRN ,

and pass to the ring R/I: set F = G ⊗R R/I. Then H0(F ) = M ⊗R N 6= 0.

The homology Hi(F•) = TorRi (M,R/I) is annihilated by AnnRM + I, which

is m-primary since M ⊗R N has finite length, so the homology has finite length

too. By NIT, s > dimR/I = dimN , and we win.

Paul Roberts proved the New Intersection Theorem for all local rings in the

80s. In particular, the Intersection Theorem, Auslander’s Conjecture, and Bass’

Question are all true in full generality.
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Lectures 4-5: The Monomial and Direct Summand Conjec-

tures

This lecture is about two conjectures of Hochster that occupy the central position

in our diagram. I want to emphasize two things: they are both easy(ish) for rings

containing either Q or Fp, and are both trivial for Cohen-Macaulay rings. Pursuing

this second point will lead us to further conjectures about CM modules.

First the Direct Summand Conjecture.

Conjecture (Direct Summand Conjecture, Hochster ’69). Let A be a regular

local ring and A ⊆ R a ring extension such that R is a finitely generated A-

module. Then A is a direct summand of R as an A-module (i.e. there is an

A-linear map f : R −→ A so that f(a) = a for all a ∈ A).

I will give proofs of several special cases of this conjecture.

Proof when A contains Q. Let K and L be the fraction fields of A and R, re-

spectively; then K ⊆ L is a finite separable field extension. The trace map

Tr: L −→ K sends α ∈ L to the sum of its Galois conjugates, so sends each

a ∈ A to da, where d = [L : K]. Then f = 1
d Tr gives the desired splitting.

(Actually this argument works even if A is only normal, rather than regular! It also

works if A doesn’t contain Q but you know for some reason that d is invertible

in A.)

For the proof when A contains a field of characteristic p, we need two slightly

advanced ingredients: the Frobenius endomorphism, and the Cohen Structure

Theorem.
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Frobenius: If R contains Fp, then the map F : R −→ R with F (r) = rp is a ring

homomorphism. The key point is the “Freshman’s Dream”: (a+ b)p = ap + bp.

(The mixed terms coming from the binomial theorem all have coefficients divisible

by p.) It follows that the ring of pth powers Rp ⊆ R is isomorphic as a ring to R

(as long as R has no nilpotents).

Cohen Structure Theorem: We need only a very special case right now, which

says that if R is a complete local domain containing a field of characteristic p,

then R can be written as (R/m)[[Z1, . . . , Zm]]/Q for some prime ideal Q. In

particular, if R is assumed to be a regular local ring, then it is a power series ring

over a field.

Proof when A contains Fp and R is a domain. We assume A = k[[z1, . . . , zd]],

and we further assume that k is perfect (of characteristic p).

We can choose an A-linear map ϕ : R −→ A with ϕ(1) 6= 0. Indeed, R is a

domain, and we know that the map Q(A) −→ Q(R) on fraction fields splits, so

we can multiply by some nonzerodivisor to get a nonzero map A −→ R.

Take e so large that ϕ(1) /∈ mpe, where m = (z1, . . . , zd)A. Set q = pe, and let

B = k[[zq1, . . . , z
q
d]] ⊂ A. Since k is perfect, in fact B = Aq. Exercise: A is a

free B-module (for example, on the monomials za11 · · · z
ad
d , where 1 6 ai < q for

each i). Since ϕ(1) /∈ (zq1, . . . , z
q
d)A, we can extend ϕ(1) to a B-basis for A. It

follows that there is a B-linear maps ψ : A −→ B with ψ(ϕ(1)) = 1.

Thus ψϕ is a B-linear retraction of R to B. Its restriction to Rq is a B-linear

retraction of Rq to B = Aq. But we have a commutative diagram

R F e

∼=
//Rq

A F e

∼=
//

?�

OO

Aq = B
?�

OO
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So a B-linear retraction of the right-hand side implies an A-linear retraction of

the left-hand side, which is what we wanted.

