Nordfjordeid Commutative Algebra Workshop - Problem Set 1 (McCullough)
(1) Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be a short exact sequence of finitely generated graded S-modules. Show that
(a) $\operatorname{pd}_{S}(L) \leq \max \left\{\operatorname{pd}_{S}(M), \operatorname{pd}_{S}(N)-1\right\}$
(b) $\operatorname{pd}_{S}(M) \leq \max \left\{\operatorname{pd}_{S}(L), \operatorname{pd}_{S}(N)\right\}$
(c) $\operatorname{pd}_{S}(N) \leq \max \left\{\operatorname{pd}_{S}(L)+1, \operatorname{pd}_{S}(M)\right\}$.

Similarly, show that
(a) $\operatorname{reg}_{S}(L) \leq \max \left\{\operatorname{reg}_{S}(M), \operatorname{reg}_{S}(N)+1\right\}$
(b) $\operatorname{reg}_{S}(M) \leq \max \left\{\operatorname{reg}_{S}(L), \operatorname{reg}_{S}(N)\right\}$
(c) $\operatorname{reg}_{S}(N) \leq \max \left\{\operatorname{reg}_{S}(L)-1, \operatorname{reg}_{S}(M)\right\}$.
(2) Let $I=\left(m_{1}, m_{2}, \ldots, m_{t}\right) \subseteq S=k\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal. Set $d_{i}=$ $\operatorname{deg}\left(m_{i}\right)$.
(a) Show that for $1 \leq i \leq t$:

$$
\left(m_{1}, \ldots, m_{i-1}\right): m_{i}=\left(\frac{m_{1}}{\operatorname{gcd}\left(m_{1}, m_{i}\right)}, \ldots, \frac{m_{i-1}}{\operatorname{gcd}\left(m_{i-1}, m_{i}\right)}\right) .
$$

Note that for ideals I, J, the ideal $I: J$ is

$$
I: J=\{s \in S \mid s j \in I \text { for all } j \in J\} .
$$

(b) Show that

$$
0 \rightarrow \frac{S}{\left(m_{1}, \ldots, m_{i-1}\right): m_{i}}\left(-d_{i}\right) \xrightarrow{m_{i}} \frac{S}{\left(m_{1}, \ldots, m_{i-1}\right)} \rightarrow \frac{S}{\left(m_{1}, \ldots, m_{i}\right)} \rightarrow 0
$$

is a graded short exact sequence of S-modules for $1 \leq i \leq t$.
(c) Show that

$$
\operatorname{pd}_{S}(S / I) \leq t \quad \text { and } \quad \operatorname{reg}_{S}(S / I) \leq \sum_{i=1}^{t}\left(d_{i}-1\right)
$$

(3) Let $I=\left(x^{2}, x y, y^{2}\right) \subseteq S=k[x, y]$. Compute the minimal graded free resolutions of S / I. Is S / I Cohen-Macaulay? (You may want to ask Macaulay2 for help.)
(4) What about $I=(w y, w z, x y, x z) \subseteq k[w, x, y, z]$? Is S / I Cohen-Macaulay?
(5) Let M be a finitely generated S-module. Show that M is Cohen-Macaulay if and only if $\operatorname{codim}(M)=\operatorname{pd}_{S}(M)$. (Recall codim $(M)=\operatorname{dim}(S)-\operatorname{dim}(M)$. If $M=S / I$, then $\operatorname{codim}(M)=\operatorname{ht}(I)$.)
(6) Recall that $\operatorname{ht}(I)=\min \{\operatorname{ht}(\mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Ass}(S / I)\}$. Let $\operatorname{bight}(I)=\max \{\operatorname{ht}(\mathfrak{p}) \mid \mathfrak{p} \in$ $\operatorname{Ass}(S / I)\}$. Show that

$$
\operatorname{pd}_{S}(S / I) \geq \operatorname{bight}(I) .
$$

Bonus: Find an example where the inequality is strict.

Nordfjordeid Commutative Algebra Workshop - Problem Set 2 (McCullough)
(1) Let $I=\left(x^{2}, y^{2}, a x+b y\right) \subseteq k[x, y, a, b]$. The graded Betti table of S / I is

	0	1	2	3	4
$0:$	1	-	-	-	-
$1:$	-	3	-	-	-
$2:$	-	-	5	4	1

Find the Hilbert Series, Hilbert polynomial, multiplicity of S / I, dimension and depth of S / I. Is S / I Cohen-Macaulay?
(2) Let $S=k\left[x_{1}, \ldots, x_{n}\right]$. Show that

$$
\operatorname{Hilb}_{S}(t)=\frac{1}{(1-t)^{n}}
$$

(3) Let $f_{1}, \ldots, f_{m} \in S$ be a regular sequence of forms of degrees d_{1}, \ldots, d_{m}. Show that

$$
\operatorname{Hilb}_{S /\left(f_{1}, \ldots, f_{m}\right)}(t)=\frac{\prod_{i=1}^{m}\left(1-t^{d_{i}}\right)}{(1-t)^{n}}
$$

