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0. About these notes

These notes follow the lectures given by Jason McCullough at the
summer school “Homological aspects of commutative algebra” at the
Sophus-Lie Conference Center in Nordfjordied, Norway June 12-16,
2017. The workshop was organized by Petter Andreas Bergh (NTNU,
Trondheim), Kristian Ranestad (Oslo), Trygve Johnsen(Tromsø)
and Gunnar Fløystad (Bergen). The other lecturers were Graham
Leuschke (Syracuse) and Gunnar Fløystad.

These notes are not designed to be comprehensive but rather to fill
in some of the gaps in the lectures. As such the choice of topics is a
bit uneven in scope and difficulty. We assume some familiarity with
commutative and homological algebra and topics such as: height
of an ideal, colon ideals, dimension of a module, homology of a
complex of modules, the correspondence theorem for ideals in a
quotient ring, prime avoidance, Zorn’s lemma, unique factorization
domains, flatness, etc. For background on these topics and more
detail on the topics covered, here are a few recommended texts to
consult:

1. Graded Syzygies by Peeva 1 1 Irena Peeva. Graded syzygies, volume 14

of Algebra and Applications. Springer-
Verlag London, Ltd., London, 2011

2. Commutative Algebra by Atiyah and MacDonald 2

2 M. F. Atiyah and I. G. Macdonald.
Introduction to commutative algebra.
Addison-Wesley Publishing Co., Read-
ing, Mass.-London-Don Mills, Ont.,
1969

3. Cohen-Macaulay Rings by Bruns and Herzog 3

3 Winfried Bruns and Jürgen Herzog.
Cohen-Macaulay rings, volume 39 of
Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press,
Cambridge, 1993

4. An Introduction to Homological Algebra by Rotman 4

4 Joseph J. Rotman. An introduction
to homological algebra. Universitext.
Springer, New York, second edition,
2009

5. The Geometry of Syzygies by Eisenbud 5

5 David Eisenbud. The geometry of
syzygies, volume 229 of Graduate Texts in
Mathematics. Springer-Verlag, New York,
2005. A second course in commutative
algebra and algebraic geometry

There are undoubtedly errors in these notes. If you find any, feel
free to notify me at jmccullo@iastate.edu.





1. Primary Decomposition

In this chapter we review the basics of primary decomposition of
ideals and modules over Noetherian rings, focusing on the case of
homogeneous ideals in a polynomial ring.

Primary Decomposition and Associated Primes
I is prime if and only if R/I is a
domain.Definition Let I be an ideal in a ring R. The ideal I is prime ideal

if I 6= R and xy ∈ I =⇒ x ∈ I or y ∈ I. The radical
√

I of an ideal
I is the intersection of all (equivalently, all minimal) prime ideals
containing I.

Lemma 1.1 If I is an ideal of R then
√

I = {x ∈ R | xn ∈ I for some n > 0}.

Proof (⊇) Suppose that xn ∈ I. Then for each prime ideal p
containing I, xn ∈ p. Since p is prime, x ∈ p.

(⊆) By the Correspondence Theorem, the prime ideals of A con-
taining I correspond bijectively to the ideals of A/I, hence we reduce
to the case where I = (0).

Suppose that x is not nilpotent. We’ll show that

x /∈
⋂

p⊇(0)
p.

Consider the set of ideals of R:

S = {J : xi /∈ J for some i > 0}

Note that (0) ∈ S and that S may be ordered by inclusion. Now let
C be any chain of ideals in S . This chain has an upper bound in S ,
namely the ideal: ⋃

J∈C
J

Hence by Zorn’s Lemma, S has a maximal element, call it p. We
claim that p is prime. Suppose that a, b /∈ p. Hence (a) + p and (b) + p

are ideals not contained in S . Thus for some m, n ∈N:

xm ∈ (a) + p and xn ∈ (b) + p



8

Moreover,
xm+n ∈ (ab) + p

and so we see that ab /∈ p. Hence p is prime and x /∈ p. Thus x is not
in the intersection of the prime ideals of A. �

Definition The ideal I is primary if xy ∈ I =⇒ x ∈ I or yn ∈ I for
some n > 0.

Lemma 1.2 Let q be a primary ideal in a ring R. Then
√
q is the smallest

prime ideal containing q.

Proof It suffices to show that
√
q is prime. Suppose xy ∈ √q. Then

(xy)n ∈ q by the previous lemma. Since q is primary, either xn ∈ q or
ymn ∈ q for some m > 0. Therefore x ∈ √q or y ∈ √q and thus

√
q is

prime. �

Definition If q is primary and
√
q = p, then q is said to be p-

primary.

Exercise 1.3 Let I = (x2, xy) ⊆ k[x, y]. Show that
√

I = (x) is prime
but I is not primary.

Exercise 1.4 If R is a UFD, then the principal ideals generated by powers
of prime elements are primary ideals.

Exercise 1.5 If q1 and q2 are p-primary ideals, then so is q1 ∩ q2.

Exercise 1.6 If
√

I is a maximal ideal, then I is primary. In particular,
mn is m-primary for any maximal ideal m.

Exercise 1.7 Let p = (xz− y2, x3 − yz, x2y− z2) ⊆ k[x, y, z]. Show that
p is prime but p2 is not primary. (Hint: p is homogeneous if deg(x) = 3,
deg(y) = 4 and deg(z) = 5.)

Definition An ideal I in a ring R is irreducible if whenever I can be
written as J1 ∩ J2 for ideals J1, J2 of R, either I = J1 or I = J2.

For the remainder of this section, we assume R to be a Noetherian
ring.

Lemma 1.8 In a Noetherian ring R, any ideal is a finite intersection of
irreducible ideals.

Proof Let C be a set of ideals which cannot be written as a finite
intersection of irreducible ideals. Since R is Noetherian, C has a
maximal element I. Since I ∈ C, I is reducible and can be written as
I = I1 ∩ I2 for two strictly larger ideals I1, I2 of R. Since I is maximal
in C, I1, I2 /∈ C. Therefore, each may be written as a finite intersection
of irreducible ideals, whence I can also - a contradiction, unless C is
empty. �
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By the next lemma, any ideal is actually a finite intersection of
primary ideals.

Lemma 1.9 If I is an irreducible ideal in a Noetherian ring R, then I is
primary.

Proof Let I be irreducible and suppose xy ∈ I with x /∈ I. Passing
to A = R/I we must show that ym = 0 for some m > 0. There is an
ascending chain of ideals in A:

(0) ⊆ Ann(y) ⊆ Ann(y2) ⊆ · · · .

Since A is Noetherian, there exists an n such that

Ann(yn) = Ann(yn+1).

Since (0) is irreducible in A by assumption and x 6= 0, it suffices to
show that (x) ∩ (yn) = (0) in A. Let a ∈ (x) ∩ (yn). Since a ∈ (x),
a = bx for some b ∈ A. Hence ay = bxy = 0 in A. Since a ∈ (yn),
a = cyn for some c ∈ A. Therefore cyn + 1 = ay = 0. Therefore
c ∈ Ann(yn+1) = Ann(yn) and so a = cyn = 0. Thus (x) ∩ (yn) = (0)
in A, and since (0) is irreducible, yn = 0 in A. �

Definition A primary decomposition of an ideal I is an expression
realizing I as a finite intersection of primary ideals, that is

I =
n⋂

i=1

qi,

where each qi is primary to some prime ideal pi. The decomposition
is irredundant if for each j ∈ {1, . . . , n},⋂

i 6=j

qi 6= I.

Note that by a previous exercise, we may assume the primes pi are
distinct; these are called the associated primes of I. An associated
prime pi is called a minimal prime of I if it does not properly contain
any other associated prime; otherwise, it is an embedded prime.

Exercise 1.10 Let q be a p-primary ideal and x ∈ R. Then

1. If x ∈ q, then q : x = R.

2. If x /∈ q, then q : x is p-primary.

3. If x /∈ p, then q : x = q.

Exercise 1.11 1. If p is prime, then p is irreducible.

2. (I1 ∩ I2) : x = (I1 : x) ∩ (I2 : x).
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3.
√

I1 ∩ I2 =
√

I1 ∩
√

I2.

The following result shows that the definition of associated primes
is well-defined and does not depend on the primary decomposition.

Theorem 1.12 The associated primes of an ideal are unique.

Proof (sketch) Let I be an ideal of R. Find a primary decomposi-
tion I =

⋂n
i=1 qi of I. Let x ∈ R. Then

√
I : x =

√√√√ n⋂
i=1

qi : x =
⋂

j:x/∈qj

pj.

By prime avoidance, for each j we can pick x ∈ qj \
⋃

i 6=j qi. Now
check that the associated primes are precisely the maximal elements
in the set S = {

√
I : x | x ∈ R}, and hence do not depend on the

decomposition. �

Example 1.13 While the associated primes are unique, primary decom- You can compute a primary decompo-
sition of an ideal in Macualay2 using
the command primaryDecomposition

I. The associated primes are computed
with ass I.

positions are not. For example, let R = k[x, y] and consider the ideal
I = (x2, xy). Then

I = (x2, xy, y2) ∩ (x),

is a primary decomposition of I and so the associated primes are (x) and√
(x2, xy, y2) = (x, y). However, we can also write

I = (x2, y) ∩ (x),

which is also a primary decomposition of I. Note that the (x, y)-primary
components differ.

Exercise 1.14 The primary components of an ideal corresponding to a
minimal prime are unique.

We can extend the definition of associated primes (and primary
decompositions) to arbitrary modules.

Definition Let M be an R-module. The associated primes of M,
denotes AssR(M) (or just Ass(M) when the ring in question is clear),
are the primes p which are the annihilators of some element m ∈ M.

Exercise 1.15 Let M be an R-module and set S = {I ⊆ R | I =

Ann(m) for some m ∈ M}. Show that a maximal element in S is prime. It
follows that if M 6= 0, then AssR(M) 6= ∅.

Note that the two definitions clash if we consider an R-ideal I as a
module. For instance, if I is an ideal in a domain, it has no nontrivial
annihilators of elements. Thus associated primes of an ideal in the
former sense correspond to associated primes of the module R/I.
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Exercise 1.16 Let 0→ M1 → M2 → M3 → 0 be a short exact sequence
of R-modules. Then

AssR(M1) ⊆ AssR(M2) ⊆ AssR(M1) ∪AssR(M3).

Exercise 1.17 Let M1, M2 be R-modules. Then

AssR (M1 ⊕M2) = AssR(M1) ∪AssR(M2).

Exercise 1.18 Let M be an R-module. Then

{x ∈ R | x is a zerodivisor on M} =
⋃

p∈AssR(M)

p.

Theorem 1.19 Let R be a Noetherian ring. For any finitely generated,
nonzero R-module M, there exists a filtration of M,

M = M0 ) M1 ) · · · ) Mn = (0),

such that for all i = 1, . . . , n, Mi−1/Mi ' R/pi where each pi is a prime
ideal. Moreover, given any such filtration, AssR(M) ⊆ {p1, . . . , pn}.

Proof Let S be the collection of submodules of M that have a
prime filtration as stated above. S 6= ∅, since for any p ∈ AssR(M),
we have an injection ι : R/p ↪→ M so that ι(R/p) ∈ S . Since M is
Noetherian, S has a maximal element, say M0.

We claim M = M0. Suppose not, then we have the exact sequence

0−→ M0−→ M
ϕ−→ M/M0−→ 0.

By assumption M/M0 6= (0), so there exists a prime p′ ∈ AssR(M/M0).
Thus we have an injection j : R/p′ ↪→ M/M0. Set T = j(R/p′) and
Q = ϕ−1(T). Then we have a new exact sequence

0−→ M0−→ Q−→ T−→ 0.

Since M0 has a prime filtration, and since Q/M0 ' T ' R/p′, Q has a
prime filtration. However, Q ) M0 contradicts that M0 is maximal in
S . Thus, we must have that M = M0.

The second part of the theorem follows from Exercise 1.16. �

Corollary 1.20 Let R be a Noetherian ring and M be a finitely generated
R-module. Then AssR(M) is finite.

Proposition 1.21 Let R be a Noetherian ring, M be a finitely generated
R-module, and p be a prime ideal. The following are equivalent:

1. Mp 6= 0.

2. p ⊇ AnnR(M).
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3. p ⊇ q for some prime ideal q ∈ AssR(M).

Proof Exercise. �

Definition The set of prime ideals p satisfying the four equivalent
conditions above are called the support of M, denoted SuppR(M).

Corollary 1.22 Let R be a Noetherian ring and M be a finitely generated
R-module. The minimal elements of AssR(M) are the minimal elements of
SuppR(M).

Exercise 1.23 Let R be a Noetherian ring and

0→ M′ → M→ M′′ → 0

be an exact sequence of finitely generated R-modules. Show that

SuppR(M) = SuppR(M′) ∪ SuppR(M′′).



2. Basic Algebraic Geometry

Here we state the bare minimum facts about algebraic geometry
needed for the remainder. This should be seen as a motivation for the
primary decomposition results in the previous section.

Let S = k[x1, . . . , xn] be a polynomial ring over a field k. Let An
k

denote the n-dimensional affine space over k, i.e An
k = kn. Let I ⊆ S

be an ideal. Then the zero set of I defines a subset of An called the
(affine) variety associated to I, that is

V(I) = {a ∈ An
k | f (a) = 0 ∀ f ∈ I}.

Now let S = k[x0, . . . , xn]. Let Pn
k denote the n-dimensional pro-

jective space over k, i.e. Pn
k = (kn+1 − 0)/ ∼, where ∼ denotes the

equivalence relation b ∼ αb for all α ∈ k− {0} and all b ∈ kn+1. Let
I be a homogeneous ideal in S. Then the projective variety associated
to I is

V(I) = {[b] ∈ Pn
k | f (b) = 0 ∀ f ∈ I}.

Note that since I is homogeneous, this is well-defined. Also since the
maximal ideal m = (x0, . . . , xn) satisfies V(m) = ∅, we restrict our
attention to ideals without m-primary components.

Similarly, let X ⊆ An
k (resp. Pn

k ). Denote by I(X) the ideal of
polynomials that vanish on X, that is

I(X) = { f ∈ S | f (a) = 0 ∀ a ∈ X}.

If X ⊆ Pn
k , we use the same notation to denote the homogeneous

ideal of X. Example
Note that the following exercise also holds when we consider the

affine versions of the statements.

Exercise 2.1 Let I1, I2 ⊆ S be homogeneous ideals and let V1, V2 ⊆ Pn
k .

Then

1. V(I1 + I2) = V(I1) ∩V(I2)

2. V(I1 ∩ I2) = V(I1 I2) = V(I1) ∪V(I2)

3. V(I) = V(
√

I)
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4. If V1 ⊆ V2, then I(V1) ⊇ I(V2)

5. I(V1 ∪V2) = I(V1) ∩ I(V2)

6. I ⊆ I(V(I)) and V(I(V(I))) = V(I).

Example 2.2 In general, it is not true that I(V(I)) = I. Take for
instance, I = (x2) ⊆ k[x]. Then V(I) = {0} ⊆ A1

k . Every poly-
nomial that vanishes at 0 is divisible by x (and vice versa). Therefore
I(V(I)) = (x) ) (x2).

Example 2.3 Other things can go wrong when we are not working over
an algebraically closed field. For example, consider I = (x2 + 1) ⊆ R[x].
Then V(I) = ∅, since x2 + 1 = 0 has no solutions over the real numbers.