Proof when R is CM. If R is a CM ring, then depthRR = dimR = dimA (since

the extension is integral). The depth of R is the same whether considered as R-

module or A-module (if we have a regular sequence in R, we can take high powers

to get it in A). By the Auslander-Buchsbaum Theorem, pdAR + depthR =

depthA, which forces R to be a free A-module. It follows that 1 ∈ R can be

extended to a basis, and then there is a projection R −→ A splitting the given

inclusion.

That’s not the end of the proofs of DSC. The proofs above, plus some standard

reductions, reduce the problem to considering regular local rings A of the form

Ẑp[[z1, . . . , zd]], where Ẑp is a complete DVR with maximal ideal generated by

the integer p.

Heitmann proved the case of dimension 3 (d = 2) in 2002 [Annals]. It is an

extremely difficult proof, aspects of which foreshadow the very recent proof of

the full Conjecture by André. More on this later maybe.

Conjecture (Monomial Conjecture, Hochster 1971). Let (R,m) be a local ring

of dimension d, and let x = x1, . . . , xd be a system of parameters. (So (x) is

m-primary; it contains a power of m.) Then for every t > 1, we have

xt1 · · ·xtd /∈ (xt+1
1 , . . . , xt+1

d ) .

Notice that the Conjecture is true if the xi’s are variables in a polynomial or

power series ring. (The only way for a monomial to be contained in a monomial

ideal is if it is divisible by one of the generators.) So MC asserts that systems of

parameters “behave like” variables in this sense.
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We should immediately point out that the Monomial Conjecture is equivalent to

the Direct Summand Conjecture. Here we can only give one proof in the case of

equal characteristic, and a few words about the general case.

Proposition. Direct Summand implies Monomial Conjecture for complete local

rings containing a field.

Proof. Suppose we have a complete local ring R with a system of parameters

x1, . . . , xd, and that

(x1 · · ·xd)k =
d∑
i=1

rix
k+1
i

for some k and some elements ri ∈ R. Set A = k[[x1, . . . , xd]], a regular local

ring over which R is a finitely generated module. By Direct Summand, there is

a splitting ϕ : R −→ A (which in particular fixes the xi), and we get

(x1 · · ·xd)k =
d∑
i=1

ϕ(ri)x
k+1
i ,

a contradiction.

The key to the proofs in general is the following fact [Bruns-Herzog, Lemma

9.2.2].

Lemma. Let (A,m) be a regular local ring and x = x1, . . . , xn a regular system

of parameters. Suppose that R ⊇ A is a module-finite A-algebra. Then A is a

direct summand of R as A-module if and only if (x1 · · ·xn)k /∈ (xk+1
1 , . . . , xk+1

n )

for every k > 0.

Sketch of proof. ( =⇒ ) If R ⊆ A splits, then IR ∩ A = I for every ideal I of

A. We know that xk1 · · ·xkd /∈ (xk+1
1 , . . . , xk+1

d )A, so it must remain so in R.
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(⇐=) First reduce to the case where A is complete. Let Ak = A/(xk), a zero-

dimensional Gorenstein ring, and Rk = R/(xk)R. The socle of Ak is generated

by the monomial (x1 · · ·xd)k, and this doesn’t go to zero in Rk by hypothesis,

so the maps Ak −→ Rk are all injective. Since Ak is self-injective, they all split.

One would like to take a limit of these splittings to get a splitting for A −→ R;

there turn out to be some significant technicalities, omitted here.

Characteristic p

MC is easy in characteristic p. I learned the proof below from Huneke. It uses the

same two basic tools as the proof of DSC in positive characteristic. Specifically,

the “Freshman’s Dream” implies that if we have an equation

xt1 · · ·xtd = a1x
t+1
1 + · · ·+ adx

t+1
d ,

we can raise it to the pth power, repeatedly, and get

(xt1 · · ·xtd)p
e ∈ (x

(t+1)pe

1 , . . . , x
(t+1)pe

d )

for all e > 1.

