
NORGES TEKNISK-NATURVITENSKAPELIGE

UNIVERSITET

A Survey of Some Methods for Moving Grid and
Grid Adaption

by

Bjarte Hægland and B̊ard Skaflestad

PREPRINT

NUMERICS NO. 2/2002

NORWEGIAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

TRONDHEIM, NORWAY

This report has URL http://www.math.ntnu.no/preprint/numerics/2002/N2-2002.ps
Address: Department of Mathematical Sciences, Norwegian University of Science and

Technology, N-7491 Trondheim, Norway.

Symbols

x Vector
A Matrix
R The real numbers
R
d d-dimensional space

D/Dt Total derivative
|||·||| Problem dependent energy norm
(·, ·) Inner product
‖·‖ Norm
div u Divergence of u
curl u Curl of u
grad f Gradient of f
traceA Matrix trace
diag a Diagonal matrix with a on its diagonal
L Differential operator L
Wm,p(Ω), m ≥ 0, p ∈ [1,∞] Sobolev space
‖·‖m,p,Ω Norm on Wm,p(Ω)
| · |m,p,Ω Seminorm on Wm,p(Ω)

1 Introduction

Numerical simulation of fluid flow has been studied for quite some time. Many methods
have been devised and applied to various branches of flow simulation with varying results,
and although the basic methods are well known, this is still field of active research. Sim-
ulating turbulent flows such as breaking waves is largely infeasible, even when using the
most powerful super-computers available. Nevertheless, the insight gained from simula-
tion has proved valuable in understanding the basic laws of nature and in designing and
building structures and machinery.

Requiring large number of unknowns, simulating realistic flows and capturing the
interaction between fluid and structure or free surfaces is very costly with respect to
computer time and developing numerical methods which are more efficient is a desirable
goal. One way of searching for that goal is to create methods which adapt to the solution
of the physical problem. It has been shown that adaptive methods in which the mesh—
the discretisation of the computational domain—changes, either continuously or at regular
or irregular intervals throughout the computation, have greatly reduced the demand for
larger number of unknowns.

In this paper we review some of the methods which have appeared in the literature
and focus mainly on two aspects of adaptive methods: Error estimation and changing
the mesh. We begin in section 2 by presenting the governing equations for fluid flow and
continue in section 3 by showing a framework for rewriting these equations in a form
independent of a particular mesh thus enabling changing meshes in time-dependent flow
problems. Section 4 presents a short overview of the different classes of adaptive methods
and section 5 proceeds by showing some elasticity models for mesh adaption. Adaptive
methods based on moving meshes is presented in section 6 and section 7 deals with h-
adaptive methods which varies the number of degrees of freedom and the size of the
elements. Finally, section 8 studies various methods for estimating error in finite element
applications and section 9 lists some open problems and possible future work.

2 The Navier-Stokes Equations

Fluids have properties differing greatly from those of solids. A fluid will always deform
significantly when acted upon by forces but the rate at which deformation occurs is greatly
dependent on atomic and molecular aspects of the substance in question [1]. On the other
hand, a solid may greatly resist such deformation, at least if the forces are not of excessive
magnitude. This difference has lead to some philosophical discussion as to what is the
proper frame of reference for fluid mechanics and which natural processes contribute to
the observable physical behaviour.

Creating mathematical models for fluid motion facilitates quantitative statements and
predictions about a physical system. Thus, modelling fluid flows enables, in addition to
understanding complex flows such as oceans, wind, waves and aeroplanes, prediction of
interactions between fluid and structure, determination of fluid forces exerted upon an
object and similar applications. Having models also enables numerical treatment in ad-
dition to experiments. With the advent of modern multi-processor electronic computers,
the highly compute intensive applications arising from the models are more feasible than
ever before, and on the verge of replacing experiments in some area of fluid mechanics
research. But there are still important applications for which computational fluid dynam-
ics is not sufficient, including, in particular, highly convection dominated viscous flows in

1

complex geometries.
The basic mathematical models for viscous fluid flow and have been known for more

than a hundred years, yet are still relatively new compared to the models of rigid body
mechanics. At the heart of these models lie three conservation principles,

• conservation of mass,

• conservation of momentum,

• conservation of energy,

all of which are reasonable and pervasive in physical models of other natural phenomena
as well. When first introduced these principles were merely postulated, but experience
has shown excellent correlation between the resultant models and experiments in a variety
of applications.