Aside from the issues in the previous two examples, the operators
I(−) and V(−) satisfy a nice duality summarized by the Nullstellen-
satz.

Theorem 2.4 (Hilbert’s Nullstellensatz) Let I be an ideal of S = k[x1, . . . , xn],
with k algebraically closed. Then I(V(I)) =

√
I.

The above statement also works in the projective case then when
we consider homogeneous ideals.



3. Graded Rings, Hilbert Series, and Resolutions

We primarily consider rings and modules graded over N or Z, al-
though one can define a grading over any abelian semigroup. A
graded ring is a ring R together with a direct sum decomposition of
R as an additive group R =

⊕
i∈Z Ri satisfying RiRj ⊆ Ri+j. Simi-

larly a graded R-module is an R-module together with a direct sum
decomposition M =

⊕
i∈Z Mi satisfying Ri Mj ⊆ Mi+j. An element

m ∈ M is homogeneous if m ∈ Mi for some i, in which case we say
the degree of m is i. (Note that the 0 element can have any degree
and is sometimes decreed to have no degree.) A submodule N of a
graded R-module M is called graded if it can be generated by ho-
mogeneous elements. Note that N is again a graded R-module by
setting Ni = Mi ∩ N. Similarly an ideal I ⊆ R is called homogeneous
(or graded) if it can be generated by homogeneous elements.

Hilbert Functions and Series

Our standard setting for considering graded rings and modules will
a standard graded polynomial ring over a field, say S = k[x1, . . . , xn]

in which deg(xi) = 1 for all i. Setting Si to be the k-vector space of
homogeneous polynomials of degree i, we realize S as an N-graded
or Z-graded ring. If M is a finitely generated graded S-module, then
dimk(Mi) < ∞. We define the Hilbert function of M to be dimk(Mn).

For a graded module M, the Hilbert series HilbM(t) = ∑i≥0 dimK(Mi)ti

can be written as a rational function of the form HilbM(t) = h(t)
(1−t)s ,

where s = dim(M) − 1 and h is a polynomial of degree at most That s = dim(M) − 1 follows by an
inductive argument. See Theorem 4.1.3
in Bruns-Herzog “Cohen-Macaulay
Rings.”

n, called the Euler polynomial of M. (We will prove this later.) We
define the multiplicity (sometimes called degree) of a graded R-
module M to be the value e(M) = h(1). For an artinian module
M, the multiplicity is equal to the length of the module defined as
λ(M) = ∑i≥0 dimK(Mi). By convention, for a homogeneous ideal I,
we refer to e(R/I) as the multiplicity of I.

Example 3.1 Let M = K[x, y]/(x2, xy2, y4). M is an artinian module.
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(i.e. M has finite length) and has the following homogeneous basis:

basis of M0 : {1}
basis of M1 : {x, y}
basis of M2 : {xy, y2}
basis of M3 : {y3}.

Thus the Hilbert Series of M is

HilbM(t) = 1 + 2t + 2t2 + t3

and the multiplicity of M is:

e(M) = λ(M) = 1 + 2 + 2 + 1 = 6.

Example 3.2 Let M = K[x, y, z]/(x2, xy2, y3). The module M has the
following homogeneous basis:

basis of M0 : {1}
basis of M1 : {x, y, z}
basis of M2 : {xy, xz, y2, yz, z2}
basis of M3 : {xyz, xz2, yz2, y2z, z3}
basis of M4 : {xyz2, xz3, yz3, y2z2, z4}
basis of M5 : {xyz3, xz4, yz4, y2z3, z5}

...
...

basis of Mi : {xyzi−2, xzi−1, yzi−1, y2zi−2, zi} for i ≥ 3

Thus the Hilbert Series of M is

HilbM(t) = 1 + 3t + 5t2 + 5t3 + 5t4 + 5t5 + 5t6 + · · · = 1 + 2t + 2t2

1− t

and the multiplicity of M is:

e(M) = 1 + 2 + 2 = 5.

Exercise 3.3 Let S = K[x1, . . . , xn]. Show that

dimK(Si) =

(
n + i− 1

i

)
=

(n + i− 1)!
i!(n− 1)!

Conclude that
HilbS(t) =

1
(1− t)n .
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Graded Free Resolutions

Let k be a field and let S = k[x1, . . . , xn] be a polynomial ring over
k. We view S as a standard graded ring, that is, we set deg(xi) = 1
for i = 1, . . . , n. Let M be a finitely generated graded S-module.
In many cases, M will be a cyclic module, i.e. M = S/I for some
homogeneous ideal I. A lot of the structure of M is encoded by its
minimal graded free resolution.

Definition A left complex F of finitely generated free modules
over S is a sequence of homomorphisms of finitely generated free
S-modules The same definitions work over an

arbitrary commutative ring.

F• : · · · −→ Fi
di−−→ Fi−1 −→ · · · −→ F2

d2−−→ F1
d1−−→ F0 ,

such that di−1 ◦ di = 0 for all i. The collection of maps d = {di}
is called the differential of F•. The complex is sometimes denoted
(F•, d). The ith Betti number of F• is the rank of the module Fi. The
homology of F• is Hi(F•) = Ker(di)/ Im(di+1) . The complex is exact
at Fi, or at step i, if Hi(F•) = 0. We say that F• is acyclic if Hi(F•) = 0
for all i > 0. A free resolution of a finitely generated S-module M is
an acyclic left complex of finitely generated free S-modules

F• : · · · −→ Fi
di−→Fi−1 −→ · · · −→ F1

d1−→F0 ,

such that M ∼= F0/ Im(d1).

Before we discuss minimal resolutions, we recall Nakayama’s
Lemma.

Theorem 3.4 (Nakayama’s Lemma) If I is a proper graded ideal in S and There is a corresponding Nakayama’s
Lemma for local rings. See e.g. ???M is a finitely generated graded S-module such that M = IM, then M = 0.

Proof Suppose that is M 6= 0. We choose a finite minimal system
of homogeneous generators of M. Let m be an element of minimal
degree in that system. It follows that Mj = 0 for j < deg(m). Since
I is a proper ideal, we conclude that every homogeneous element
in IM has degree strictly greater than deg(m). This contradicts to
m ∈ M = IM. �

Theorem 3.5 Let M be a finitely generated graded S-module. Consider
the graded k-vector space M = M/(x1, . . . , xn)M. Homogeneous elements
m1, . . . , mr ∈ M form a minimal system of homogeneous generators of
M if and only if their images in M form a basis. Every minimal system of
homogeneous generators of M has dimk(M) elements.

In particular, Theorem 3.5 shows that every minimal system of
generators of M has the same number of elements.
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Definition A free resolution (F•, d•) of a finitely generated graded
module M is called graded if the modules Fi are graded and each
di is a graded homomorphism of degree 0. The resolution is called
minimal if

di+1(Fi+1) ⊆ (x1, . . . , xn)Fi for all i ≥ 0.

This means that no invertible elements (non-zero constants) appear in
the matrices defining the differential maps. In this case, we may write

Fi =
⊕
j∈Z

S(−j)βij(M) for each i.

The integers βij(M) ∈N are called the graded Betti numbers of M.

Example 3.6 Let S = k[w, x, y, z] and let I = (wy− x2, wz− xy, xz−
y2). The minimal graded free resolution of S/I is I is generated by the 2× 2 minors of the

matrix
(

w x y
x y z

)
. It defines the im-

age of P1 → P3 under the 3rd Veronese
map, which sends homogeneous coor-
dinate [s : t] to [s3 : s2t : st2 : t3]. The
image is a projective curve called the
twisted cubic. In particular, this means
that I is a prime ideal.

0→ S(−3)2


y z
−x −y
−w −x


−−−−−−−−→ S(−2)3

(
wy− x2 wz− xy xz− y2

)
−−−−−−−−−−−−−−−−−−−−−→ S

So the nonzero graded Betti numbers are

β0,0 = 1

β1,2 = 3

β2,3 = 2.

The word “minimal" refers to the properties in the next two results.
On the one hand, Theorem 3.7 shows that minimality means that at
each step we make an optimal choice, that is, we choose a minimal
system of generators of the kernel in order to construct the next
differential. On the other hand, Theorem 3.8 shows that minimality
means that we have a smallest resolution which lies (as a direct
summand) inside any other resolution of the module.

Theorem 3.7 The graded free resolution constructed above is minimal
if and only if at each step we choose a minimal homogeneous system of
generators of the kernel of the differential. In particular, every finitely
generated graded S-module has a minimal graded free resolution. For a proof, see Theorem 3.4

Irena Peeva. Graded syzygies, volume 14

of Algebra and Applications. Springer-
Verlag London, Ltd., London, 2011

Theorem 3.8 Let M be a finitely generated graded S-module, and F• be a
minimal graded free resolution of M. If G• is any graded free resolution of
M, then we have a direct sum of complexes G• ∼= F• ⊕ P• for some complex
P•, which is a direct sum of short trivial complexes

0 −→ S(−p) 1−→S(−p) −→ 0

possibly placed in different homological degrees. For a proof, see Theorem 3.5
Irena Peeva. Graded syzygies, volume 14

of Algebra and Applications. Springer-
Verlag London, Ltd., London, 2011
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It follows that the minimal graded free resolution of M is unique
up to an isomorphism. Hence any invariants, derived from it such
as the graded Betti numbers, are also invariants of M. In the next
section we study some of these invariants. We’ll see in the next
chapter that all minimal graded free resolutions are finite. Check out Hilbert’s Syzygy Theo-

rem 4.33.

Projective Dimension, Regularity and Betti Tables

There is a lot of information contained in the minimal graded free
resolution. Even ignoring the maps, we can recover many invariants
of M from the graded Betti numbers alone. Therefore, it is useful
to have a bookkeeping device to keep track of them. We typically
write them in a matrix called the Betti table of M. In position (i, j)
we place βi,i+j(M).

Two coarser invariants will be our primary objects of study for
the remainder of these notes, namely projective dimension and
(Castelnuovo-Mumford) regularity. Regularity has equivalent definitions

in terms of sheaf cohomology (where
it was originally defined) and local
cohomology. See ???

Definition Let M be a finitely generated graded S-module. The
projective dimension M is

pd(M) = max{i | βij(M) 6= 0}.

Equivalently, pd(M) is a length of the minimal graded free resolution
of M. Why not free dimension? Over S all

finitely generated projective modules
are free. The same statement holds over
Noetherian local rings. See ???

The regularity of M is

reg(M) = max{j− i | βij(M) 6= 0}.

Example 3.9 Continuing Example 3.6, we see that the Betti table of S/I You can compute the Betti table of
a module M in Macaulay2 with the
commands betti res M.

is
0 1 2

0: 1 - -
1: - 3 2

Therefore pd(S/I) = 2 and reg(S/I) = 1. Note that you can read
the projective dimension of S/I off the Betti table as the index of the last
nonzero column. Regularity is then the index of the last nonzero row.

More on HIlbert Series and Multiplicity

Proposition 3.10 If 0 → L → M → N → 0 is a short exact sequence of
finitely generated S-modules, then

HilbM(t) = HilbL(t) + HilbN(t).

Proof For each i, the sequence 0 → Li → Mi → Ni → 0 is
exact. �
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Theorem 3.11 Let F• be any graded free resolution of M. Write F =

∑j S(−j)αij . Then

HilbM(t) =
∑i≥0 ∑j∈Z(−1)iαijtj

(1− t)n .

In particular

HilbM(t) =
∑i≥0 ∑j∈Z(−1)iβij(M)tj

(1− t)n ,

where βij(M) are the graded Betti numbers of M.

Proof (sketch) Induct on length(F•) and use the previous proposi-
tion. �

Corollary 3.12 Let M be a finitely generated graded S-module. There
exists a polynomial PM(x) ∈ Q[x] of degree at most n− 1 such that

PM(i) = dimK(Mi) for i� 0.

The polynomial PM(x) in the previous corollary is called the
Hilbert polynomial of M.

Example 3.13 Returning to Example 3.2, we have M = K[x, y, z]/(x2, xy2, y3).
The graded free resolution of M has the form:

0→ S(−4)2 → S(−3)2 ⊕ S(−2)→ S.

HilbM(t) = 1−t2−2t3+2t4

(1−t)2

= (1−t)(1+2t+2t2)
(1−t)2

= 1+2t+2t2

1−t .

This seems much easier than finding a basis for Mi for all i ≥ 0!

Exercise 3.14 If f = f1, . . . , fm ∈ S = K[x1, . . . , xn] form a regular
sequence of forms of degrees d1, . . . , dm, then

HilbS/( f )(t) =
∏m

i=1(1− tdi )

(1− t)n .

Theorem 3.15 Let M be a finitely generated graded S-module. Then

deg(PM(x)) = dim(M)− 1.

Proof Exercise.
�

Theorem 3.16 If λ(M) < ∞, then e(M) = λ(M). If not, then the
leading coefficient of PM(x) is

e(M)

(dim(M)− 1)!
.
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Proof If M is artinian (i.e. λ(M) < ∞) then HilbM(t) = h(t) and

λ(M) = ∑
i

dimK(Mi) = h(1) = e(M).

If dim(M) > 0, then

HilbM(t) =
h(t)

(1− t)s where s = dim(M)− 1.

Write h(t) = hrtr + hr−1tr−1 + · · ·+ h0. Then

HilbM(t) = h(t) · ∑
e≥0

(
s− 1 + i

s− 1

)
ti

= ∑
i≥r

(
hr

(
s− 1 + i

s− 1

)
+ · · ·+ h0

(
s− 1 + i + r

s− 1

))
ti + terms of degree < r.

So

PM(x + r) = hr

(
s− 1 + i

s− 1

)
+ · · ·+ h0

(
s− 1 + i + r

s− 1

)
,

which is a polynomial of degree s− 1 in x whose leading coefficient is

h0 + h1 + · · ·+ hr

(s− 1)!
=

h(1)
(dim(M)− 1)!

=
e(M)

(dim(M)− 1)!
.

�

Example 3.17 Let S = K[w, x, y, z] and I = (wy− x2, wz− xy, xz− y2).
Then S/I has graded free resolutions:

0→ S(−3)2 → S(−2)3 → S.

Thus the HIlbert Series of S/I is

HilbS/I(t) =
1− 3t2 + 2t3

(1− t)4

=
2t + 1
(1− t)2

= (2t + 1) ·∑
i≥0

(1 + i)ti

= 1 + ∑
≥1

(3i + 1)ti

Therefore the Hilbert polynomial of S/I is

HilbS/I(x) = 3x + 1

and the multiplicity is

e(S/I) = 3.
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Exercise 3.18 Let f = f1, . . . , fm be a regular sequence of forms of
degrees d1, . . . , dm. Show that

e(S/( f ) =
m

∏
i=1

di.

Next, we recall the associativity formula for multiplicity. For an
ideal I of S,

e(S/I) = ∑
p∈Spec(S)

ht(p)=ht(I)

e(S/p)λ(Sp/Ip).

Let Iun denote the unmixed part of I, defined as the intersection
of minimal primary components of I with height equal to ht(I). For
every p ∈ Spec(S) with ht(p) = ht(I), we have that Iun

p = Ip. Hence

e(R/Iun) = ∑
p∈Spec(R)

dim(R/p)=dim(R/Iun)

e(R/p)λ(Rp/Iun
p ) = ∑

p∈Spec(R)
dim(R/p)=dim(R/I)

e(R/p)λ(Rp/Ip) = e(R/I).