Proof of MC when R is a complete domain and contains a field of characteristic p.

Assume for a contradiction that xt1 · · ·xtd ∈ (xt+1
1 , . . . , xt+1

d ) for some t.

Write R = k[[Z1, . . . , Zm]]/Q for some prime ideal Q. Lift the elements xi to

y1, . . . , yd ∈ S = k[[Z1, . . . , Zm]]. We can find elements w1, . . . , wg ∈ Q so that

1. w1, . . . , wg, y1, . . . , yd is a s.o.p. for S (so m = g + d), and

2. (w1, . . . , wg)Q = QQ since SQ is a RLR.
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Using (2), choose an element c /∈ Q such that cQ ⊆ (w1, . . . , wg).

Now the ring A = k[[w1, . . . , wg, y1, . . . , yd]] ⊆ S is isomorphic to a power series

ring (those elements are algebraically independent). Furthermore S is a finitely

generated module over A. In fact it is a free module: by Auslander-Buchsbaum,

m = depthA = pdA S + depthA S = pdA S + depthS S = pdA S +m, so that

pdA S = 0. In particular, S is a flat A-algebra.

Lift the equation that shows xt1 · · ·xtd ∈ (xt+1
1 , . . . , xt+1

d ) up to S:

yt1 · · · ytd =
d∑
i=1

siy
t+1
i + π ,

where π ∈ Q. Apply the Frobenius e times:

ytp
e

1 · · · y
tpe

d =
d∑
i=1

sp
e

i y
(t+1)pe

i + πp
e

.

Multiply by c, knocking πp
e

into (w1, . . . , wg):

cytp
e

1 · · · y
tpe

d ∈ (y
(t+1)pe

1 , . . . , y
(t+1)pe

d , w1, . . . , wg) .

This says that c is in a certain colon ideal:

c ∈ ((y
(t+1)pe

1 , . . . , y
(t+1)pe

d , w1, . . . , wg) :S y
tpe

1 · · · y
tpe

d ) .

Now, by flatness, (IS :S JS) = (I :A J)S, so we get

c ∈ ((y
(t+1)pe

1 , . . . , y
(t+1)pe

d , w1, . . . , wg) :A y
tpe

1 · · · y
tpe

d )S .

But in A, the elements yi and wj are just variables, so this implies

c ∈ (y
(t+1)pe

1 , . . . , y
(t+1)pe

d , w1, . . . , wg)S .

For this to happen for all e, we must have c ∈ (w1, . . . , wg)S ⊆ Q, a contradic-

tion.
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The other main case where MC is easy is when R is a Cohen-Macaulay ring.

In that case, the system of parameters x is automatically a regular sequence.

We will give the proof next time, assuming only that R has a Cohen-Macaulay

module.

What is MC good for? (Aside from being equivalent to Direct Summand.) Well,

it implies all the Intersection Theorems discussed in previous lectures.

Theorem (Hochster). The Monomial Conjecture implies the (Improved) New

Intersection Conjecture.
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Lecture 6: Cohen-Macaulay modules and algebras

A big Cohen-Macaulay module for a local ring (R,m) is a (not necessarily finitely

generated) module M such that mM 6= M and every system of parameters for R

is a regular sequence on M . If M is finitely generated, it is enough that M 6= 0

and some system of parameters is M -regular; in this case we call M a small

Cohen-Macaulay module.

An R-algebra B is a big CM algebra if it is big CM as an R-module.

Existence of CM modules (big or small) implies nearly all of the conjectures

we have seen so far. In this lecture I’ll illustrate this. First, what is known

unconditionally?

1. Small CM modules exist in dimension 0 (any module is small CM), 1 (take

M = R/p for some prime p), and for complete local rings in dimension

2 (take the integral closure of R/p, which is finitely generated since R is

complete).