(4) Let $f_{1}, \ldots, f_{m} \in S$ be a regular sequence of forms of degrees d_{1}, \ldots, d_{m}. Show that

$$
e\left(S /\left(f_{1}, \ldots, f_{m}\right)\right)=\prod_{i=1}^{m} d_{i}
$$

(5) Suppose $I \subseteq J \subseteq S$ are homogeneous ideals of the same height. Show that $e(J) \leq e(I)$.
(6) (Harder) If $f_{1}, \ldots, f_{m} \in S=k\left[x_{1}, \ldots, x_{n}\right]$ is a homogeneous regular sequence then $k\left[f_{1}, \ldots, f_{m}\right]$ is isomorphic to a polynomial ring $k\left[y_{1}, \ldots, y_{m}\right]$.

Recall that an ideal $I \subseteq S$ is a primary ideal if $x y \in I$ implies that $x \in I$ or $y^{n} \in I$ for some $n>0$. In this case $\sqrt{I}=\mathfrak{p}$ is a prime ideal and we say that I is \mathfrak{p}-primary.
(1) Show that $\left(x, y^{2}\right) \subseteq k[x, y]$ is (x, y)-primary and $e\left(S /\left(x, y^{2}\right)\right)=2$.
(2) Let x, y be independent linear forms in a polynomial ring S. Show that $I=$ $(x, y)^{2}+(a x+b y)$ is (x, y)-primary with $e(S / I)=2$ if and only if $\operatorname{ht}(x, y, a, b)=4$.
(3) Show that if I is \mathfrak{p}-primary and $x \in \mathfrak{p}$, then $I: x=S$ or $I: x$ is \mathfrak{p}-primary and $I: x \supsetneq I$.
(4) The associativity formula says that

$$
e(S / I)=\sum_{\mathfrak{p} \in \operatorname{Ass}(S / I)} e(S / \mathfrak{p}) \lambda\left(S_{\mathfrak{p}} / I_{\mathfrak{p}}\right)
$$

Use the associativity formula to show that if $I \subseteq J, \operatorname{ht}(I)=\operatorname{ht}(J), e(S / I)=e(S / J)$ and both I and J are unmixed (all associated primes have height equal to height of I), then $I=J$.
(5) Show that if I is (x, y)-primary and $e(S / I)=2$, then after perhaps a linear change of variables, $I=\left(x, y^{2}\right)$ or $I=(x, y)^{2}+(a x+b y)$, where $\operatorname{ht}(x, y, a, b)=4$.
(6) (Hard) What about if I is (x, y)-primary and $e(S / I)=3$?
(7) Buchsbaum-Eisenbud acyclicity theorem: Let $F \bullet$ be a finite free complex of finitely generated S-modules

$$
0 \rightarrow F_{s} \xrightarrow{\phi_{s}} F_{s-1} \xrightarrow{\phi_{s-1}} \cdots \xrightarrow{\phi_{1}} F_{0} .
$$

For $i=1, \ldots, s$, set $r_{i}=\sum_{j=i}^{s}(-1)^{j-i} \operatorname{rank}\left(F_{j}\right)$. Then F_{\bullet} is acyclic if and only if for each $1 \leq i \leq s, \operatorname{ht}\left(I_{r_{i}}\left(\phi_{i}\right)\right) \geq i$. Here if $\phi: G \rightarrow H$ is a map of finitely generated free modules, $I_{r}(\phi)$ denotes the ideal generated by the $r \times r$-minors of any matrix representing ϕ.
Use the Buchsbaum-Eisenbud theorem to show that the following is a resolution of $k[x, y, a, b] /\left(x^{2}, x y, y^{2}, a x+b y\right)$.

$$
0 \rightarrow S \xrightarrow{\phi_{3}} S^{4} \xrightarrow{\phi_{2}} S^{4} \xrightarrow{\phi_{7}} S,
$$

where

$$
\phi_{1}=\left(\begin{array}{llll}
x^{2} & x y & y^{2} & x a+y b
\end{array}\right) \quad \phi_{2}=\left(\begin{array}{cccc}
-y & 0 & -a & 0 \\
x & -y & -b & -a \\
0 & x & 0 & -b \\
0 & 0 & x & y
\end{array}\right) \quad \phi_{3}=\left(\begin{array}{c}
a \\
b \\
-y \\
x
\end{array}\right)
$$