Hence only the unmixed part of an ideal contributes to its multiplic-
ity. We will often pass to the unmixed part of I and use the fact that
the multiplicity does not change.

We use the following notation to keep track of the possibilities for
the associated primes of minimal height of an ideal J.

Definition We say J is of type 〈e = e1, e2, . . . , em|λ = λ1, λ2, . . . , λm〉
if J has m associated primes p1, . . . , pm of minimal height with
e(R/pi) = ei and with λ(Rpi /Jpi ) = λi, for i = 1, . . . , m. (In which
case, we have e(R/J) = ∑m

i=1 eiλi by the associativity formula.)

The above notation allows us to systematically study unmixed
ideals of a given height and multiplicity by enumerating their types.
For instance, an unmixed height two ideal of multiplicity two has one
of the following types: 〈2; 1〉, 〈1; 2〉, or 〈1, 1; 1, 1〉. We will use this in
our study of Stillman’s Question for three quadrics.



4. Regular Sequences, Depth, Ext and Tor, Cohen-Macaulay
Modules

In this chapter we summarize basic homological algebra we need.

Ext and Tor

Definition Given a ring R and an R-module N, TorR
i (−, N) is the

left derived functor of the right exact covariant functor −⊗R N.

To be more explicit, consider any projective resolution of an R-
module M:

· · · −→ P2
d2−→ P1

d1−→ P0
π−→ M−→ 0

Apply the functor −⊗R N and chop off the M⊗R N term to get the
complex P• ⊗R N:

· · · → P2 ⊗R N → P1 ⊗R N → P0 ⊗R N → 0

We now define

TorR
i (M, N) := Hi(P• ⊗R N) =

Ker(di ⊗ 1)
Im(di+1 ⊗ 1)

Note that since
P1 → P0 → M→ 0

is exact,
P1 ⊗R N → P0 ⊗R N → M⊗R N → 0

is also exact. Hence

TorR
0 (M, N) ' M⊗R N.

Proposition 4.1 TorR
i (M, N) does not depend on the choice of projective

resolution used. Hence it is well-defined.

Exercise 4.2 If N is R-flat or if M is R-flat, show that

TorR
i (M, N) = 0
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for all R-modules M and i > 0. Hint: For the second part, first show that if

0→ M1 → M2 → M3 → 0

is exact and M2 and M3 are flat, so is M1.

Proposition 4.3 Given an exact sequence of R-modules,

0→ M′ → M→ M′′ → 0

we obtain a long exact sequence of Tor’s:

· · · // TorR
n+1(M′, N) // TorR

n+1(M, N) // TorR
n+1(M′′, N)

∂n+1

// TorR
n (M′, N) // TorR

n (M, N) // TorR
n (M′′, N)

∂n

// TorR
n−1(M′, N) // · · · · · · · · · · · · // TorR

1 (M′′, N)
∂1

// M′ ⊗R N // M⊗R N // M′′ ⊗R N // 0

Proposition 4.4 Given a ring R and two R-modules M and N, we then
have

TorR
i (M, N) ' TorR

i (N, M).

Proposition 4.5 Given an exact sequence of R-modules,

0→ N′ → N → N′′ → 0

we obtain a long exact sequence of Tor’s:

· · · // TorR
n+1(M, N′) // TorR

n+1(M, N) // TorR
n+1(M, N′′)

∂n+1

// TorR
n (M, N′) // TorR

n (M, N) // TorR
n (M, N′′)

∂n

// TorR
n−1(M, N′) // TorR

n−1(M, N) // TorR
n−1(M, N′′) // · · ·

Definition Given a ring R and an R-module N, Exti
R(−, N) is the

left derived functor of the left exact contravariant functor HomR(−, N).

To be more explicit, consider any projective resolution of an R-
module M:

· · · −→ P2
d2−→ P1

d1−→ P0
π−→ M−→ 0
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Apply the functor HomR(−, N) and chop off the HomR(M, N) term
to get the complex HomR(P•, N):

0
d∗0−→ HomR(P0, N)

d∗1−→ HomR(P1, N)
d∗2−→ HomR(P2, N)−→ · · ·

where d∗0 := 0. We now define:

Exti
R(M, N) := Hi(HomR(P•, N)) =

Ker(d∗i+1)

Im(d∗i )

The shift in degrees of the differentials in the quotient above, com-
pared to the definition of cohomology, is due to the fact that d∗i is the
(i− 1)th differential in the cocomplex HomR(P•, N). Since

P1 → P0 → M→ 0

is exact,

0−→ HomR(M, N)−→ HomR(P0, N)
d∗1−→ HomR(P1, N)

is also exact. Hence

Ext0
R(M, N) =

Ker(d∗1)
0

' HomR(M, N).

Proposition 4.6 Exti
R(M, N) does not depend on the choice of projective

resolution of M used to compute it. Hence it is well-defined.

Definition Given a ring R and an R-module N, Exti
R(M,−) is the

left derived functor of the left exact covariant functor HomR(M,−).

To be more explicit, consider any injective resolution of an R-
module N:

0−→ N ι−→ E0 d0
−→ E1 d1

−→ E2−→ · · ·

Apply the functor HomR(M,−) and chop off the HomR(M, N) term
to get the complex HomR(M, E•):

0
d−1
∗−→ HomR(M, E0)

d0
∗−→ HomR(M, E1)

d1
∗−→ HomR(M, E2)−→ · · ·

where d−1
∗ := 0. We now define:

Exti
R(M, N) := Hi(HomR(M, E•)) =

Ker(di
∗)

Im(di−1
∗ )

Note that since
0→ N → E0 → E1

is exact,

0−→ HomR(M, N)−→ HomR(M, E0)
d0
∗−→ HomR(M, E1)

is also exact. Hence

Ext0
R(M, N) =

Ker(d0
∗)

0
' HomR(M, N).
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Proposition 4.7 Exti
R(M, N) does not depend on the choice of injective

resolution of N used to compute it. Hence it is well-defined.

Proposition 4.8 The two constructions of Exti
R(M, N) given above

produce isomorphic modules and hence are equivalent.

Proposition 4.9 Given an exact sequence of R-modules,

0→ M′ → M→ M′′ → 0

we obtain a long exact sequence of Ext’s:

0 // HomR(M′′, N) // HomR(M, N) // HomR(M′, N)
∂1

// Ext1
R(M′′, N) // · · · · · · · · · · · · // Extn−1

R (M′, N)
∂n−1

// Extn
R(M′′, N) // Extn

R(M, N) // Extn
R(M′, N)

∂n

// Extn+1
R (M′′, N) // Extn+1

R (M, N) // Extn+1
R (M′, N) // · · ·

Proposition 4.10 Given an exact sequence of R-modules,

0→ N′ → N → N′′ → 0

we obtain a long exact sequence of Ext’s:

· · · // Extn−1
R (M, N′) // Extn−1

R (M, N) // Extn−1
R (M, N′′)

∂n−1

// Extn
R(M, N′) // Extn

R(M, N) // Extn
R(M, N′′)

∂n

// Extn+1
R (M, N′) // Extn+1

R (M, N) // Extn+1
R (M, N′′) // · · ·

Proposition 4.11 If R is a ring, the following are equivalent:

1. M is projective.

2. Exti
R(M, N) = 0 for all R-modules N and for all i > 0.

3. Ext1
R(M, N) = 0 for all R-modules N.

Proposition 4.12 If R is a ring, the following are equivalent:

1. N is injective.

2. Exti
R(M, N) = 0 for all R-modules M and for all i > 0.
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3. Ext1
R(M, N) = 0 for all R-modules M.

4. Ext1
R(M, N) = 0 for all finitely generated R-modules M.

5. Ext1
R(R/I, N) = 0 for all ideals I ⊆ R.

Regular Sequences and Depth

Definition Given a ring R and an R-module M, x1, . . . , xn ∈ R is
called M-regular or an M-sequence if the following hold:

1. (x1, . . . , xn)M 6= M.

2. For each i > 0,

M
(x1, . . . , xi−1)M

xi−→ M
(x1, . . . , xi−1)M

is an injective map; that is, xi is a nonzerodivisor on M/(x1, . . . , xi−1)M
for 1 ≤ i ≤ n.

Lemma 4.13 If x1, . . . , xn is an M-sequence and

x1ξ1 + · · ·+ xnξn = 0,

with ξi ∈ M for all i, then ξi ∈ (x1, . . . , xn)M for all i.

Proof Proceed by induction on n. If n = 1, then we have x1ξ1 = 0
which implies that ξ1 = 0 ∈ (x1)M.

Now suppose the lemma is true for 1, . . . , n− 1. Since

x1ξ1 + · · ·+ xn−1ξn−1 + xnξn = 0,

we have that xnξn = 0 in M/(x1, . . . , xi−1). However, since xn

is a nonzerodivisor on M/(x1 . . . , xn−1), we see that in fact ξn ∈
(x1, . . . , xn−1)M. Hence for some m1, . . . , mn−1 we have

ξn = x1m1 + · · ·+ xn−1mn−1.

Thus

x1ξ1 + · · ·+ xn−1ξn−1 + xn(x1m1 + · · ·+ xn−1mn−1) = 0,

x1(ξ1 + xnm1) + x2(ξ2 + xnm2) + · · ·+ xn−1(ξn−1 + xnmn−1) = 0.

By induction, (ξi + xnmi) ∈ (x1, . . . , xn−1)M and so we see that

ξi ∈ (x1, . . . , xn)M for i = 1 to n− 1

and so we are done. �

Lemma 4.14 If x1, . . . , xn is an M-sequence, then xr1
1 , . . . , xrn

n is an
M-sequence for any positive integers r1, . . . , rn.
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Proof It is enough to show xr
1, x2, . . . , xn is an M-sequence as then

we may consider M′ = M/xr
1M with M′-sequence x2, . . . , xn and

work inductively. Note that it is clear that

(xr
1, . . . , xn)M 6= M,

since
(x1, . . . , xn)M 6= M.

Now proceed by induction on r. The case of r = 1 is trivial. So let’s
assume that our theorem is true for r = 1, . . . , r− 1. Since

M
(x1, . . . , xi−1)M

x1−→ M
(x1, . . . , xi−1)M

is injective, so is

M
(x1, . . . , xi−1)M

xr
1−→ M

(x1, . . . , xi−1)M
.

We must now show that xi is a nonzerodivisor on M/(xr
1, x2, . . . , xi−1)M

for i = 2, . . . , n. Suppose for some m ∈ M and for ξ1, . . . , ξi−1 ∈ M
that

xim = xr
1ξ1 + x2ξ2 + · · ·+ xi−1ξi−1.

Since we assume xr−1
1 , . . . , xi−1 is an M-sequence by induction, we

have
m = xr−1

1 m1 + x2m2 + · · ·+ xi−1mi−1

where m1, . . . , mi−1 ∈ M. Hence

0 = x1(xr−1
1 ξ1 − xim1) + x2(ξ2 − xim2) + · · ·+ xn−1(ξi−1 − ximn−1).

Thus by Lemma 4.13, we see that (xr−1
1 ξ1 − xim1) ∈ (x1, . . . , xn−1)M.

Thus, (xim1) ∈ (x1, . . . , xi−1)M and so we see m1 ∈ (x1, . . . , xi−1)M,
because x1, . . . , xi is an M-sequence. Hence

m ∈ (xr
1, . . . , xi−1)M

and so we see that xi is an injective map on M/(x1, . . . , xi−1). Hence
xr

1, . . . , xn is an M-sequence. This proves the theorem. �

Lemma 4.15 If R is a Noetherian ring with M a finitely generated
R-module and N any R-module, then AssR(HomR(M, N)) = SuppR(M)∩
AssR(N).

Proof (⊆) Recall that p ∈ AssR(T) if and only if pRp ∈ AssRp(Tp).
So take p ∈ AssR(HomR(M, N)). Then pRp ∈ AssRp(HomRp(Mp, Np)).
Since AssRp(HomRp(Mp, Np)) 6= ∅, HomRp(Mp, Np) 6= 0 and
hence Mp 6= 0. Thus p ∈ Supp(M). Further, we have an injection
Rp/pRp ↪→ HomRp(Mp, Np). Therefore

HomRp(Rp/pRp⊗Rp Mp, Np) ' HomRp(Rp/pRp, HomRp(Mp, Np)) 6= 0.
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Since Mp/pMp = Rp/pRp ⊗Rp Mp is a vector space over Rp/pRp,
there is a nonzero map from Rp/pRp → Mp/pMp. Therefore
HomRp(Rp/pRp, Np) 6= 0 and so we have an injection Rp/pRp ↪→ Np.
Therefore pRp ∈ AssRp(Np) and hence p ∈ AssR(N).

(⊇) Working backwards, take p ∈ SuppR(M) ∩ AssR(N). Then
we have that Mp 6= 0 and there is an injection Rp/pRp ↪→ Np. By
Nakayama’s Lemma,

Mp ⊗Rp Rp/pRp ' Mp/pMp 6= 0.

Since Rp/pRp is a field, Mp ⊗Rp Rp/pRp is a nonzero vector field
over Rp/pRp. Hence there is a nonzero map Mp ⊗Rp Rp/pRp →
Rp/pRp. Composing with the injection above yields a nonzero map
in HomRp(Mp ⊗Rp Rp/pRp, Np). Therefore

HomRp(Mp, HomRp(Rp/pRp, Np)) ' HomRp(Mp⊗Rp Rp/pRp, Np)) 6= 0.

Therefore pRp ∈ AssRp(HomRp(Mp, Np)), and so p ∈ AssR(HomR(M, N)).
�

Theorem 4.16 If R is a Noetherian ring and M is a finitely generated
R-module and I is an ideal of R such that IM 6= M. Then the following are
equivalent:

1. Exti
R(N, M) = 0 for all i < n and for all finitely generated R-modules

N such that SuppR(N) ⊆ V(I) = {p ∈ Spec(R) : p ⊇ I}.

2. Exti
R(R/I, M) = 0 for some ideal I of R and for all i < n.

3. Exti
R(N, M) = 0 for all i < n for some finitely generated R-module N

where SuppR(N) = V(I).

4. There exists x1, . . . , xn ∈ I which form an M-sequence.

Proof (1)⇒ (2)⇒ (3) is obvious.
(3)⇒ (4) First we show that if HomR(N, M) = 0, then there exists

a1 ∈ I a nonzerodivisor on M. By the previous lemma, SuppR(N) ∩
AssR(M) = ∅. We prove by induction that there is an M-sequence of
length n in I. Let p be a prime ideal of R.

p ∈ AssR(M)⇒ p /∈ SuppR(N),

⇒ p 6⊇ I.

Hence, by prime avoidance,

I 6⊆
⋃

p∈AssR(M)

p.

Since the union of associated primes are exactly the zerodivisors,
there exists a ∈ I such that a is a nonzerodivisor on M.
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We now prove (3) ⇒ (4) by induction on n. Observe that the
n = 0 case is vacuous. Above we proved the n = 1 case. Now
suppose that Exti

R(N, M) = 0 for i < n for some finitely generated
R-module N where Supp(R(N) = V(I). Since HomR(N, M) = 0,
there exists a1 ∈ I be a nonzerodivisor on M. Then we have an exact
sequence

0→ M
a1−→ M→ M/a1M→ 0.

