Letterplace and co-letterplace ideals

Exercise set 1, Monday

Exercise 1

a. Compute the resolutions of the ideals:
i. $I_{1}=(a b, b c, c d) \subseteq \mathbb{k}[a, b, c, d]=S_{1}$
ii. $I_{2}=(x y, y z, z x) \subseteq \mathbb{k}[x, y, z]=S_{2}$
iii. $I_{3}=\left(x^{2}, x y, y^{2}\right) \subseteq \mathbb{k}[x, y]=S_{3}$
b. What are the dimensions of S_{k} / I_{k} ? (Investigate the zero set of the ideals.)
c. Use the Auslander-Buchsbaum to find depth S_{k} / I_{k} in each case. In case i. or ii. find a regular sequence of this length.
d. Which of these quotient rings S_{k} / I_{k} are Cohen-Macaulay?

Exercise 2 Compute the resolution of the ideal

$$
I=(x, y)(z, w)=(x z, x w, y z, y w) \subseteq \mathbb{k}[x, y, z, w]=S
$$

What is $\operatorname{dim} S / I$? What is depth S / I. Is S / I a Cohen-Macaulay ring?
Exercise 3 Let M be a finitely generated graded $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ module with minimal free resolution

$$
M \leftarrow F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{\ell} .
$$

Let $S^{\prime}=S / x_{n} S$, and $F_{p}^{\prime}=F_{p} / x_{n} F_{p}$. Suppose x_{n} is regular for M. Show that the minimal free resolution of $M / x_{n} M$ as module over S^{\prime} is

$$
M / x_{n} M \leftarrow F_{0}^{\prime} \leftarrow F_{1}^{\prime} \leftarrow \cdots \leftarrow F_{\ell}^{\prime}
$$

Exercise set 2, Tuesday

Recall that a squarefree monomial ideal J in a polyomial ring S is Alexander dual to a squarefree monomial ideal I in S, if J is the set of monomials in S which have non-trivial common divisor with every monomial in I (or equivalently with every generator of I).

Exercise 1

a. What is the Stanley-Reisner ideal I_{Δ} of the simplicial complex Δ :

b. What is the Alexander dual ideal of the Stanley-Reisner ideal I_{Δ} ? What is the Alexander dual simplicial complex Δ^{A} ?

Exercise 2

a. What is the Stanley-Reisner ideal I_{Δ} of the simplicial complex Δ :

b. Find the Alexander dual ideal of the Stanle-Reisner ideal I_{Δ}. Find the Alexander dual simplicial complex Δ^{A}.

Exercise 3

Let be the three element poset with the lower vertex labelled a and the two upper labelled b and c.
a. Compute the letterplace ideal $L(2, \boldsymbol{\gamma})$ and the co-letterplace ideal $L(\boldsymbol{\vartheta}, 2)$. Verify that they are Alexander dual. The projection $[2] \times$ $\boldsymbol{\vartheta} \rightarrow$ has left strict chain fibers. It induces a map of polynomial rings

$$
\mathbb{k}\left[x_{[2] \times} \quad \boldsymbol{\vartheta}_{\mathbf{~}}\right] \rightarrow \mathbb{k}\left[x_{\boldsymbol{\vartheta}}\right]=\mathbb{k}\left[x_{a}, x_{b}, x_{c}\right] .
$$

What is the image of the ideal $L(2, \boldsymbol{\jmath})$ by this map? Which regular sequence have we divided out by?
b. Compute the letterplace ideal $L(2, \boldsymbol{\bullet})$ and the co-letterplace ideal $L\left(\boldsymbol{\iota}_{\bullet}, 2\right)$. Verify again that they are Alexander dual. The projection $[2] \times\left(\boldsymbol{C}_{\bullet}\right) \rightarrow\left(\boldsymbol{\rho}_{\bullet}\right)$ has left strict chain fibers. It induces a map of polynomial rings. What is the image of the ideal $L\left(2, \boldsymbol{d}_{\bullet}\right)$ by this map? Which regular sequence have we divided out by?

Exercise 4

Write down the letterplace ideal $L([2],[3])$. Find surjective isotone maps:

- $[2] \times[3] \rightarrow[3]$
- [2] $\times[3] \rightarrow[4]$
- $[2] \times[3] \rightarrow[5]$
with left stict chain fibers.
What is the image of $L(2,3)$ by the associated maps of polynomial rings?

Exercise 1

The letterplace ideal $L\left(2, \boldsymbol{\phi}_{\bullet}\right)$ defines a simplicial complex $\Delta\left(2, \boldsymbol{\phi}_{\boldsymbol{\bullet}}\right)$ which is a ball. What is the dimension of this ball? Describe the simplicial complex $\Delta\left(2, \boldsymbol{\ell}_{\boldsymbol{\bullet}}\right)$.

Exercise 2

The staircase complex $\operatorname{St}(P, n)$ is the simplicial complex defined by the squarefree monomial ideal $B(P, n)$ generated by $x_{p, i} x_{q, j}$ where $p<q$ and $n \geq i>j \geq 1$. Let P be the chain [3] and $n=2$.
a. Describe the facets of $\operatorname{St}([3], 2)$.
b. Find the Alexander dual $B([3], 2)^{A}$.
c. Describe the simplicial complex $\Delta(2,[3])$ (which is a ball.
d. Describe the image of the composition

$$
\gamma: B([3], 2)^{A} \rightarrow \mathbb{k}\left[x_{[3] \times[2]}\right] \rightarrow \mathbb{k}[\Delta(2,[3])]
$$

which is the canonical module $\omega_{\mathbb{k}[\Delta(2,[3])]}$.
e. The ideal $B([3], 2)^{A}+L(2,[3])$ defines the boundary $\Sigma(2,[3])$ of $\Delta(2,[3])$. Verify this.

Exercise 3

Take a proper poset ideal $\mathcal{J} \subseteq \operatorname{Hom}(\mathcal{\vartheta},[2])$. Describe the coletterplace ideal $L^{c o}(\mathfrak{J}, 2 ; \mathcal{J})$ and its Alexander dual $L(2, \mathfrak{\vartheta} ; \mathcal{J})$. Draw the simplicial complex $\Delta(2, \mathfrak{\mathcal { O }} ; \mathcal{J})$ defined by the $L(2, \mathfrak{\ell} ; \mathcal{J})$. Is it a ball?