2.1 Conservation of Mass

In words, the principle of mass conservation states: In a given deforming material volume,
Ωp(t) ⊂ R

d, the mass M(t) is constant with respect to time t. Thus, using mathematical
terms

d

dt
M(t) = 0, (1)

with the total mass expressed as

M(t) =

∫
Ωp(t)

ρ dΩ.

The quantity ρ is the volumetric mass of the fluid, also known as the density. Considering
isolated fluid particles, the time rate of change of a sufficiently smooth material property,
f , when following the fluid flow may be expressed as

Df

Dt
=
∂f

∂t
+ (u · ∇)f, (2)

in which u = (u1, . . . , ud)
T is the fluid velocity. Thus, taking into account the moving

material volume Ωp(t)

d

dt

∫
Ωp(t)

f(x, t) dΩ =

∫
Ωp(t)

Df

Dt
+ f div u dΩ, (3)

a result which may also be derived from the Reynolds transport theorem [2]. Combining
equations (1) and (3) whilst interpreting the material property f as the density ρ leads
to ∫

Ωp(t)

[Dρ
Dt

+ ρ div u
]
dΩ = 0 (4)

which states that any mass transported into Ωp(t) is accompanied by a change of volume
and possibly an increased density when the global effects are summed up. Furthermore,
since equation (4) is valid for any material volume, the equation can be restated in an
equivalent local form for all x ∈ Ωp(t)

Dρ

Dt
+ ρ div u = 0. (5)

An incompressible fluid is characterised by the assumption that Dρ/Dt = 0 or, in other
words, that ρ is constant throughout the fluid at all times. Thus, for incompressible fluids,
the velocity field u must be solenoidal, div u = 0.

2

2.2 Conservation of Momentum

The principle of conservation of linear momentum is a generalisation of Newton’s second
law of motion to continuous materials. It states that the time rate of change of momentum
of a deforming material region embedded in Ωp(t) is equal to the forces applied to that
region. Decomposing the acting force into a body force component f(x, t) and a surface
tension force component t(x, t), this principle may be written mathematically as

d

dt

∫
Ωp(t)

ρu dΩ =

∫
∂Ωp(t)

t dS +

∫
Ωp(t)

ρf dΩ. (6)

The body force component includes effects of gravity, compressional loads and similar
external forces. The surface contact forces on the other hand may not be as easily tractable
in the indicated form. However, the Cauchy principle relates the surface tension to the
oriented normal vector on a given surface. In particular, there exists a tensor field, σ(x, t),
such that

t(x, t) = σ(x, t)n(x, t) (7)

with n(x, t) denoting the oriented normal vector evaluated at the surface point x =
(x1, . . . , xd)

T at time t.
Inserting (7) into equation (6) and applying the divergence theorem and the transport

property (2) yields the local equation of fluid motion

ρ
Du

Dt
= div σ + ρf . (8)

This equation is valid for any fluid for which the tensor field σ can be derived. Further-
more, the stress tensor has to be symmetric in order to support conservation of angular
momentum in addition to linear momentum.

2.3 Constitutive Equations

The equation of motion (8) is valid for any fluid. Thus, in any given application we need
to derive expressions for the stress tensor field if the equation is to be practically useful.
Such expressions are determined by means of “constitutive equations” which relate σ to
the thermodynamic pressure, p, and to the rate of deformation tensor, d. The latter is
defined as the symmetric part of the velocity gradient and may be written as

d =
1

2

(
∇u + (∇u)T

)
. (9)

In the classical case of Newtonian fluids, the stress tensor is then written as

σ = (−p+ λ trd)I + 2µd (10)

in which µ is a real parameter known as the dynamic shear viscosity and λ is the bulk
viscosity. µ and λ are macroscopic and measurable representations of the molecular
properties of the material in question and are often obtained from experiments. Since an
incompressible fluid obeys trd ∝ div u = 0,

σ = −pI + 2µd

for incompressible Newtonian fluids.