From the long exact sequence for Ext we have Exti
R(N, M/a1M) = 0

for 0 ≤ i < n − 1. By induction, there is an M/a1M-sequence
a2, . . . , an. Therefore a1, . . . , an is an M-sequence.

(4) ⇒ (1) Suppose a1, . . . , an is an M-sequence in I. Let N be
a finitely generated R-module with SuppR(N) ⊆ V(I). Let J =

AnnR(N). Then V(J) ⊆ V(I) and
√

I ⊆
√

J. Hence there exists t > 0
such that It ⊆ J. Take any f ∈ HomR(N, M). Fix n ∈ N. Since
at

1 ∈ AnnR(N), we have at
1 f (n) = f (at

1n) = f (0) = 0. Since at
1 is a

nonzerodivisor on M, f (n) = 0 and so HomR(N, M) = 0.
Now consider the exact sequence

0→ M
at

1−→ M→ M/at
1M→ 0.

Since a2, . . . , an is an M/a1M-sequence, we may assume by induction
that Exti

R(N, M/at
1M) = 0 for 0 ≤ i < n − 1. By the long exact

sequence for ExtR the map

Exti
R(N, M)

at
1−→ Exti

R(N, M)

is an isomorphism for 0 ≤ i < n − 1 and is injective for i = n − 1.
Since at

1 ∈ AnnR(N), the above map is the zero map for 0 ≤ i < n.
Hence Exti

R(N, M) = 0 for 0 ≤ i < n. �

Definition Let R be a Noetherian ring, M a finitely generated R-
module, and I an ideal of R such that IM 6= M. Then we define

depthI(M) := inf{i : Exti(R/I, M) 6= 0},
= length of maximal M-sequence in I.

If R is a local or graded ring with (graded) maximal ideal m, then
depthm(M) will be abbreviated by depth(M).

Exercise 4.17 Suppose that R is a local or graded ring and M is a
finitely-generated (graded) R-module. Show that depth(M) = 0 if and
only if m ∈ AssR(M).

Corollary 4.18 If

0→ M1 → M2 → M3 → 0

is a short exact sequence of finitely generated R-modules. Set di = depthI(Mi).
Then:
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1. d1 ≥ min{d2, d3 + 1}.

2. d2 ≥ min{d1, d3}.

3. d3 ≥ min{d1 − 1, d2}.

Proof Use the long exact sequence for Ext and the previous theo-
rem characterizing depth. �

Exercise 4.19 Suppose that R is Noetherian, M and N are R-modules,
where depthAnn(M)(N) = n. Show that

Exti
R(M, N) =

0 if i < n,

HomR(M, N/(x1, . . . , xn)N) if i = n,

where x1, . . . , xn is a maximal N-sequence in Ann(M).

Exercise 4.20 Suppose that R is local or graded, M and N are R-
modules, with depthAnn(M)(N) = n. If x1, . . . , xn is both an R-sequence
and an N-sequence, then setting R = R/xR we have

Exti
R(M, N) = Exti−n

R
(M, N/(x1, . . . , xn)N)

for all i > n.

Theorem 4.21 Let (R,m) be a local or graded ring, and M, N be finitely
generated R-modules where depth(M) = m and dim(N) = n. Then for
i < m− n

Exti
R(N, M) = 0.

Proof If n = 0, then SuppR(N) = {m}. By assumption there exists
an M-sequence of length m in m. By Theorem 4.16, Exti

R(N, M) = 0
for i < m.

Now assume n > 0. By prime filtration theorem, N has a filtration

N = N1 ) N2 ) · · · ) Nt = 0

such that Nj/Nj+1 ' R/pj for j = 1, . . . , t − 1. To show that
Exti

R(N, M) vanishes for i < m − n, it is sufficient by the long ex-
act sequence for Ext to show that Exti

R(R/p, M) = 0 for i < m− n. By
induction, it suffices to prove this for primes p with dim(R/p) = n.
Pick x ∈ m− p and consider the short exact sequence

0→ R/p x−→ R/p→ R/(p+ xR)→ 0.

Then dim(R/(p+ xR)) = n− 1. By induction, Exti
R(R/(p+ xR), M) =

0 for i < m− n + 1. By the long exact sequence for Ext,

Exti
R(R/p, M)

x−→ Exti
R(R/p, M)

is an isomorphism for i < m− n. Since x ∈ m, by Nakayama’s Lemma
we have Exti

R(N, M) = 0 for i < m− n. �
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Corollary 4.22 Let R be a local or graded ring and N ⊆ M finitely
generated R-modules. Then dim(N) ≥ depth(M).

Proof Since N ⊆ M, there is a nonzero map N → M. Thus
HomR(N, M) 6= 0. The conclusion follows from the previous Theo-
rem. �

Corollary 4.23 Let R be a local or graded ring and M be a finitely gener-
ated R-module. Then depth(M) ≤ dim(M).

Proof Use the previous Corollary with N = M. �

Auslander-Buchsbaum Theorem

Lemma 4.24 Let (R,m) be local or graded, depth(R) = 0, M a finitely
generated R-module of finite projective dimension. Then M is free.

Proof Take a minimal free resolution of M

0→ Rtn
φn−→ Rtn−1

φn−1−→ · · · φ1−→ Rt0 → M→ 0,

where φn = (aij) for aij ∈ m. Since depth(R) = 0, for all x ∈ m, there
exists a ∈ R with xa = 0. Thus Ker(φn) 6= 0 since all entries in (aij)

are in the maximal ideal m. Yet by exactness of the above sequence,
Ker(φn) = 0. Therefore n = 0 and M is free. �

Lemma 4.25 Let R be a local or graded ring and let M be a finitely
generated R-module with finite projective dimension. Suppose x ∈ m is a
nonzerodivisor on R and on M. Then

pdR(M) = pdR/xR(M/xM).

Proof Take a minimal free resolution of M

0→ Rtn → Rtn−1 → · · · → Rt0 → M→ 0.

Observe that since R x−→ R is injective, tensoring by R = R/xR yields
the complex

0→ Rtn → Rtn−1 → · · · → Rt0 → M→ 0.

The homology of the truncated complex above is clearly TorR
i (M, R).

Since x is a nonzerodivisor on R, pdR(R) = 1, so TorR
i (M, R) vanish

for i > 1. Furthermore, TorR
1 (M, R) = Ker(M x−→ M) = (0) by

assumption. Thus the above complex is exact and so forms a minimal
free resolution of M over R. Hence pdR(M) = pdR/xR(M/xM). �

Theorem 4.26 (Auslander-Buchsbaum) Let R be local or graded and M
be a finitely generated R-module with finite projective dimension. Then

pdR(M) + depth(M) = depth(R).
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Proof We induct on pd(M)depth(R). In the base case, pd(M)depth(R) =
0. If pd(M) = 0, then M is free. Hence depth(M) = depth(R) and
we are done. Similarly if depth(R) = 0 then by Lemma 4.24 M is free.
Hence pd(M) = 0 and depth(M) = depth(R) = 0.

Now suppose pd(M)depth(R) > 0.

Case 1: depth(M) > 0.
Since depth(M) > 0 and depth(R) > 0 we have,

m 6⊆
⋃

p∈AssR(R)

p and m 6⊆
⋃

q∈AssR(M)

q.

So by prime avoidance

m 6⊆
⋃

p∈AssR(M)∪AssR(R)

p.

So there is x ∈ m that is a nonzerodivisor on both R and M. By the
previous lemma, pdR(M) = pdR/xR(M/xM). Clearly depth(M/xM) =

depth(M)− 1 and depth(R/xR) = depth(R)− 1. Since

pdR/xR(M/xM)depth(R/xR) < pd(M)depth(R),

by induction we have

pdR/xR(M/xM) + depth(M/xM) = depth(R/xR).

Therefore

pdR(M) + depth(M) = depth(R).

Case 2: depth(M) = 0.
Take an exact sequence

0→ N → F → M→ 0,

where F is a free R-module. Since depth(R) > 0, we have depth(N) =

depth(M) + 1 by Corollary 4.18. Clearly pd(N) = pd(M)− 1. Since

pdR(N)depth(R) < pd(M)depth(R),

by induction we have

pdR(N) + depth(N) = depth(R).

Hence

pdR(M) + depth(M) = depth(R).

�
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Koszul Complexes

Given a ring R and x ∈ R, then K•(x) denotes the Koszul complex of
R generated by x. We define K•(x) as follows

K0(x) := R

K1(x) := R

and we have

0 // K1(x)
d1 // K0(x) // 0

0 // R x // R // 0

where we define d1 to be multiplication by x. We can now define

K•(x; M) := K•(x)⊗R M.

Definition If X• and Y• are complexes with

Xn
dX

n−→ Xn−1,

Yn
dY

n−→ Yn−1,

then we can form a complex (X• ⊗Y•)• defined via

(X• ⊗Y•)n :=
⊕

p+q=n
Xp ⊗Yq

with the maps

(X• ⊗Y•)n
dn−→ (X• ⊗Y•)n−1

being defined as follows:

dn(xp ⊗ yq) := dX
p (xp)⊗ yq + (−1)pxp ⊗ dY

q (yq)

where p + q = n.

Definition Given a ring R, x1, . . . , xn ∈ R, and M a finitely gener-
ated R-module, the Koszul complex of R generated by x1, . . . , xn is

K•(x1, . . . , xn) := K•(x1)⊗ K•(x2)⊗ · · · ⊗ K•(xn).

Likewise, the Koszul complex of M generated by x1, . . . , xn is defined
by

K•(x1, . . . , xn; M) := K•(x1, . . . , xn)⊗R M.

From the definition of the Koszul complex we see that Kp(x) is
a free R-module. Explicitly, we see that K0(x1, . . . , xn) = R and for
p 6= 0, we have

Kp(x1, . . . , xn) =
⊕

1≤i1<···<ip≤n
Rei1 ⊗ · · · ⊗ Reip
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and moreover that

dp(ei1 ⊗ · · · ⊗ eip) =
p

∑
k=1

(−1)k+1xik ei1 ⊗ · · · ⊗ êik ⊗ · · · ⊗ eip ,

where the êik denotes that the element eik is omitted.
We may also write the differential in the Koszul complex as a

matrix. If dn
p is the pth differential in a Koszul complex of n elements,

and I denotes the (n
p)× (n

p) identity matrix, then it is not hard to show:

dn+1
p+1 =

[
dn

p+1 (−1)pxn+1 I
0 dn

p

]

Exercise 4.27 Let x1, . . . , xn ∈ R. Let us construct the first several
Koszul complexes. Starting with K•(x1), which we already know has the
form:

0→ R

[
x1
]
→ R→ 0.

Using the notation above, we have

d1
1 =

[
x1

]
,

and d1
i is the empty matrix for i > 1.

By above, we have

d2
1 =

[
d1

1 (−1)0x2 I
]
=
[

x1 x2

]
and

d2
2 =

[
(−1)1x2 I

d1
1

]
=

[
−x2

x1

]
.

So K•(x1, x2) is the complex

0→ R

−x2

x1


→ R2

[
x1 x2

]
→ R→ 0.

Going one step further we have

d3
1 =

[
d2

1 (−1)0x3 I
]
=
[

x1 x2 x3

]

d3
2 =

[
d2

2 (−1)1x3 I
0 d2

1

]
=

−x2 −x3 0
x1 0 −x3

0 x1 x2

 ,

and

d3
3 =

[
(−1)2x3 I

d2
2

]
=

 x3

−x2

x1

 .
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So K•(x1, x2, x3) is the complex

0→ R


x3

−x2

x1


→ R3


−x2 −x3 0
x1 0 −x3

0 x1 x2


→ R3

[
x1 x2 x3

]
→ R→ 0.

At this point we may regroup, and note if F =
⊕n

i=1 Rei, then

Kp(x1, . . . , xn) =
p∧

F

where
∧p F denotes the pth exterior power of the free R-module F.

Thus we see that:

0 // Kn(x) // Kn−1(x) // . . . // K1(x) // K0(x) // 0

0 // R // R( n
n−1) // . . . // R(n

1) // R // 0

A common notational convenience is to set

Hp(x) := Hp(K•(x)) and Hp(x; M) := Hp(K•(x; M)).

From the construction of the Koszul complex we have that:

H0(K•(x)) = R/xR, Hn(K•(x)) = (0 :R x),

H0(K•(x; M)) = M/xM, Hn(K•(x; M)) = (0 :M x).

Proposition 4.28 (Serre) Let L• be a complex of R-modules and let
x ∈ R. Then we have an exact sequence

0→
Hp(L•)

xHp(L•)
→ Hp(L• ⊗ K•(x))→ (0 :Hp−1(L•) x)→ 0

for all p.

Proof Consider the complex L• ⊗ K•(x). Let dp : Lp → Lp−1 be the
differential map in L•. In L• ⊗ K•(x), the pth degree part is

(L• ⊗ K•(x))p = Lp ⊕ Lp−1,

and the differential map is

d′p : Lp ⊕ Lp−1 → Lp−1 ⊕ Lp−2,

(u, v) 7→ (dp(u) + (−1)p−1xv, dp−1(v)).
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We have then the following exact sequence of complexes

...

��

...

��

...

��

0 // Lp //

dp

��

Lp ⊕ Lp−1 //

d′p
��

Lp−1 //

dp−1

��

0

0 // Lp−1 //

��

Lp−1 ⊕ Lp−2 //

��

Lp−2 //

��

0

...
...

...

By the corresponding long exact sequence of homology we get that

Hp(L•)
±x−→ Hp(L•)→ Hp(L⊗ K•(x))→ Hp−1(L•)

±x−→ Hp−1(L•)

is exact for all p > 0. Hence we get the

0→
Hp(L•)

xHp(L•)
→ Hp(L• ⊗ K•(x))→ (0 :Hp−1(L•) x)→ 0

is exact for p > 0. �

Corollary 4.29 If F• → M → 0 is a free resolution of M, and x is a
nonzerodivisor on M, then

F• ⊗ K•(x)→ M/xM→ 0

is a free resolution of M/xM over R.

Corollary 4.30 If x1, . . . , xn ∈ R, where R is a local or graded ring, and
M an R-module, then the following sequence is exact

0→
Hp(x1, . . . , xn−1; M)

xn Hp(x1, . . . , xn−1; M)
→ Hp(x1, . . . , xn; M)→ (0 :Hp−1(x1,...,xn−1;M) xn)→ 0.

Proof Take L• = K•(x1, . . . , xn−1) in the above proposition. �

Corollary 4.31 If x1, . . . , xn is an M-sequence, then Hp(x; M) = 0 for
p > 0.

Proof Suppose n = 1. Then x is a nonzerodivisor on M. Hence

H1(x1; M) = (0 :M x1) = 0,

and we are done.
Now assume the result is true for M-sequences of length less than

n. Then
Hp(x1, . . . , xn−1; M) = 0
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for p > 0 by induction. So by the previous corollary Hp(x1, . . . , xn) =

0 for p > 1 and

H1(x1, . . . , xn; M) = (0 :H0(x1,...,xn−1;M) xn) = (0 :M/(x1,...,xn−1)M xn) = 0,

since xn is a nonzerodivisor on M/(x1, . . . , xn−1)M. �

Corollary 4.32 If x1, . . . , xn is an R-sequence, then K•(x) is a free resolu-
tion of R/(x).

Finally we can return to prove that all minimal graded free resolu-
tions of finitely generated graded modules over S = K[x1, . . . , xn] are
finite.

