## Exercises for Graham's lectures

## Lecture 1

1. The primary ideals of $\mathbb{Z}$ are precisely the ideals $\left(p^{m}\right)$, where $p$ is a prime integer and $m \geqslant 1$. The radical of such an ideal is just $(p)$.
2. For a local ring ( $R, \mathfrak{m}, k$ ) and a module $M$, elements $a_{1}, \ldots, a_{n} \in M$ form a minimal generating set for $M$ if and only if their images in $M / \mathfrak{m} M$ form a vector space basis.
3. Suppose $x$ is $R$-regular. Prove that $\operatorname{Tor}_{1}^{R}(M, R / x R)$ is isomorphic to the submodule of $M$ killed by $x$.
4. Show that the previous exercise is false if $x$ is not assumed $R$-regular.
5. Show that a finitely generated module $M$ over a local ring ( $R, \mathfrak{m}$ ) has finite length (i.e., a composition series) if and only if $\operatorname{Supp}_{R}(M)=\{\mathfrak{m}\}$.
6. Let $(R, \mathfrak{m})$ be local and $M, N$ two nonzero finitely generated modules such that $\operatorname{pd}_{R} M=$ $n<\infty$. Show that $\operatorname{Ext}_{R}^{n}(M, N) \neq 0$.
7. For $n \geqslant 2$, let $R=k\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left(x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n} x_{1}\right)$ (the edge ideal of the $n$-cycle). Find all $n$ such that $R / I$ is Cohen-Macaulay. (This is challenging.)
8. Let $(R, \mathfrak{m})$ be local and $M, N$ finitely generated. Suppose that $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all $i>0$. Prove that $\operatorname{pd}_{R}\left(M \otimes_{R} N\right)=\operatorname{pd}_{R} M+\operatorname{pd}_{R} N$.
9. Give an example to show that the previous exercise is false without the vanishing assumption on Tor. In fact, $M \otimes_{R} N$ might not even have finite projective dimension.
10. Prove that the tensor product of two complexes is a complex.

## Lectures 2-3

1. An affine variety $V(I)$ is irreducible if and only if $I(V(I))$ is a prime ideal.
2. Let $R$ be a local ring of dimension $d$ and $I$ an ideal. Prove that height $I \geqslant i$ if and only if $I$ contains elements $x_{1}, \ldots, x_{i}$ forming part of a system of parameters for $R$.
3. Let $R$ be Noetherian and $M$ finitely generated. Prove that $x \in R$ is a zerodivisor on $M$ if and only if $x \in \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Ass}_{R} M$.
4. Let $R$ be a ring, $I$ a finitely generated ideal, and $M$ an $R$-module. Prove that grade $(I, M) \geqslant$ 1 if and only if $\operatorname{Hom}_{R}(R / I, M)=0$, if and only if $I$ annihilates some element of $M$. When $R$ is Noetherian, these are equivalent to existence of some $\mathfrak{p} \in \operatorname{Ass}_{R} M$ with $I \subseteq \mathfrak{p}$.
5. Use the definition of the Koszul complex to write down the Koszul complex on 2 and 3 elements (in terms of matrices).
6. Let $x, y \in R$. Prove that the homology of $K \bullet(x, y ; R)$ is
(a) $R /(x, y)$ in degree 0 ;
(b) $A n n_{R}(x, y)$ in degree 2 ;
(c) $\left((y):_{R} x\right) /(y)$ in degree 1 if we assume that $y$ is a nonzerodivisor; in particular this is zero if and only if $x$ is a nonzerodivisor on $R /(y)$.
7. Compute the intersection multiplicity of two randomly chosen plane curves at the origin, for example $y=x^{3}$ and $y=0$.
8. Let $I=\left(x^{3}-w^{2} y, x^{2} z-w y^{2}, x y-w z, y^{3}-x z^{2}\right)$ and $J=(w, z)$ in $\mathbb{C}[x, y, z, w]$. Show that the length of the tensor product is 5 , but the intersection multiplicity is 4 .

## Lectures 4-5

1. (Theorem of Rees) If $I=\left(x_{1}, \ldots, x_{n}\right)$ is generated by a $R$-regular sequence and $F \in$ $R\left[X_{1}, \ldots, X_{n}\right]$ is a homogeneous polynomial of degree $s$ such that $F\left(x_{1}, \ldots, x_{n}\right) \in I^{s+1}$, then the coefficients of $F$ are all in $I$. (Reduce to the case where $F$ is a monomial.)
2. Let $I=\left(x_{1}, \ldots, x_{n}\right)$ be generated by a regular sequence. Recall that the associated graded ring of $I$ is $\operatorname{gr}_{I}(R)=\bigoplus_{i=0}^{\infty} I^{i} / I^{i+1}$, an $\mathbb{N}$-graded ring with $R / I$ in degree zero. Prove that the map $\varphi:(R / I)\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \operatorname{gr}_{I}(R)$ is an isomorphism. (It suffices to check surjectivity and injectivity on homogeneous elements; use the previous exercise for injectivity.)
3. Use the previous exercise to prove the Monomial Conjecture for Cohen-Macaulay local rings.
4. Can you state and prove generalizations of the previous three exercises that allow you to prove the Monomial Conjecture if $R$ is only assumed to have a module $M$ such that $x_{1}, \ldots, x_{n}$ is $M$-regular?
5. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ with $k$ a field of characteristic $p$ such that $\left[k: k^{p}\right]<\infty$. Prove that $R$ is a finitely generated free module over the subring $R^{p}$ of $p^{\text {th }}$ powers.
6. If $R \subseteq S$ are rings such that $R$ is a direct summand of $S$, prove that $I S \cap R=I$ for every ideal $I$ of $R$.
7. If $R$ is a domain which is a direct summand of every module-finite extension, prove that $R$ is integrally closed. (Apply the previous exercise to extension $R \subset R\left[\frac{y}{x}\right]$ where $\frac{y}{x}$ is an integral element.)
8. (For those who know about Gorenstein rings.) Let ( $R, \mathfrak{m}$ ) be a Gorenstein local ring and $\underline{x}$ a system of parameters. Let $\Delta \in R$ be a lift of a generator for the socle of $R /(\underline{x})$. Let $M$ be an $R$-module and assume $\underline{x}$ is $M$-regular. Prove that $R$ splits as a direct summand from $M$ if and only if $\Delta M \nsubseteq \underline{x} M$. (The forward direction is easier; for the reverse, use the fact that $\lim _{\leftarrow} R /\left(x_{1}^{t}, \ldots, x_{d}^{t}\right)$, where the maps are all multiplication by $x_{1} \cdots x_{d}$, is isomorphic to the injective hull $E_{R}(k)$.)
