Exercises for Graham's lectures

Lecture 1

- 1. The primary ideals of \mathbb{Z} are precisely the ideals (p^m) , where p is a prime integer and $m \ge 1$. The radical of such an ideal is just (p).
- 2. For a local ring (R, \mathfrak{m}, k) and a module M, elements $a_1, \ldots, a_n \in M$ form a minimal generating set for M if and only if their images in $M/\mathfrak{m}M$ form a vector space basis.
- 3. Suppose x is R-regular. Prove that $\operatorname{Tor}_1^R(M, R/xR)$ is isomorphic to the submodule of M killed by x.
- 4. Show that the previous exercise is false if x is not assumed R-regular.
- 5. Show that a finitely generated module M over a local ring (R, \mathfrak{m}) has finite length (i.e., a composition series) if and only if $\operatorname{Supp}_R(M) = {\mathfrak{m}}.$
- Let (R, m) be local and M, N two nonzero finitely generated modules such that pd_R M = n < ∞. Show that Extⁿ_R(M, N) ≠ 0.
- 7. For $n \ge 2$, let $R = k[x_1, \ldots, x_n]$ and $I = (x_1x_2, x_2x_3, \ldots, x_nx_1)$ (the edge ideal of the *n*-cycle). Find all *n* such that R/I is Cohen-Macaulay. (This is challenging.)
- 8. Let (R, \mathfrak{m}) be local and M, N finitely generated. Suppose that $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for all i > 0. Prove that $\operatorname{pd}_{R}(M \otimes_{R} N) = \operatorname{pd}_{R} M + \operatorname{pd}_{R} N$.
- Give an example to show that the previous exercise is false without the vanishing assumption on Tor. In fact, M ⊗_R N might not even have finite projective dimension.
- 10. Prove that the tensor product of two complexes is a complex.

Lectures 2-3

- 1. An affine variety V(I) is irreducible if and only if I(V(I)) is a prime ideal.
- 2. Let R be a local ring of dimension d and I an ideal. Prove that height $I \ge i$ if and only if I contains elements x_1, \ldots, x_i forming part of a system of parameters for R.

- 3. Let R be Noetherian and M finitely generated. Prove that $x \in R$ is a zerodivisor on M if and only if $x \in \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Ass}_R M$.
- 4. Let R be a ring, I a finitely generated ideal, and M an R-module. Prove that grade(I, M) ≥ 1 if and only if Hom_R(R/I, M) = 0, if and only if I annihilates some element of M. When R is Noetherian, these are equivalent to existence of some p ∈ Ass_R M with I ⊆ p.
- 5. Use the definition of the Koszul complex to write down the Koszul complex on 2 and 3 elements (in terms of matrices).
- 6. Let $x, y \in R$. Prove that the homology of $K_{\bullet}(x, y; R)$ is
 - (a) R/(x, y) in degree 0;
 - (b) $Ann_R(x, y)$ in degree 2;
 - (c) $((y) :_R x)/(y)$ in degree 1 if we assume that y is a nonzerodivisor; in particular this is zero if and only if x is a nonzerodivisor on R/(y).
- 7. Compute the intersection multiplicity of two randomly chosen plane curves at the origin, for example $y = x^3$ and y = 0.
- 8. Let $I = (x^3 w^2y, x^2z wy^2, xy wz, y^3 xz^2)$ and J = (w, z) in $\mathbb{C}[x, y, z, w]$. Show that the length of the tensor product is 5, but the intersection multiplicity is 4.

Lectures 4-5

- 1. (Theorem of Rees) If $I = (x_1, \ldots, x_n)$ is generated by a *R*-regular sequence and $F \in R[X_1, \ldots, X_n]$ is a homogeneous polynomial of degree *s* such that $F(x_1, \ldots, x_n) \in I^{s+1}$, then the coefficients of *F* are all in *I*. (Reduce to the case where *F* is a monomial.)
- Let I = (x₁,...,x_n) be generated by a regular sequence. Recall that the associated graded ring of I is gr_I(R) = ⊕[∞]_{i=0} Iⁱ/Iⁱ⁺¹, an N-graded ring with R/I in degree zero. Prove that the map φ: (R/I)[X₁,...,X_n] → gr_I(R) is an isomorphism. (It suffices to check surjectivity and injectivity on homogeneous elements; use the previous exercise for injectivity.)
- 3. Use the previous exercise to prove the Monomial Conjecture for Cohen-Macaulay local rings.

- 4. Can you state and prove generalizations of the previous three exercises that allow you to prove the Monomial Conjecture if R is only assumed to have a module M such that x_1, \ldots, x_n is M-regular?
- 5. Let $R = k[x_1, \ldots, x_n]$ with k a field of characteristic p such that $[k : k^p] < \infty$. Prove that R is a finitely generated free module over the subring R^p of p^{th} powers.
- If R ⊆ S are rings such that R is a direct summand of S, prove that IS ∩ R = I for every ideal I of R.
- 7. If R is a domain which is a direct summand of every module-finite extension, prove that R is integrally closed. (Apply the previous exercise to the extension $R \subset R[\frac{y}{x}]$ where $\frac{y}{x}$ is an integral element.)
- 8. (For those who know about Gorenstein rings.) Let (R, m) be a Gorenstein local ring and <u>x</u> a system of parameters. Let Δ ∈ R be a lift of a generator for the socle of R/(<u>x</u>). Let M be an R-module and assume <u>x</u> is M-regular. Prove that R splits as a direct summand from M if and only if ΔM ⊈ <u>x</u>M. (The forward direction is easier; for the reverse, use the fact that lim R/(x^t₁,...,x^t_d), where the maps are all multiplication by x₁...x_d, is isomorphic to the injective hull E_R(k).)