Theorem 4.33 (Hilbert’s Syzygy Theorem) The minimal graded free
resolution of a finitely generated graded S-module is finite and its length is
at most n.

Proof Recall that pdS(M) = max{i | βij(M) 6= 0}. If F• is the
minimal graded free resolution of M, when we tensor by K =

S/(x1, . . . , xn), then all the maps become zero. Thus we can also
compute the graded Betti numbers as

βij(M) = dimK
(
(Fi)⊗ K)j

)
= dimK

(
TorS

i (M, K)j

)
.

Recall that we can also compute Tor by taking a resolution of K,
which in this case is just a Koszul complex. Since the Koszul complex
has length n, the theorem follows. �

Cohen-Macaulay Modules

Definition If R is a local or graded ring and M finitely generated
R-module, then M is called Cohen-Macaulay if dim(M) = depth(M).
R is called Cohen-Macaulay if it is Cohen-Macaulay as a module
over itself.

Theorem 4.34 (Properties of Cohen-Macaulay Modules) If (R,m) is
a local or graded ring and M is a finitely generated R-module, then the
following are true:

1. M is Cohen-Macaulay implies that for every prime ideal p ∈ AssR(M),
dim(R/p) = depth(M). Note that this shows us that R has no embed-
ded primes.

2. Given a nonzero x ∈ m such that x is a nonzerodivisor on M, M is
Cohen-Macaulay if and only if M/xM is Cohen-Macaulay.

3. M is Cohen-Macaulay if and only if Mp is Cohen-Macaulay for every
p ∈ Supp(M). In this case, depthp(M) = depth(Mp).
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4. M is Cohen-Macaulay if and only if every system of parameters of M
form a M-sequence if and only if some system of parameters form a
M-sequence.

5. Let x1, . . . , xn be a system of parameters of M. M is Cohen-Macaulay if
and only if

H1(x; M) = 0

if and only if

M/xM[X1, . . . , Xn]→
∞⊕

t=0

It M
It+1M

is an isomorphism, where I = (x1, . . . , xn), if and only if

eI(M) = `(M/IM)

where eI(M) is the Hilbert-Samuel multiplicity of M with respect to I.

6. If M is Cohen-Macaulay and p ∈ Supp(M), then

dim(Mp) + dim(R/p) = dim(M).

7. If M is Cohen-Macaulay and p, P ∈ Supp(M), then any two saturated
chains from

p ( · · · ( P

have the same length. In other words, R/ AnnR(M) is catenary.

Proof (1) For all p ∈ AssR(M), one has

depth(M) ≤ dim(R/p) ≤ dim(M).

Since M is Cohen-Macaulay, dim(M) = depth(M). Hence, dim(R/p) =
dim(M) for all p ∈ AssR(M) and so M has no embedded primes.
(2) Let x be a nonzerodivisor on M. Then

dim(M/xM) = dim(M)− 1 and depth(M/xM) = depth(M)− 1.

Hence M is Cohen-Macaulay if and only if M/xM is Cohen-Macaulay.
(3) One can show that for any finitely generated module M,

depthp(M) ≤ depth(Mp) ≤ dim(Mp).

We show that depthp(M) = dim(Mp) if and only if M is Cohen-
Macaulay. That this condition is sufficient to force M to be Cohen-
Macaulay is clear, so assume M is Cohen-Macaulay. We prove the
above equality by induction on depthp(M). If depthp(M) = 0, then
p ∈ AssR(M). Since M has no embedded primes, dim(Mp) = 0. Now
assume depthp(M) > 0. Then let x ∈ p be a nonzerodivisor on M.
Then

depthp(M/xM) = depthp(M)− 1 and dim(Mp/xMp) = dim(Mp)− 1.
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Since M/xM is Cohen-Macaulay by (2), we are done by induction.
(4) Suppose M is Cohen-Macaulay and let x1, . . . , xn be a system of
parameters for M. Then for 1 ≤ i ≤ n,

dim(M/(x1, . . . , xi)M) = dim(M)− i.

Observe that it suffices to show that if x ∈ m and dim(M/xM) =

dim(M)− 1, then x is regular on M. If x ∈ p for some p ∈ AssR(M),
then dim(M) = dim(M/xM) since M has no embedded primes.
Therefore

x /∈
⋃

p∈AssR(m)

p.

It follows that x is a nonzerodivisor on M and that M/xM 6= 0.
Hence x is regular on M and we are done. That is, all systems of
parameters are M-regular sequences.

Now suppose M is Cohen-Macaulay and that x1, . . . , xn is a system
of parameters that is also M-regular. Then

dim(M) = s(M) ≤ depth(M) ≤ dim(M).

Hence dim(M) = depth(M) and so M is Cohen-Macaulay.
(5) Let x1, . . . , xn be a system of parameters for M. Then H1(x; M) =

0 implies that x1, . . . , xn forms an M-regular sequence. Thus depth(M) =

dim(M). In particular, x1, . . . , xn is an M-quasi-regular sequence.
Hence

M/IM[X1, . . . , Xn] '
⊕

It M/It+1M.

By Serre’s Theorem on dimension, the previous isomorphism is
equivalent to the equality

eI(M) = `(M/IM).

(6) Suppose M is Cohen Macaulay. If dim(M) = 0, there is nothing
to prove. If dim(M) > 0, then if p ∈ AssR(M) we have p ∈ Supp(M).
Hence dim(Mp) = 0 and dim(R/p) = dim(M), since M has no
embedded primes. If p /∈ AssR(M), then there exists a nonzerodivisor
x ∈ p on M. Thus

dim(M/xM) = dim(M)− 1 and dim(Mp/xMp) = dim(Mp)− 1.

The result then follows from induction on dim(M).
(7) Suppose M is Cohen-Macaulay and let p ⊆ p′ be two primes in
Supp(M). Let

p = p0 ( p1 ( · · · ( pr = p′

be a saturated chain of prime ideals. We’ll prove that

dim(R/p)− dim(R/p′) = r.



41

It is enough to show that

dim(R/p0)− dim(R/p1) = 1.

By (6),

dim(Rp0)+dim(R/p0) = dim(R) and dim(Rp1)+dim(R/p1) = dim(R).

Rlso by (6),

dim(Rp0) + dim(Rp1 /p0Rp1) = dim(Rp1).

Since there are no primes strictly between p0 and p1, dim(Rp1 /p0Rp1) =

1. Thus

dim(R/p0)−dim(R/p1) = dim(Rp1)−dim(Rp0) = dim(Rp1 /p0Rp1) = 1.

�

A ring is called Cohen-Macaulay if it is Cohen-Macaulay as a
module over itself.





5. Eisenbud-Goto Conjecture

We previously defined regularity in terms of the nonvanishing of
graded Betti numbers of a module. There are parallel definitions in
terms of both local cohomology and sheaf cohomology, where the
notion was first defined by Mumford. Eisenbud-Goto gave the equiv-
alent definition in terms of Betti numbers. 6 In the same paper, they 6 David Eisenbud and Shiro Goto.

Linear free resolutions and minimal
multiplicity. J. Algebra, 88(1):89–133, 1984

made a conjecture about the regularity of nondegenerate prime ide-
als. This question became known as the Eisenbud-Goto Conjecture
and was very challenging.

In this chapter, we first state the Eisenbud-Goto Conjecture and
prove it in the case that S/I is Cohen-Macualay. We also show that
the proposed upper bound is nonnegative for nondegenerate prime
ideals. Then we construct counterexamples due to McCullough-Peeva
using step-by-step homogenization and Rees-like algebras.

History of the Conjecture

In Bayer-Stillman gave another characterization of regularity: reg(I)
is equal to the maximal degree of a Gröber basis element of I in the
revlex monomial order if we first take a generic change of coordi-
nates. Since Gröbner bases are required for many computational
tasks, this means that finding upper bounds on regularity equates
to finding bounds on the computational complexity of an ideal. Un-
fortunately, in the most general setting possible, such upper bounds
are quite large. Set maxdeg(I) to be the maximal degree of a minimal
generator of I.

Theorem 5.1 (Bayer-Mumford, Galligo, Giusti, Caviglia-Sbarra) Let I be
a homogeneous ideal in S = k[x1, . . . , xn]. Then

reg(I) ≤ (2 maxdeg(I))2n−2
.

This doubly exponential bound grows quickly with respect to
n. Unfortunately, this bound is nearly optimal. In one construction
derived from the so-called Mayr-Meyer ideals, Koh proved that for
any integer r ≥ 1 there exists an ideal Ir in Sr = k[x1, . . . , x22r−1] such
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that

maxdeg(Ir) = 2

reg(Sr/Ir) ≥ 22r−1
.

Thus doubly exponential behavior cannot be avoided. We note for
later reference that Ir is generated by 22r − 3 quadrics and 1 linear
form while the regularity is realized at the first syzygies of I (second
syzygies of S/I).

The ideals Ir have many associated primes and embedded primes;
in particular, they are far from prime. Better bounds were expected
for ideals with some geometric content. This expectation was ex-
pressed in the following conjecture:

Conjecture 5.2 (Eisenbud-Goto (1984)) Let S = k[x1, . . . , xn] with
k = k and suppose p ⊆ (x1, . . . , xn)2 is a homogeneous prime ideal. Then

reg(S/p) ≤ e(S/p)− ht(p).

The condition p ⊆ (x1, . . . , xn)2 is equivalent to saying that the projec-
tive variety corresponding to p is not contained in a hyperplane and
thus is optimally embedded. Such ideals are called nondegenerate.

It is worth noting that the right-hand side of the inequality above
is always positive for nondegenerate prime ideals.

Theorem 5.3 Let p be a nondegenerate prime ideal in S = k[x1, . . . , xn].
Then For a proof, see Eisenbud’s Geometry of

Syzygies.e(S/p) ≥ ht(p) + 1.

The Eisenbud-Goto Conjecture can be viewed as an expectation
that for ideals with more geometric content, regularity is better be-
haved. Via the Bayer-Stillman result, this would then ensure that
computations involving prime ideals are much better behaved that
that of arbitrary ideals. Castelnuovo essentially showed in 1893

that smooth curves in P3
C

satisfy the conjecture. In 1983 Gruson-
Lazarsfeld-Peskine proved the bound for all curves (smooth and
singular) in any projective space. (Remember that p defines a pro-
jective curve when dim(S/p) = 2.) Pinkham (1986) and Lazarsfeld
(1987) proved the bound for smooth projective surfaces over C. Ran
(1990) proved the bound for most smooth projective 3-folds over C.
Numerous other special cases have also been proved.

Exercise 5.4 Show that the hypotheses of the Eisenbud-Goto Conjecture
are necessary by checking that each of the ideals below fails to satisfy the
conjectured regularity bound but also fail to satisfy one of the hypotheses.

1. (x, y) ⊆ k[x, y]
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2. (x2, xy, y2, xw2 + yz2) ⊆ k[w, x, y, z].

3. (wy, wz, xy, xz) ⊆ k[w, x, y, z]

4. (w2 + x2, y2 + z2, wz− xy, wy− xz) ⊆ Q[w, x, y, z]

The Cohen-Macaulay Case

In this section we prove the Eisenbud-Goto conjecture for any nonde-
generate Cohen-Macaulay ideal. Note that we do not need to assume
primeness.

Lemma 5.5 Suppose M is an S-module of finite length. Then

reg(M) = max{i |Mi 6= 0}.

Proof Consider the Koszul complex resolving k = S/(x1, . . . , xn):

0→ S(−n)→ · · · → S(−2)(
n
2) → S(−1)n → S.

Tensoring by M, we get the complex

0→ M(−n)→ · · · → M(−2)(
n
2) → M(−1)n → M.

Let d = max{i |Mi 6= 0} and fix 0 6= m ∈ Md. Then xim ∈ Md+1 = 0
for all i. By the definition of the Koszul complex, m is in the kernel of
M(−n) → M(−n + 1)n and hence represents a nonzero element of
degree d + n in Torn(M, k). Therefore reg(M) ≥ d + n− n = d. Since
Mi = 0 for i > d, M(−j)i = 0 for i > d + j and thus Torj(M, k)i = 0
for i > d + j. Hence reg(M) = d. �

Exercise 5.6 Let 0 → M1 → M2 → M3 → 0 be a short exact sequence
of finitely generated graded S-modules. Then

1. reg(M1) ≤ max{reg(M2), reg(M3) + 1}

2. reg(M2) ≤ max{reg(M1), reg(M3)}

3. reg(M3) ≤ max{reg(M1)− 1, reg(M2)}

Lemma 5.7 Let M be a finitely generated S-module and let ` be a linear
form which is regular on M. Then

reg(M) = reg(M/`M).

Proof Consider the short exact sequence

0→ M(−1) `−→ M→ M/`M→ 0.

Note that reg(M(−1)) = reg(M) + 1. Now use the previous exercise.
�
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Lemma 5.8 Let M be a finitely generated S-module and let ` be a linear
form which is regular on M. Then

e(M) = e(M/`M).

Proof Again consider the short exact sequence

0→ M(−1) `−→ M→ M/`M→ 0.

Let PM(i) denote the HIlbert polynomial of M and set d = dim(M).
By assumption PM(i) has the form:

e(M)

(d− 1)!
id−1 + qid−2 + · · · ,

for some q ∈ Q. Therefore

PM(−1)(i) = PM(i− 1)

=
e(M)

(d− 1)!
(i− 1)d−1 + q(i− 1)d−2 + · · ·

=
e(M)

(d− 1)!
id−1 +

(
q− e(M)

(d− 2)!

)
id−2 + · · · .

Since length is additive in short exact sequences we have

λ ((M/`M)i) = λ(Mi)− λ(Mi−1),

for all i ≥ 0. But for i� 0, λ(Mi) = PM(i). Therefore

PM/`M(i) = PM(i)− PM(i− 1) =
e(M)

(d− 2)!
id−2 + · · · .

In particular, e(M) = e(M/`M). �

Theorem 5.9 (Eisenbud-Goto) If I is a nondegenerate, homogeneous
ideal of S such that S/I is Cohen-Macaulay, then

reg(S/I) ≤ e(S/I)− ht(I).

Proof We may always assume the basefield is infinite. Set h =

ht(I). Since S/I is Cohen-Macaulay of dimension n− h, we can find
linear forms `1, . . . , `n−h that form a regular sequence on S/I. Set
S = S/(`1, . . . , `h) and I = IS. Then S is a polynomial ring in h
variables and by the previous lemmas:

regS(S/I) = regS(S/I)

e(S/I) = e(S/I)

ht(I) = ht(I).
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Since dim(S/I) = 0, we have λ(S/I) < ∞. Let d = max{i | (S/I)i 6=
0). Then (S/I)i 6= 0 for 0 ≤ i ≤ d. Moreover, since I is nondegenerate,
so is I; hence dimk(S/I) = dimk(S) = h. Therefore

e(S/I) = e(S/I)

= λ(S/I)

≥ d + h

= regS(S/I) + ht(I)

= regS(S/I) + ht(I)

�

Rees-Like Algebras

Before defining Rees-like algebras, let’s briefly recall Rees algebras.
Fix an ideal I = ( f1, . . . , fm) ⊆ S. Let t be a new variable and consider
the algebra S[It] ⊆ S[t] generated over S by the elements fit. S[It]
is called the Rees algebra of I. It defines the projective coordinate
ring of the blow-up of projective space along the variety defined by I.
As such it is important in the resolution of singularities in algebraic
geometry and therefore its defining equations are of great interest.
In general however, this is a very difficult question and one of active
research.