2. Existence of a small CM module forces the ring to be catenary (all saturated

chains of primes between two primes have the same length). Complete local

rings are catenary, so the usual form of the conjecture is that every complete

local ring has a small CM module.

3. Big CM modules and algebras exist for local rings containing a field [Hochster

’75, ’94], in dimension 6 3 [Hochster ’02, after Heitman], and explicitly in

characteristic p (as the integral closure R+ of R in an algebraic closure of

its fraction field) [Hochster-Huneke ’92]. They are now know to exist for

arbitrary local rings [André ’16].

4. A weakly functorial version of big CM algebras are asserted to exist by André,
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but details are not given.

5. Small CM modules exist for complete local domains of dimension 6 2 (easy:

if R is such a ring then the integral closure of R in its fraction field is a

small CM module/algebra). They also exist for graded isolated singularities

[Hartshorne; Peskine-Szpiro].

Proposition. If complete local domains have small CM modules, then Serre’s

positivity conjecture is true.

Proof. Recall that we want to prove χ(M,N) > 0 when M and N are finitely

generated modules over the regular local ring A such that dimM + dimN =

dimA. We know that χ is additive on exact sequences, and that M and N

have filtrations with successive quotients of the form A/p for p ∈ SpecA. We

therefore reduce to showing χ(A/p, A/q) > 0 when p and q are primes such that

p + q is primary to the maximal ideal of A.

Now, the rings A/p and A/q have small CM modules B and C, respectively, of

ranks b and c respectively (we may complete A without changing anything about

χ). It follows that there are short exact sequences

0 −→ (A/p)b −→ B −→ B′ −→ 0

and

0 −→ (A/q)c −→ C −→ C ′ −→ 0

where B′ and C ′ have dimension strictly smaller than B and C. Now use the

Vanishing part of Serre’s conjectures (which is known) to get

χ(B,C) = bc χ(A/p, A/q) .

But since B and C are CM the higher Tors vanish, so χ(B,C) = length(B ⊗A
C) > 0, and so χ(A/p, A/q) > 0, as desired.
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Existence of big CM modules (or even algebras) does not seem enough to give

Serre’s Conjecture. So, as Mel says, small ones are better.

Next, we show that big CM modules imply the Monomial Conjecture.

Proposition. Let S be a local ring and y1, . . . , yn a system of parameters for

S. Suppose there is an S-module E (not necessarily finitely generated) such

that (y1, . . . , yn)E 6= E and the first Koszul homology module H1(y1, . . . , yn;E)

vanishes (in particular this is true if y1, . . . , yn is a regular sequence on E). Then

for every k > 1,

(y1 · · · yn)k /∈ (yk+1
1 , . . . , yk+1

n ) .

Proof. Let B = Z[X1, . . . , Xn], and make S into a B-algebra by mapping each

Xi to yi. Note that we may think of Z = B/(X1, . . . , Xn) as a B-module, and

it is resolved by the Koszul complex. It follows that

H1(y1, . . . , yn;E) ∼= TorB1 (Z, E) .

Let I = (Xk
1 , . . . , X

k
n) ⊂ B and J = (Xk

1 , . . . , X
k
n, (X1 · · ·Xn)

k+1) ⊂ B. It’s

easy to check that J/I ∼= Z as B-modules.

Let I0 be any ideal of B generated by monomials in the X’s which contains a

power of each Xi. We will show that B/I0 has a filtration in which each successive

quotient is a direct sum of copies of Z. Indeed, as long as I0 6= B there is a

monomial m /∈ I0 such that mX1, . . . ,mXn ∈ I0, and then (I0 +mB)/I0 ∼= Z.

Continue by Noetherian induction on I0, since I0 + mB is another ideal of the

same form.