Here we focus on the closely-related Rees-like algebra of I,
defined as S[It, t2] ⊆ S[t]. To calculate its defining equations,
we define a new polynomial ring T = S[y1, . . . , ym, z], where
deg(yi) = deg( fi) + 1 and deg(z) = 2. Note that T is a positively
graded polynomial ring. Let ϕ : T � S[It, t2] be the surjective
S-algebra homomorphism:

ϕ : T → S[It, t2]

yi 7→ fit

z 7→ t2.

Since S[It, t2] is a domain, Q = Ker(ϕ) is a prime ideal. The first
surprising fact about Rees-like algebras is that, unlike the usual Rees
algebras, the defining equations are easy to describe in all situations.

Proposition 5.10 In the notation above, the ideal Q is generated by the
elements

A =
{

yiyj − z fi f j

∣∣∣ 1 ≤ i, j ≤ m
}

and

B =

{
m

∑
i=1

cijyi

∣∣∣∣∣ m

∑
i=1

cij fi = 0

}
.
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Proof First note that the elements in A and B are in Q = Ker(ϕ)

since

ϕ
(
yiyj − z fi f j

)
= fit f jt− t2 fi f j = 0

ϕ

(
m

∑
i=1

cijyi

)
= t

m

∑
i=1

cij fi = 0.

Let e ∈ Q. We may write e = f + g, where f ∈ (y1, . . . , ym)2 and g ∈
S[z]Spank{1, y1, . . . , ym}. Using elements in A we reduce to the case
when f = 0, so e = h(z) + ∑m

i=1 hi(z)yi with h(z), h1(z), . . . , hm(z) ∈
S[z]. Then

0 = ϕ(e) = h(t2) +
m

∑
i=1

hi(t2)t fi ∈ S[t]

implies that h(z) = 0 since h(t2) contains only even powers of t while
∑m

i=1 hi(t2)t fi contains only odd powers of t. Thus e ∈ (y1, . . . , ym)

and we may write

e = zp
m

∑
i=1

giyi + (terms in which z has degree < p)

for some p ≥ 0 and g1, . . . , gm ∈ S. We will argue by induction on p
that e is in the ideal generated by the elements in B. Suppose e 6= 0.
We consider

0 = ϕ(e) = t2pt
m

∑
i=1

gi fi + (terms in which t has degree ≤ 2p− 1) ,

and conclude that ∑m
i=1 gi fi = 0. It follows that ∑m

i=1 giyi is in the
ideal generated by the elements in B. The element

e− zp
m

∑
i=1

giyi ∈ Ker(ϕ)

has smaller degree with respect to the variable z. The base of the
induction is e = 0. �

Perhaps more surprising is that the resolution of T/Q has a well-
defined structure. We will not need this to prove that the defining
primes ideals of Rees-like algebras provide the counterexamples
we are looking for. We simply remark here that it is clear that z is a
nonzerodivisor on T/Q above. Hence the graded Betti numbers of
T/Q are the same as that of T/Q, where T = T/(z) and Q = QT.
It turns out that the minimal resolution of T/Q can be viewed as a
mapping cone of two resolutions associated to the following short
exact sequence For details, see .

Jason McCullough and Irena Peeva.
Counterexmaples to the eisenbud-goto
regularity conjecture. preprint, 2016

0→ (B)/(A)→ T/(A)→ T/Q→ 0.
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Example 5.11 Let S = k[x1, x2, x3] and I = (x1x2, x1x3, x2x3). Then
S/I has the following minimal free resolution

0→ S(−3)2 → S(−2)3 → S.

By the previous proposition, the prime ideal Q ⊆ S[y1, y2, y3, z] associated
to the Rees-like algebra of I is generated by:

A: y2
1 − z(x1x2)

2, y1y2 − z(x1x2)(x1x3), y1y3 − z(x1x2)(x2x3),
y2

2 − z(x1x3)
2, y2y3 − z(x1x3)(x2x3), y2

3 − z(x2x3)
2,

B: x3y1 − x2y2, x2y2 − x1y3

Step-by-Step Homogenization

Now that we have a construction for a wide class of positively graded
prime ideals, we would like to convert these into standard-graded
counterparts. Unfortunately the usual ways of homogenizing ideals
are not so helpful here.

Example 5.12 Consider the ideal Q = (x2 − y, x3 − z) ⊆ T = k[x, y, z]
in which deg(x) = 1, deg(y) = 2, and deg(z) = 3. Then Q is a
homogeneous prime ideal in T. (To see that Q is prime, check that Q =

Ker(T � k[t]), where x 7→ t, y 7→ t2, and z 7→ t3.)
We could choose to set all the variables to have degree 1 and homogenize

the generators with respect to a new variable of degree 1, say w. In this case,
Q transforms into a new ideal Qghom = (x2 − yw, x3 − zw2) in a standard
graded polynomial ring k[x, y, z, w]. However,

w(xy− zw) = x(x2 − yw)− (x3 − zw2) ∈ Qghom,

but neither w nor xy− zw are elements of Qghom. Thus Qghom is no longer
prime.

We could instead homogenize all the elements of Q. (It is sufficient to
homogenize those generators in a homogeneous Gröbner basis of Q.) In this
case we get a new ideal Qhom = (y2 − xz, xy− wz, x2 − wy) in k[x, y, z, w].
In this case, Qhom is prime, however we have changed both the number and
degrees of the minimal generators. One can also check that regT(T/Q) = 3,
while regS(S/Qhom) = 1.

As we saw in the example, the standard homogenization tech-
niques either fail to preserve primeness or perhaps alter the reg-
ularity. To compensate for this, McCullough-Peeva introduced a
technique called step-by-step homogenization. The basic idea is to
start with a prime ideal Q in a positively graded ring T = k[y1, . . . , yr]

such that yi /∈ Q for all 1 ≤ i ≤ r. Set di = deg(yi). Set

S = k
[
x1,1, . . . , x1,d1 , x2,1, . . . , x2,d2 , . . . , xr,1, . . . , xr,dr

]
,
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and define ν : T → S by setting ν(yi) = ∏di
j=1 xi,j. Then ν is a graded

k-algebra homomorphism. We define the step-by-step homogeniza-
tion of Q to be Qshom = ν(Q) ⊆ S. With this setup, we can now prove
the key fact about step-by-step homogenizaiton

Theorem 5.13 (McCullough-Peeva) With the notation above, Qshom is a
homogeneous prime ideal in S. The graded Betti numbers of S/Qshom over S
are the same as those of T/Q over T. Moreover, if Q was nondegenerate, so
is Qshom.

Because polynomial extension are flat maps, the graded Betti
numbers are unchanged. Regarding the multiplicity, the crux of the
proof can be seen in the following exercise in Eisenbud’s book:

Exercise 5.14 (See Exercise 10.4 in Eisenbud’s “Commutative Algebra
with a View Toward Algebraic Geometry.”) Let a, b be a regular sequence in
a domain R, and let P = R[X] be the polynomial ring in one variable over
R. Show that aX− b is a prime ideal in P.

Repeatedly applying the exercise with a = xi,1 · · · xi,di−1, X = xd,
and b = yi shows that Qshom is prime.

Example 5.15 Continuing the example above, if we start with Q =

(x2 − y, x3 − z) in T = k[x, y, z] with deg(x) = 1, deg(y) = 2, and
deg(z) = 3, we compute the step-by-step homogenization (with slightly
different variable name) by replacing y by v1v2 and z by w1w2w3. Thus our
new standard graded polynomial ring is S = k[x, u1, u2, w1, w2, w3]. The
step-by-step homogenization of Q is Qshom = (x2− v1v2, x3−w1w2w3). By
the previous theorem, Qshom is a nondegenerate prime ideal with the same
graded Betti numbers as T/Q.

Now we turn our attention to the effect of step-by-step homoge-
nization on the multiplicity of an ideal. Since step-by-step homoge-
nization preserves graded Betti numbers, it also preserves the Euler
polynomial h(t) of the free resolution of T/Q. The value of h(1)
agrees with the multiplicity in the standard graded case, but not
in general! In fact, if Q is an ideal in a positively graded ring that
is not standard graded, it’s Hilbert function is eventually a quasi-
polynomial, i.e. a polynomial whose coefficients are cyclic functions
rather than constants.

Example 5.16 Returning to the Rees-like algebra S[It, t2] with I =

(x1x2, x1x3, x2x3), we found that the defining prime Q ⊆ T = S[y1, y2, y3, z]
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had 8 minimal generators. It’s Betti table is as below:

0 1 2 3 4
0: 1 - - - -
1: - - - - -
2: - - - - -
3: - 2 - - -
4: - - - - -
5: - 6 6 - -
6: - - - - -
7: - - 8 6 -
8: - - - - -
9: - - - 3 2

We get that the Hilbert Series of T/Q then is:

HilbT/Q(t) =
(1− 2t4 − 6t6 + 6t7 + 8t9 − 6t10 − 3t12 + 2t13)

(1− t3)3(1− t2)(1− t)3

=
(1− t + 2t2)(1 + t− t2)(1 + t + t2)3

(1− t3)3(1− t2)
.

So we get that the Euler polynomial of T/Q is

h(t) = (1− t + 2t2)(1 + t− t2)(1 + t + t2)3,

and the Euler multiplicity is

eEuler(T/Q) = h(1) = 2 · 1 · 33 = 54.

After taking the step-by-step homogenization Q′ of Q in a larger standard
graded polynomial ring T′, the resolution and Euler polynomial remain
unchanged. (Although the denominator does change.) Thus the multiplicity
of T′/Q′ is e(T′/Q′) = 54.

We can compute the Hilbert quasi-polynomial of T/Q from the Hilbert
Series. A short calculation yields

dimK ((T/Q)i) =

 1
6 i3 + i2 + 1

3 i + 1 if i is odd
1
6 i3 + i2 + 1

3 i + 3
2 if i is even and i ≥ 2.

Thus we get eHilb(T/Q) = 3! 1
6 = 1.

It’s not hard to see that for any homogeneous ideal I, S[It, t2] →
S[t] is an integral extension. It follows that the Hilbert multiplicity
of both rings is the same, in the sense of a normalized leading co-
efficient of a Hilbert (quasi)-polynomial. (One must check that the
leading coefficient is indeed constant.) Clearly eHilb(S[t]) = 1; thus
eHilb(S[It, t2]) ≤ 1 as well. It remains to track what happens to the
multiplicity when we take a step-by-step homogenization of Q. The
following general result answers this question
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Theorem 5.17 Let Q be prime ideal in a positively graded ring T =

k[y1, . . . , yn], where deg(yi) = di. Suppose yi /∈ Q for all i. Let Q′ denote
the step-by-step homogenization of Q in T′ = k[x1,1, . . . , x1,d1 , . . . , xn,1, . . . , xn,dn ].
Then

eEuler(T/Q) = eEuler(T′/Q′) = eHilb(T′/Q′) = eHilb(T/Q)
n

∏
i=1

di

Proof (sketch) Track what happens to the Hilbert Series when
replace one degree d variable by d degree 1 variables. The effect is to
leave the Euler multiplicity unchanged and to multiply the Hilbert
multiplicity by d. �

Putting it all together yields the following result.

Theorem 5.18 (McCullough-Peeva) Let I = ( f1, . . . , fm) be a homoge-
neous ideal in S = k[x1, . . . , xn]. Let Q denote the defining prime ideal of
the Rees-like algebra of I in T = S[y1, . . . , ym, z]. Finally let Q′ denote the
step-by-step homogenization of Q in a standard graded polynomial ring T′.
Then

reg(Q′) ≥ max{2(maxdeg(I) + 1), maxdeg(Syz1(I) + 1)}

e(T′/Q′) = 2
m

∏
i=1

(deg( fi) + 1)

ht Q′ = m.

Proof Because dim(S[It, t2]) = n + 1, ht(Q) = dim(T)− (n + 1) =
n + m + 1− (n + 1) = m. Since the graded Betti numbers of Q and Q′

are the same, so are their heights.
That e(T′/Q′) = 2 ∏m

i=1(deg( fi) + 1) follows from the free resolu-
tions. We have so far proved e(T′/Q′) ≤ 2 ∏m

i=1(deg( fi) + 1), which is
all we need to give counterexamples.

By considering the degree of the generators in A and B, we get the
lower bound on the regularity. �

Counterexamples

What we have constructed so far in this chapter can be thought of as
a machine that takes in homogeneous ideals in standard graded poly-
nomial rings and outputs nondegenerate prime ideals in standard
graded polynomial rings with similar properties.

For r ≥ 1, Koh constructed in 7 an ideal Ir generated by 22r − 3 7 Jee Koh. Ideals generated by quadrics
exhibiting double exponential degrees. J.
Algebra, 200(1):225–245, 1998

quadrics and one linear form in a polynomial ring with 22r− 1 vari-
ables, and such that maxdeg(Syz1(Ir)) ≥ 22r−1

. His ideals are based
on the Mayr-Meyer construction in 8. This leads to a homogeneous 8 Ernst W. Mayr and Albert R. Meyer.

The complexity of the word problems
for commutative semigroups and
polynomial ideals. Adv. in Math., 46(3):
305–329, 1982
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prime ideal Pr (in a standard graded polynomial ring Rr) whose
multiplicity and maxdeg are:

deg(Rr/Pr) ≤ 4 · 322r−3 < 422r−2 < 250r

maxdeg(Pr) ≥ 22r−1
+ 1 > 22r−1

.

Thus for r ≥ 9, we have counterexamples to not only the Eisenbud-
Goto Conjecture, but also the stronger conjecture that the multiplicity
of a nondegenerate prime ideal was an upper bound for the degrees
of any minimal generator. We even get the following stronger state-
ment.

Theorem 5.19 (McCullough-Peeva) There is no polynomial bound on
the regularity (or projective dimension, or maximal degree of a minimal
generator) of a nondegenerate prime ideal purely in terms of its multiplicity.

One can then ask if there is any such bound. Applying recent
work of Ananyan-Hochster (see Chapter 6), we see that there is
such a bound. What exactly is the growth rate of this function? That
remains a mystery.





6. Stillman’s Question

In the final two chapters we consider some effective bounds on the
projective dimension and regularity of ideals in polynomial rings
over a field. Hilbert’s Syzygy Theorem 4.33 shows that the projective
dimension of any S-module is at most the number of variables of
S. A natural question is to ask if there is a bound on the projective
dimension of an ideal in S in terms of the number of generators or
their degrees. We begin with the case of three-generated ideals.

Three-generated Ideals

First we consider where pd(S/I) can be bounded by the minimal
number of generators of I, independent of the number of variables. If
I is principal, then pd(S/I) = 1. If I = ( f , g) has two minimal gener-
ators, then either f , g for a regular sequence and hence pd(S/I) = 2,
or f , g have a greatest common factor c and we can write f = c f ′ and
g = cg′, where f ′, g′ is a regular sequence. In this case, the minimal
free resolution of S/I has the form:

0→ S

 g′

− f ′


−−−−−→ S2

(
c f ′ cg′

)
−−−−−−−→ S

Once again pd(S/I) = 2.
The case of three-generated ideals is much different.

Example 6.1 (McCullough) Fix r ∈N and let S = k[x, y, z1, . . . , zr]. Set

I =

(
xr, yr,

r

∑
i=1

xi−1yn−izi

)
.