Since by hypothesis TorB1 (Z, E) = 0, we see that also TorB1 (I0, E) = 0 for all

ideals I0 as above. Thus the short exact sequence 0 −→ I0 −→ B −→ B/I0 −→
0 induces

0 −→ I0 ⊗B E −→ B ⊗B E −→ (B/I0)⊗B E −→ 0
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and since (B/I0)⊗B E ∼= E/I0E, it follows that I0 ⊗B E ∼= I0E.

Specifically it follows that I⊗BE = IE and J⊗BE = JE. But we also have the

short exact sequence 0 −→ I −→ J −→ J/I −→ 0, and since TorB1 (Z, E) = 0

we get

0 −→ IE −→ JE −→ Z⊗B E −→ 0 .

Now Z⊗B E = E/(X1, . . . , Xn)E = E/(y1, . . . , yn)E 6= 0 by hypothesis, which

shows that IE ( JE. In particular (y1, . . . , yn)
kE 6⊆ (yk+1

1 , . . . , yk+1
n )E, and

therefore (y1, . . . , yn)
k /∈ (yk+1

1 , . . . , yk+1
n ).

Finally, big CM modules also imply all the Intersection Conjectures. Showing this

requires a bit of a digression on the Buchsbaum-Eisenbud Acyclicity Criterion.

Recall the basic statement:

Theorem. Let R be a Noetherian ring and

F• : 0 −→ Fs −
ϕs−→ Fs−1 −→ · · · −→ F1 −

ϕ1−→ F0 −→ 0

a complex of finite free R-modules. Set ri =
∑s

ji(−1)j−i rankFj. (This is called

the expected rank of the map ϕi.) The following are equivalent.

1. F• is acyclic.

2. For each i = 1, . . . , s, the ideal Iri(ϕi) contains a regular sequence of length

i. (Here, if X is a matrix, It(X) is the ideal generated by t × t minors of

X.)

It’t perhaps not surprising that there is a version of this that detects when the

complex F• ⊗RM is acyclic, for an R-module M . It may be surprising that this

version does not require that M has to be finitely generated.
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We will have to be careful with the phrase “Iri(ϕi) contains a regular sequence

of length i”. The correct generalization for big modules is as follows.

Definition. Let R be a ring, I = (x1, . . . , xn) an ideal, and M an R-module.

We say grade(I,M) > g if the Koszul homology Hi(x1, . . . , xn;M) = 0 for

i > n− g.

In particular we take grade(I,M) = ∞ if all the Koszul homology modules

vanish.

Note that when M is finitely generated, we have grade(I,M) = g if and only if

there is an M -regular sequence of length g in I. (We saw this back in the section

on the Koszul complex.) Also, grade(I,M) 6 height I for all I (exercise).

Now here is the jazzed-up version of Buchsbaum-Eisenbud. See [Bruns-Herzog,

9.1.5] for a proof.

Theorem. Let R be a Noetherian ring and

F• : 0 −→ Fs −
ϕs−→ Fs−1 −→ · · · −→ F1 −

ϕ1−→ F0 −→ 0

a complex of finite free R-modules. Set ri =
∑s

ji(−1)j−i rankFj. Let M be an

R-module. The following are equivalent.

1. F• ⊗RM is acyclic.

2. For each i = 1, . . . , s, we have grade(Iri(ϕi),M) > i.

Corollary. Assume R is local and let F• be as above and assume that

1. s 6 dimR;
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2. Hi(F•) has finite length for all i > 1.

Let M be a big CM module. Then F• ⊗RM is acyclic.

Proof. Fix i with 1 6 i 6 s. Let h = height Iri(ϕi), and let p be a prime ideal

of the same height. If h = height p = dimR, then h = dimR > s > i by

hypothesis (1). OTOH, if h = height p < dimR, then F• ⊗R Rp is acyclic by

hypothesis (2), and therefore by the Theorem

height Iri(ϕi) > grade(Iri(ϕi), R) > i .