Now consider the element s = xr−1yr−1. Clearly s /∈ I since no term in any
of the generators of I divides s. It is easy to check that xs, ys ∈ I. It is only
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slightly more difficult to check that zjs ∈ I for all i = j, . . . , r. Indeed

zjs = xr−1yr−1zj

= xr−jyj−1
(

xj−1yr−jzj

)
= −xr−jyj−1

r

∑
i=1

xi−1yr−izi mod I

= −xr−jyj−1
j−1

∑
i=1

xi−1yr−izi − xr−jyj−1
r

∑
i=j+1

xi−1yr−izi mod I

= −yr
j−1

∑
i=1

xr−j+i−1yj−i−1zi − xn
r

∑
i=j+1

xi−j−1yr+j−i−1zi mod I

= 0 mod I.

Now since s represents a nonzero element in S/I annihilated by every vari-
able, there are no elements of S that are nonzerodivisors on S/I. Therefore
depth(S/I) = 0. By the Auslander-Buchsbaum Theorem, pd(S/I) = r + 2.

It follows from the example that there is no upper bound on
pd(S/I) purely in terms of the number of minimal generators of I.

Example 6.2 In the specific case n = 2 of the previous example, we have
S = k[x, y, z1, z2] and

I =
(

x2, y2, xz1 + yz2

)
.

We know that pd(S/I) = 4. The Betti table of S/I is

0 1 2 3 4
0: 1 - - - -
1: - 3 - - -
2: - - 5 4 1

In fact, three-generated ideals in some sense capture all the pathology
of free resolutions. Here we state the graded version of a theorem
due to Bruns.

Theorem 6.3 (Bruns) Let M be a finitely generated graded S-module and
let (F•, d•) be its minimal graded free resolution. Then there exists a three
generated ideal I whose resolution as the form

· · · → F5
d5−→ F4

d4−→ F3 → Sr → S3 → S.

Thus by altering the last three free modules, we can convert any free
resolution into that of a three-generated ideals. However, if we apply
this process to an ideal, the degrees of the generators necessarily
grow.
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Example 6.4 Let S = k[x1, . . . , x5] and m = (x1, . . . , x5). Clearly S/m
is resolved by a Koszul complex and has Betti table

0 1 2 3 4 5
0: 1 5 10 10 5 1

By Bruns’ Theorem, there exists a three generated ideal I derived from the
resolution of S/m with pd(S/I) = 5. One such ideal is

I = (x4x2
5, x2x2

4 + x2x4x5 + x1x2
5, x2x3x4 + x1x2x5 + x2x4x5)

and its Betti table is The ideal I can be computed in
Macaulay2 with:
S = QQ[x_1..x_5]

m = ideal vars S

loadPackage "Bruns"

I = brunsIdeal m

0 1 2 3 4 5
0: 1 - - - - -
1: - - - - - -
2: - 3 - - - -
3: - - - - - -
4: - - 8 10 5 1

Note that we started with an ideal generated by linear forms. To find an
three-generated ideal with the same projective dimension we needed cubic
generators.

Stillman’s Question and Equivalent Formulations

The situation with three-generated ideals and computational consid-
erations motivated Stillman to pose the following question

Question 6.5 (Stillman’s Question) Fix positive integers a1, . . . , am. Is
there an upper bound, depending only on a1, . . . , am, on pd(S/I), where
I = ( f1, . . . , fm) and deg( fi) = ai for i = 1, . . . , m.

Note that the minimal number of generators m = ∑m
i=1 a0

i is part
of the data we may reference in such a bound but the number of
variables of S is not. Hence HIlbert’s Syzygy Theorem 4.33 is not
helpful here. One instance of Stillman’s Question then asks for an
upper bound on the projective dimension of ideals generated by 3
cubics in an unknown number of variables. Example 6.4 shows that
the bound must be at least 5, if it exists.

There is a parallel version of Stillman’s Question in which projec-
tive dimension is replaced by regularity.

Question 6.6 Fix positive integers a1, . . . , am. Is there an upper bound,
depending only on a1, . . . , am, on reg(S/I), where I = ( f1, . . . , fm) and
deg( fi) = ai for i = 1, . . . , m?

Unlike the case for projective dimension, there is no upper bound
on the regularity of ideals in a fixed number of variables. Since
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reg(I) ≥ maxdeg(I), to make reg(I) (equivalently, reg(S/I) + 1)
arbitrarily large, we can simply take ideals with arbitrarily large
degree generators. There is a doubly-exponential bound ??? in terms
of the number of variables and the maximal degree of a minimal
generator of I which we discuss in the next chapter.

Caviglia showed that the two versions of Stillman’s Question are in
fact equivalent, though whatever the hypothetical bounds might be
could be quite different.

Theorem 6.7 (Caviglia) Question 6.5 has an affirmative answer if and For a proof, see Theorem 5 in
Jason McCullough and Alexandra

Seceleanu. Bounding projective
dimension. In Commutative algebra, pages
551–576. Springer, New York, 2013

only if Question 6.6 has an affirmative answer.

Reductions and Easy Cases

We now consider the situations in which Stillman’s Question has a
clear positive answer. First note that we can always assume that the
coefficient field k is algebraically closed since tensoring a resolution
by k preserves exactness. If I is principal (the case m = 1), then
we already know that pd(S/I) ≤ 1. Similarly if I has two minimal
generators (the case m = 2), then pd(S/I) = 2. If I is minimally
generated by linear forms (the case d1 = d2 = · · · = dm = 1),
then S/I is resolved by a Koszul complex and pd(S/I) ≤ m. If
I is generated by m monomials of any degree, then pd(S/I) ≤
m. We can see this either by noting that Taylor’s resolution is a For the definition of Taylor’s resolution,

see Construction 26.5 in
Irena Peeva. Graded syzygies, volume 14

of Algebra and Applications. Springer-
Verlag London, Ltd., London, 2011

possibly nonminimal free resolution of S/I or by using an inductive
argument. In fact, anytime we have a bound on the number of terms
or variables among the generators of I, then there is a clear upper
bound on pd(S/I). More generally

Theorem 6.8 Let S = k[x1, . . . , xn] and let I = ( f1, . . . , fm) be a homo-
geneous ideal of S. If there exists a regular sequence of forms g1, . . . , gp ∈ S
such that f1, . . . , fm ∈ k[g1, . . . , gp], then pd(S/I) ≤ p.

Proof Since g1, . . . , gp is a regular sequence, R = k[g1, . . . , gp] is a
polynomial ring. Let I = I ∩ R. By Hilbert’s Syzygy Theorem 4.33,
pd(R/I) ≤ p. Since S is flat over R and since S/I = R/I ⊗R S,
pdS(S/I) = pdR(R/I) ≤ p. �

For instance, if I is generated by m binomials of degree at most d, Note that toric ideals are all generated
by binomials.then pd(S/I) ≤ 2md. The difficult cases occur when we do not know

how many nonzero terms occur among the minimal generators of I.

Projective Dimension of Three Quadrics

The first nontrivial case of Stillman’s Question then is the case when
I is generated by 3 quadric forms. By example 6.2 we know the
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projective dimension of S/I can be at least 4. In this section we show
that 4 is the optimal upper bound, therefore giving a positive answer
to Stillman’s Question in this case.

Theorem 6.9 (Eisenbud-Huneke) Let I = ( f , g, h) where f , g and h are
homogeneous minimal generators of degree 2 in a polynomial ring S over a
field k. Then pd(S/I) ≤ 4.

We will need several results to prove this theorem. Since pd(R/I)
does not change after tensoring with an extension of the field of
coefficients, we may assume that k is infinite.

First we need some terminology. An ideal I ⊆ S is called unmixed
if ht(p) = ht(I) for all p ∈ Ass(S/I).

Exercise 6.10 Let S/I is Cohen-Macaulay, then I is unmixed.

Example 6.11 Not every unmixed ideal is Cohen-Macaulay. The simplest
example is I = (w, x) ∩ (y, z) = (wy, wz, xy, xz) ⊆ k[w, x, y, z]. Since
I is the intersection of two height 2 prime ideals, it is unmixed. Since
w + y /∈ (w, x) ∪ (y, z), this is a regular element on S/I. However,
S/(I + (w + y)) ∼= k[x, y, z]/(xy, xz, y2, yz). It is easy to check that
(xy, xz, y2, yz) : y = (x, y, z). It follows that depth(S/(I + (w + y)) = 0
and hence depth(S/I) = 1, while dim(S/I) = 2. In particular, S/I is not
Cohen-Macaulay.

Exercise 6.12 Let f1, . . . , fc ∈ S is a homogeneous regular sequence with
deg( fi) = di for 1 ≤ i ≤ c. Then e(S/( f1, . . . , fc)) = ∏c

i=1 di.

Exercise 6.13 Suppose I ⊆ J are unmixed ideals of the same height and
multiplicity. Show that I = J.

Proposition 6.14 Let I = ( f , g, h), where f , g, h ∈ S2 and ht(I) = 2.
Then e(S/I) ≤ 3.

Proof We may assume that f , g form a regular sequence of quadratic
forms. Thus e(R/( f , g)) = 4. We have the series of containments
( f , g) ⊆ I ⊆ Iun. Note that ( f , g) and Iun are unmixed ideals of height
two. If e(R/( f , g)) = e(R/Iun), then ( f , g) = Iun by the previous
exercise. But this would force ( f , g) = ( f , g, h), contradicting that
h is a minimal generator of I. Thus 4 = e(R/( f , g)) > e(R/Iun) =

e(R/I). �

We also need the following structure theorem for ideals of height
two and multiplicity two ideals.

Proposition 6.15 (Engheta) Let J be a height two unmixed ideal of
multiplicity two in a polynomial ring S = K[x1, . . . , xn with K = K. Then
pd(R/J) ≤ 3 and J is one of the following:
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1. (x, y) ∩ (w, z) = (xw, xz, yw, yz) with independent linear forms
w, x, y, z.

2. (x, yz) with independent linear forms x, y, z.

3. A prime ideal generated by a linear form and an irreducible quadratic.

4. (x, y2) with independent linear forms x, y.

5. (x, y)2 + (ax + by) with independent linear forms x, y and a, b ∈ m such
that x, y, a, b form a regular sequence.

Proof By the associativity formula, the ideal J is of one of the
following types: 〈2; 1〉, 〈1; 2〉, or 〈1, 1; 1, 1〉. An ideal of type 〈2; 1〉
is a prime ideal p of mutliplicity 2 and height 2. Necessarily these
are degenerate, so they must be generated by a linear form and an
irreducible quadratic. In particular, pd(S/p) = 2.

An ideal of type 〈1; 1〉 is a prime ideal of multiplicity 1, which
is necessarily generated by two linear forms. Thus ideals of type
〈1, 1; 1, 1〉 are the intersection of two distinct such ideals, say J =

(x, y)∩ (w, z). There are two cases to consider: either dimK(x, y, z, w) =,
putting us in case 1, or dimK(x, y, z, w) = 3, putting us in case 2. One
checks in either case that pd(S/J) ≤ 3.

Finally an ideal J of type 〈1; 2〉 is primary to a linear prime
p = (x, y) and satisfies e(S/J) = 2. Note that J : x = (x, y). Therefore
(x, y)2 ⊆ J. If J contains a linear form, then after a linear change of
variables, we have (x, y2) ⊆ J. Since (x, y2) is unmixed and multi-
plicity 2, we have J = (x, y2).. If J does not contain a linear form,
then since λ(Sp/Jp) = 2, J must contain a linear form locally at p. In
other words, there exists an element of the form ax + by ∈ J, with
ht(x, y, a, b) ≥ 3. Moreover, we can pick such an element of minimal
degree. If ht(x, y, a, b) = 4, one check that this ideal is itself unmixed
and therefore p-primary. (We check once more that pd(S/J) = 3 in
this case.) If not, we can write ax + by = c(a′x + b′y), where c /∈ p.
Since J is p-primary and c /∈ p, a′x + b′y ∈ J, contradicting the
minimality of the degree of ax + by. This concludes the proof. �

We are finally ready to prove the bound.

Proof of Theorem 6.9 By Krull’s (generalized) Principal Ideal
Theorem, ht(I) ≤ 3. If ht(I) = 1, then there are linear forms c, f ′, g′, h′

with f = c f ′, g = cg′ and h = ch′. Hence I ∼= ( f ′, g′, h′), and so
pd(R/I) = 3.

If ht(I) = 3, then f , g, h form a regular sequence and the Koszul
complex on f , g, h forms a minimal free resolution of R/I. Again
pd(R/I) = 3. Hence we may assume that ht(I) = 2. Moreover, we
may assume that f , g form a regular sequence.
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Now by Proposition 6.15, e(R/I) = 1, 2 or 3.
If e(R/I) = 3, consider the short exact sequence

0→ R/(( f , g) : I) h→ R/( f , g)→ R/I → 0.

Since f , g form a regular sequence of quadratic forms, we have
e(R/( f , g)) = 4. Since multiplicity is additive in short exact se-
quences, e(R/(( f , g) : I)) = 1. As ( f , g) : I is unmixed, we have
( f , g) : I = (x, y) for independent linear forms x and y. Therefore,
pd(R/(( f , g) : I)) = 2. Since pd(R/( f , g)) = 2, it follows that
pd(R/I) ≤ 3.

If e(R/I) = 2, we use the same exact sequence above. In this case
( f , g) : I is an unmixed, height two ideal of multiplicity two. By
Proposition 6.15, pd(R/(( f , g) : I))) ≤ 3. It follows that pd(R/I) ≤ 4.
This completes the proof.

If e(R/I) = 1, then by the associativity formula, Iun is primary to
a height two prime ideal p of multiplicity one. Such a prime ideal is
generated by two linear forms, say p = (x, y). Since λ(Rp/Ip) = 1
and I is p-primary, Iun = p. Note that

( f , g) : h = ( f , g) : I = ( f , g) : Iun = ( f , g) : (x, y).

We leave the following chain of isomorphisms as an exercise

( f , g) : (x, y)
( f , g)

' HomS(S/(x, y), S/( f , g))

' Ext1
S(S/(x, y), S/( f ))

' Ext2
S(S/(x, y), S)

' S/(x, y)

Now consider the short exact sequence

0→ ( f , g) : (x, y)
( f , g)

→ S
( f , g)

→ S
( f , g) : (x, y)

→ 0.

Clearly the middle term has projective dimension two. By the chain
of isomorphisms above, so does the first term. Thus

pd
(

S
( f , g) : (x, y)

)
= pd

(
S

( f , g) : h

)
≤ 3.

Again by the first short exact sequence we have pd(S/I) ≤ 4, con-
cluding the proof. �

Proof of the general case in characteristic 0

Very recently, Ananyan and Hochster 9 gave a proof of Stillman’s 9 Tigran Ananyan and Melvin Hochster.
Small subalgebras of polynomial rings
and stillman’s conjecture. preprint:
arXiv:1610.09268, 2016
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Question in full generality. In this section we outline the argument
in the characteristic 0 case, which is slightly simpler than the general
case because we can rely on Euler’s formula. For any form f ∈ S =

k[x1, . . . , xn] of degree d we can write

f =
1
d

n

∑
i=1

xi
∂ f
∂xi

.

In particular, f is in the ideal generated by the partial derivatives(
∂ f
∂xi

)
. If d divides the characteristic of k, then clearly this doesn’t

work. There is a workaround in this case but we’ll stay in the easier
characteristic 0 situation.

Serre’s conditions and prime sequences

We recall Serre’s conditions (Ri) and (Si).

Definition Let R be a Noetherian ring and let i be a nonnegative
integer. We say R satisfies Serre’s condition (Ri) if for all prime
ideals p of R of height at most i, Rp is a regular local ring. We
say R satisfies Serre’s condition (Si) if for all prime ideals p of R,
depth(Rp) ≥ min{i, ht(p)}.

Note that every Cohen-Macaulay ring satisfies (Si) for all i. For
any i ≥ j, Serre’s condition (Si) (resp. (Ri)) implies (Sj) (resp. (Sj)).

The following facts about Serre’s conditions are crucial for the
proof.

Theorem 6.16 A Noetherian ring is reduced if and only if it satisfies
Serre’s conditions (R0) and (S1).

Recall that a Noetherian domain is called normal if it is integrally
closed in its field of fractions. An arbitrary ring R is normal if Rp is a
normal domain for all primes p.

Theorem 6.17 A Noetherian ring is normal if and only if it satisfies
Serre’s conditions (R1) and (S2).

Theorem 6.18 Let R be a ring. Assume R is reduced and has finitely
many minimal primes. Then the following are equivalent:

1. R is a normal ring,

2. R is integrally closed in its total ring of fractions, and

3. R is a finite product of normal domains.

Theorem 6.19 A regular ring is a UFD.

Theorem 6.20 Let f = f1, . . . , fm be a regular sequence in S and suppose
that S/( f )p is a UFD for every p ∈ Spec(S/( f )) with ht(p) ≤ 3. Then
S/( f ) is a UFD.
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A major new concept in the Ananyan-Hochster proof are the
following special types of regular sequences.

Definition A sequence of elements f1, . . . , fm ∈ S is a prime se-
quence (respectively Ri-sequence, where i ∈ N), if f j /∈ ( f1, . . . , f j−1)

and S/( f1, . . . , f j) is a domain (respectively, satisfies (Ri)) for j =

1, . . . , m.

A very useful observation is the following:

Proposition 6.21 Let f = f1, . . . , fm ∈ S be homogeneous elements of
positive degree. An R0-sequence is not necessarily a

prime or even regular sequence. For
example f1 = xy and f2 = xz in
S = k[x, y, z]. Then ( f1) = (x) ∩ (y)
and ( f1, f2) = (x) ∩ (y, z) are both
intersections of primes. Thus S/( f1)
and S/( f1, f2) are reduced and hence
satisfy (R0) but f2 = xz is a zerodivisor
on S/(xy).

1. If f is a prime sequence, then f is a regular sequence.

2. If f is an Ri-sequence for some i ≥ 1, then S/( f ) is a normal domain. In
particular, f is a prime sequence.

Proof 1. Suppose f is a prime sequence. Fix 1 ≤ j ≤ m. Then
S/( f1, . . . , f j−1) is a domain. Since f j /∈ ( f1, . . . , f j−1), f j is a nonze-
rodivisor on S/( f1, . . . , f j−1). Hence f is a regular sequence.

2. Suppose f is an Ri-sequence for some i ≥ 1. Since (Ri) for
i ≥ 1 implies (R1), we may assume that f is an R1-sequence. We
proceed by induction on j by assuming f1, . . . , f j−1 is a prime
sequence. By part 1, f1, . . . , f j−1 is a regular sequence. Since
S/( f1, . . . , f j−1) is a domain and f j /∈ ( f1, . . . , f j−1), f j is a nonzero
divisor on S/( f1, . . . , f j−1). Hence f1, . . . , f j is a regular sequence.
Therefore S = S/( f1, . . . , f j) is a complete intersection - hence
Cohen-Macaulay - hence (S2). By assumption S satisfies (R1). By
Theorem 6.17, S is normal. By Theorem 6.18, S is a direct sum of
normal domains, say S = D1 ⊕ · · · ⊕ Dp. Note that every element
(d1, . . . , dp) ∈ D1 ⊕ · · · ⊕ Dp where di = 0 or 1 for all i is an idem-
potent element of S. Since S is graded, all of these elements have
degree 0, and since S0 ∼= k, they can be identified with elements of
k. But if p ≥ 2, then we have at least 4 roots in k of the polynomial
x2 − x, a contradiction. Therefore p = 1 and S is a normal domain.
In particular, f1, . . . , fp is a prime sequence.

�

Strength and k-collapse

Definition Let F ∈ K[x1, . . . , xn] with deg(F) > 0. We say that F has
a k-collapse for k ∈ N, if F is in an ideal generated by k elements of
strictly smaller positive degree. We say that F has strength k if it has
a (k + 1)-collapse but no k-collapse.

Exercise 6.22 If F is a nonzero linear form, then F has strength +∞.
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Exercise 6.23 If F is a nonzero form of positive degree then F has
strength at least 1 if and only if F is irreducible.

Exercise 6.24 Let F be a nonzero quadratic form. If F has a 2-collapse
then S/(F) is not a UFD.

Singular locus

One of the key observations of Ananyan-Hochster was that F has
a small collapse if and only if the singular locus of f is large (i.e.
has small codimension). One direction is easy. Suppose f has a Recall that the singular locus of a ring R

is the set {p | Rp is not regular}. There
are subtleties relating smoothness and
regularity of rings that do not concern
us here and we omit the details for
simplicity. For details, see Matsumura’s
Commutative Rings textbook.

k-collapse. Write f = ∑k
i=1 gihi, where deg(hi) < deg( f ) and

deg(gi) < deg( f ) for all 1 ≤ i ≤ k. Then all partial derivatives
of f are contained in the ideal (g1, . . . , gk, h1, . . . , hk). We remark that
the following conditions are equivalent:

1. The ring S/( f ) satisfies Serre’s (Ri) condition.

2. The codimension of the singular locus of S/( f ) is at least i + 1 in
S/( f ).

3. The height of ( f ) +
(

∂ f
∂xi

)
is at least i + 2 in S.

Thus if f has a k-collapse, the height of ( f ) +
(

∂ f
∂xi

)
is at most 2k + 1.

By above this means the codimension of the singular locus of S/( f )
is at most 2k. Ananyan-Hochster prove a very surprising converse to
this statement, see Theorem 6.25 below.

We give one final definition first. An integer-valued function
on Nh is ascending if it is nondecreasing in each input when the
others are held fixed. By taking maximums over preceding values,
all bounding functions considered below can be made ascending.
A d-tuple of integer-valued functions on Nh is ascending if all its
entries are ascending functions.

Theorem 6.25 There exists an integer η A(d) ≥ d− 1 ≥ 0, ascending
as a function of η, d ∈ Z+, such that if S = K[x1 . . . , xN ] is a polynomial
ring in N variables over an algebraically closed field K and f ∈ S is a form
of degree d ≥ 1 of strength at least η A(d), then the codimension of the
singular locus in S/( f ) is at least η + 1. (i.e. S/( f ) satisfies Serre’s (Rη)

condition.)

Theorem 6.26 There is an ascending function ηA(n, d), independent of
K and N, such that for all polynomial rings S = K[x1, . . . , xN ] over an
algebraically closed field K and all ideals I generated by a graded vector
space V whose nonzero homogeneous elements have positive degree of at
most d, if no homogeneous element of V − {0} is in an ideal generated
by ηA(n, d) forms of strictly lower degree, then S/I satisfies Serre’s (Rη)

condition.
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Let V be a finite dimensional graded vector subspace of S spanned
by forms of positive degree. If d is an upper bound for the degree of
any element of V, we may write V = V1 ⊕ · ⊕Vd, where Vi denotes the
ith graded piece, we shall say V has dimension sequence (δ1, . . . , δd)

where δi = dimK(Vi).

Theorem 6.27 There is an ascending function ηB(n, d), independent
of K and N, such that for all polynomial rings S = K[x1, . . . , xN ] over
an algebraically closed field K and all graded vector subspaces V of S of
dimension at most n whose homogeneous elements have positive degree at
most d, the elements of V are contained in a subring K[g1, . . . , gB], where
B ≤ ηB(n, d) and g1, . . . , gB is an Rη-sequence of forms of degree at most d.

Theorem 6.28 There is an ascending function C : Z+ ×Z+ ×N→ Z+

with the following property. If S is a polynomial ring over any field K
and M is a graded module that is the cokernel of an m × n matrix whose
entries have degree at most d, then the following quantities are bounded by
C(m, n, d):

1. pd(M)

2. reg(M)

3. βij(M) for all i and j

4. The number of primary components of M

5. The number and degrees of generators of each primary component in
some primary decomposition of M.

6. The minimum number of generators of every associated prime ideal.

The outline of the proof works as follows:
Theorem 6.25 in degree at most d

=⇒ Theorem 6.26 in degree at most d
=⇒ Theorem 6.27 in degree at most d
=⇒ Theorem 6.28 in degree at most d
=⇒ Theorem 6.25 in degree at most d + 1.
Thus we are finished after a massive inductive argument.
We close this chapter with one recent application. Recall that

in Theorem 5.19 we showed that there is no polynomial bound on
the regularity nondegenerate prime ideals purely in terms of their
multiplicity. We now have the tools to prove there is such a (non-
polynomial) bound. First we need the following theorem:

Theorem 6.29 (Eisenbud-Huneke-Vacsoncelos) If K is a perfect field
and I ⊆ S = K[x1, . . . , xn] is a homogeneous equidimensional radical ideal
then I is generated up to radical by forms of degree ≤ e(S/I.10 10 David Eisenbud, Craig Huneke, and

Wolmer Vasconcelos. Direct methods for
primary decomposition. Invent. Math.,
110(2):207–235, 1992
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An immediate application of this theorem combined with the
Ananyan-Hochster results is the following:

Theorem 6.30 (Cavgilia-McCullough-Peeva-Varbaro) There is an ascend-
ing function P(e) with the following property. Let p be a nondegenerate
prime ideal in S = K[x1, . . . , xn], where K is algebraically closed and
suppose that e(S/p) = e. Then pd(S/p), reg(Sp) and all graded Betti
numbers of S/p are bounded by P(e).11 11 Giulio Caviglia, Jason McCullough,

Irena Peeva, and Matteo Varbaro.
Regularity of prime ideals. preprint,
2017

Proof Since K = K, we have h := ht(p) < e(S/p). By the pre-
vious theorem, p is generated up to radical by forms of degree
≤ e(S/p). Therefore we can find a regular sequence g1, . . . , gh of
forms of degree at most e in p. Moreover p is a minimal prime of
(g1, . . . , gh). By Theorem 6.28, the minimal number of generators of
p is at most C(h, 1, e). By another application of Theorem 6.28 we see
that reg(S/p), pd(S/p), and all βij(S/p) are bounded by a formula
depending only on e(S/p). �



Bibliography

Tigran Ananyan and Melvin Hochster. Small subalgebras of poly-
nomial rings and stillman’s conjecture. preprint: arXiv:1610.09268,
2016.

M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra.
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills,
Ont., 1969.

Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39

of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 1993.

Giulio Caviglia, Jason McCullough, Irena Peeva, and Matteo Var-
baro. Regularity of prime ideals. preprint, 2017.

David Eisenbud. The geometry of syzygies, volume 229 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2005. A second
course in commutative algebra and algebraic geometry.

David Eisenbud and Shiro Goto. Linear free resolutions and minimal
multiplicity. J. Algebra, 88(1):89–133, 1984.

David Eisenbud, Craig Huneke, and Wolmer Vasconcelos. Direct
methods for primary decomposition. Invent. Math., 110(2):207–235,
1992.

Jee Koh. Ideals generated by quadrics exhibiting double exponential
degrees. J. Algebra, 200(1):225–245, 1998.

Ernst W. Mayr and Albert R. Meyer. The complexity of the word
problems for commutative semigroups and polynomial ideals. Adv.
in Math., 46(3):305–329, 1982.

Jason McCullough and Irena Peeva. Counterexmaples to the
eisenbud-goto regularity conjecture. preprint, 2016.

Jason McCullough and Alexandra Seceleanu. Bounding projective
dimension. In Commutative algebra, pages 551–576. Springer, New
York, 2013.



68

Irena Peeva. Graded syzygies, volume 14 of Algebra and Applications.
Springer-Verlag London, Ltd., London, 2011.

Joseph J. Rotman. An introduction to homological algebra. Universitext.
Springer, New York, second edition, 2009.



Index

associated prime, 9

associated primes, 10

Auslander-Buchsbaum
Formula, 32

Betti table, 19

Cohen-Macaulay
module, 38

ring, 38

cohomology, 25

Correspondence Theorem, 7

degree of an element, 15

depth, 30

relation with dimension, 32

vanishing of Ext, 29

dimension
relation with depth, 32

Eisenbud-Goto Conjecture, 44

embedded prime, 9

Euler polynomial, 15

Extn
R(M, N), 24, 25

filtration, 11

flat, 23

graded Betti numbers, 18

graded ideal, 15

graded module, 15

graded ring, 15

graded submodule, 15

Hp(x;−), 36

Hilbert function, 15

Hilbert Polynomial, 20

Hilbert series, 15

homogeneous element, 15

homogeneous ideal, 15

homology, 23

injective, 26

injective resolution, 25

irreducible ideal, 8

irredundant decomposition, 9

K•(x;−), 34

k-collapse, 63

Koszul complex, 34

length of a module, 15

license, 2

long exact sequence
of Ext, 26

of Tor, 24

M-sequence, 27

minimal prime, 9

minimal resolution, 18

multiplicity, 15

nondegenerate ideal, 44

p-primary, 8

primary decomposition, 9

primary ideal, 8

prime, 7

prime avoidance, 29

Prime Filtration Theorem, 11

prime sequence, 63

projective, 26

projective dimension, 19

projective resolution, 23, 24

radical, 7

Rees Algebra, 47

Rees-like algebra, 47

regularity, 19

resolution
injective, 25

projective, 23, 24

(Ri), 62

Ri-sequence, 63

sequence, 27

Serre’s Conditions, 62

(Si), 62

step-by-step homogenization, 49

Stillman’s Question, 57

strength, 63

SuppR(M), 12

support, 12

tensor product
of complexes, 34

TorR
n (M, N), 23

twisted cubic, 18

unmixed ideal, 59

Zorn’s Lemma, 7


	0. About these notes
	1. Primary Decomposition
	Primary Decomposition and Associated Primes

	2. Basic Algebraic Geometry
	3. Graded Rings, Hilbert Series, and Resolutions
	Hilbert Functions and Series
	Graded Free Resolutions
	Projective Dimension, Regularity and Betti Tables
	More on HIlbert Series and Multiplicity

	4. Regular Sequences, Depth, Ext and Tor, Cohen-Macaulay Modules
	Ext and Tor
	Regular Sequences and Depth
	Auslander-Buchsbaum Theorem
	Koszul Complexes
	Cohen-Macaulay Modules

	5. Eisenbud-Goto Conjecture
	History of the Conjecture
	The Cohen-Macaulay Case
	Rees-Like Algebras
	Step-by-Step Homogenization
	Counterexamples

	6. Stillman's Question
	Three-generated Ideals
	Stillman's Question and Equivalent Formulations
	Reductions and Easy Cases
	Projective Dimension of Three Quadrics
	Proof of the general case in characteristic 0

	Bibliography
	Index