So in either case we have h > i. It follows that Iri(ϕi) contains elements

x1, . . . , xi which form part of a system of parameters for R. Extend to a full

s.o.p. x1, . . . , xd.

By hypothesis, this s.o.p. is an M -regular sequence, and by the Theorem again

we conclude that F• ⊗RM is acyclic.

This is a hugely useful result. For example, Iyengar and Bridgeland use it to prove

the following strengthening of the result of Auslander-Buchsbaum-Serre that a

local ring (R,m) is regular iff R/m has finite projective dimension.

Proposition (Iyengar-Bridgeland). Let (R,m) be a local ring with a big CM

module M . If there is a complex

F• : 0 −→ FdimR −→ · · · −→ F1 −→ F0 −→ 0

of finite free modules with homology of finite length, and such that R/m is a

direct summand of H0(F•), then F• is acyclic and R is regular local.

Very similar arguments (omitted here) prove the following:
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Theorem (Strong Intersection Theorem, aka Improved New Intersection The-

orem). Let (R,m) be a local ring and 0 −→ Fs −→ · · · −→ F0 −→ 0 a complex

of finitely generated free modules. Assume that H0(F•) has a minimal generator

killed by a power of m and that the homology has finite length for i > 1. Assume

R has a big CM module. Then s > dimR.

Theorem (New Intersection Theorem). Let R and F• be as above. If all the

homology of F• has finite length and H0(F•) is nonzero, then s > dimR.

Lim CM Sequences

A few words about lim Cohen-Macaulay sequences of modules over local rings.

These are sequences of finitely generated modules {Mn}n∈N such that for any

system of parameters x, the ratio length(Hi(x;Mn))/µ(Mn) approaches zero for

all i > 1. Here the numerator is the length of Koszul homology.

Notice that if M is a small CM module, then {M,M, . . . } is a lim CM sequence.

Theorem (Bhatt-Hochster-Ma). If (R,m) is a complete local domain of charac-

teristic p > 0 with perfect residue field, then Mn := R1/pn is a lim CM sequence

for R.

Theorem. If every complete local domain with perfect residue field has a lim CM

sequence, then Serre’s Positivity conjecture on intersection multiplicities is true.
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Appendix: A very few words about the recent proof of DSC

These remarks are based on my notes from a talk by Bhatt at Oberwolfach last

December. Any inaccuracies are entirely my fault.

The Direct Summand Conjecture has now been proved by André, with additions

by Bhatt. The key words are “almost ring theory” and “perfectoid spaces”.

Recall that we are given a regular local ring A and a module-finite extension

domain R, and we want to split the extension. Some elementary remarks:

Remarks. 1. If we are trying to split the ring extension f : A −→ R, we

are free to make a further extension of R: if A −→ R −→ S splits as

A-modules, then so does A −→ R.

2. The given extension f : A −→ R defines an extension

0 −→ A −→ R −→ R/A −→ 0 ,

whence an element αf ∈ Ext1A(R/A,A). We think of this element as an

“obstruction” to the splitting of f : A −→ R.

3. Another quantification is the trace ideal τA(R), which is generated by the

images of all A-linear maps R −→ A. Since A is local, the map splits if

and only if τA(R) = A.

4. Since these two things quantify the same thing, it is not hard to see that

the ideal τA(R) kills the obstruction αf .

Here is a result of Hochster in characteristic p that will provide a roadmap for

what comes next.
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Proposition (Hochster). Let A be a regular local ring containing Fp, and let

f : A↪→R be an extension, with R a domain. Assume that f induces a separable

extension of quotient fields. Then f splits.

Sketch of Proof. We proceed in two steps: “almost” splitting f , then actually

splitting it.

Let Aperf = lim
−→

A, where the limit is taken over the direct system A −F−→ A −F−→

A −F−→ · · · . Another way to write Aperf is A1/p∞; it’s obtained by “adjoining”

all pth power roots of elements of A. Crucial fact: this is a functor. So we get

fperf : Aperf −→ Aperf.

Observe that τA(R) is nonzero; indeed, the map on quotient fields Q(A) −→
Q(R) is separable by assumption, so the trace map Q(R) −→ Q(A) is nonzero,

and we can clear denominators.

Furthermore (I don’t completely understand this part) τAperf
(Rperf) = τA(R)perf ⊆

Aperf. So we can choose a nonzero element g ∈ τA(R), and then g1/p
n

αfperf = 0

for every n > 0. (We say fperf is “almost split”.)

Now, since A is regular, the extension A −→ Aperf is faithfully flat. (It is

a direct limit of A −→ A1/pn, each of which is finite free.) It follows that

αf = 0 iff αfperf = 0. In fact it is enough that αfperf is almost zero, because if

g1/p
n ∈ AnnA(αfperf) for every n, then

g ∈ AnnA(αfperf)
pn

and by Krull’s Intersection Theorem, that means either g = 0 or that annihilator

is the whole ring. So we’re done.

André and Bhatt follow something like the sketch above in the case of mixed
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characteristic. The steps are roughly as follows:

1. Pick g ∈ A so that A[1g ] −→ R[1g ] is finite étale, that is, R[1g ] is a finitely

generated projective module and the extension is separable. This is possible

because the induced map on quotient fields is separable, since the quotient

fields have characteristic zero.

2. (André) Construct a huge extension A −→ A∞, which is almost faithfully

flat mod p, and such that g becomes perfect in A∞, that is, has all pth

power roots. Here “almost flat mod p” means that ToriA(A∞,−) is killed

by arbitrarily high roots of p, and “almost faithfully flat mod p” means that

plus the same thing about the kernels of the natural maps HomA(N,N ′) −→
HomA∞(N ⊗ A∞, N ′ ⊗ A∞).

3. Furthermore, A∞ will be perfectoid, which means that

(a) it is p-adically complete;

(b) it is p-torsion-free;

(c) the Frobenius induces an isomorphism A∞/(p
1/p) −→ A∞/(p).

4. Show that the base change A∞ −→ R ⊗A A∞ is almost split. This is the

difficult part, which I cannot say anything intelligent about other than the

phrase “Almost Purity Theorem” (Faltings, Scholze, Kedlaya-Liu).

5. Descend the almost splitting over A∞ to an honest splitting over A, as

above.

Remark. Bhatt uses similar techniques to also prove a “Derived Direct Sum-

mand”. Let A be a regular ring and X = SpecA. Let f : X −→ B be a proper

surjective map of schemes. Then f splits in the derived category, in the sense

that A −→ RΓ(B,OB) splits in D(A). This is apparently new even in very

simple settings, like a blowup.
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Remark. André’s paper includes a proof of the existence of big CM algebras. (It

also asserts the existence of a weakly functorial version, which is even better, but

does not give details.) So DSC, big CM modules, and big CM algebras are all

now theorems in full generality.

What remains open? The following are all strictly stronger than Direct Summand.

The first two are equivalent, and each implies the ones above it.

1. Existence of lim CM sequences in mixed char.

2. Ranganathan’s strong direct summand conjecture: Let A be a regular local

ring and A ⊆ R a module-finite extension which is a domain. Let x ∈
mA \m2

A and let Q be a height-one prime of R containing xA. Then xA is

a direct summand of Q as an A-module.

3. Vanishing Conjecture for maps of Tor: Let A −→ R −→ S be Noetherian

rings, where A is a regular domain, S is module-finite and torsion-free over

A, and S is regular. Then for every A-module M and integer i > 1, the

map TorAi (M,R) −→ TorAi (M,S) is zero.

4. Existence of weakly functorial big CM algebras: If R −→ S is a local map

of complete local domains, there exists a map from a big CM algebra B

over R to a big CM algebra C over S such that the diagram

B //C

R

OO

// S

OO

commutes.
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