3

Inserting this result into (8) establishes the incompressible Navier-Stokes (NS) equa-
tions

ρ
Du

Dt
+ ∇p−∇ ·

(
µ(∇u + (∇u)T)

)
= ρf . (11)

This form of the NS equations is known in the literature as the “stress” or “tension”
formulation and incorporates the possibility of having the viscosity varying inside the
fluid domain. In the special case of µ = const, these equations simplify to

ρ
Du

Dt
+ ∇p− µ∇2u = ρf

in which the Laplacian operator ∇2 is applied to each component of u. This formulation is
known in the literature as the “velocity” or “Laplacian” formulation of the NS equations.
The final mathematical model for incompressible Newtonian fluid flow with constant
viscosity is thus the following system of partial differential equations (PDEs)

∂u

∂t
+ (u · ∇)u +

1

ρ
∇p− ν∇2u = f

div u = 0

(12)

in which the total derivative operator D/Dt has been expanded into its constituent parts
and ν = µ/ρ is known as the kinematic viscosity.

As stated, the system (12) does not constitute a complete model for a given fluid
flow. Boundary and initial conditions must be supplied in order to complete the system
and provide for existence and uniqueness of solutions. Dividing the boundary of the
domain into non-overlapping parts ∂ΩpD and ∂ΩpN such that ∂ΩpD ∪ ∂ΩpN = ∂Ωp and
∂ΩpD ∩ ∂ΩpN = ∅, the boundary conditions may be similarly divided. A Dirichlet type
boundary condition in which the velocity is prescribed is imposed on ∂ΩpD, whereas
prescribed surface tension may be imposed on ∂ΩpN . As surface tension is related to the
derivative of the velocity, this amounts to a Neumann type boundary condition. However,
prescribing the surface tension requires the more general stress formulation (11) of the
NS equations.

A thorough discussion of boundary conditions is beyond the scope of this introduc-
tory section, but it is important to be aware of the fact that the PDE system (12) is
not completely general with respect to boundary conditions. Further details of admis-
sible boundary conditions as well as rescalings and non-dimensionalisation of the basic
equations are available in the literature in for instance [3, 2]

2.4 Mathematical Structure and Variational Formulation

For notational simplicity we use the general framework of indicial notation and the Ein-
stein summation convention for repeated indices in this section. Written in this form, the
NS equations read as 

∂ui
∂t

+ uj ·
∂ui
∂xj

+
1

ρ

∂p

∂xi
− ν∇2ui = fi

∂ui
∂xi

= 0.

(13)

This problem is known to be difficult in general and many theoretical questions remain,
as yet, unanswered—in particular for realistic flows dominated by convection. However,

4

when developing computer software for solving the equations numerically, there are some
distinctive features to notice.

The innermost problem incorporated in the NS equations is the well known Poisson
problem

−ν∇2ui = fi

which controls the viscous effects. The Laplacian operator contains the highest spatial
derivative of the unknown fluid velocity and thus determines regularity requirements of
the functions in question. A computer programme thus has to be able to solve the Poisson
equation as test case. Extending this problem by taking into account the pressure and
the solenoidal velocity constraint yields the so-called Stokes problem

1

ρ

∂p

∂xi
− ν∇2ui = fi

∂ui
∂xi

= 0

(14)

which governs highly viscous or “creeping” fluid flow. When introducing the solenoidal-
ity constraint, the system becomes an instance of a general saddle point problem. It is
then necessary to introduce conditions which guarantee solvability of the resulting dis-
crete systems. In addition any prescribed boundary conditions may have to fulfil certain
compatibility conditions as well.

Introducing convection into the problem gives rise to the non-linear term (u ·∇)u and
the steady Navier-Stokes equations

uj ·
∂ui
∂xj

+
1

ρ

∂p

∂xi
− ν∇2ui = fi

∂ui
∂xi

= 0

(15)

which govern viscous fluid flow in which neither viscous nor convective effects can be
neglected. Solving this problem is compounded by the non-linear term. A facility for
solving non-linear systems of equations is needed and ensuring convergence of this solve
is normally only possible in a vicinity of the solution to the equations. Finally, allowing
temporal variation, leads to the full Navier-Stokes equations in (13) or, if needed, in (11).

As the PDE is of both parabolic and hyperbolic character in addition to constituting a
saddle point problem, there is no minimisation statement from which a variational problem
can be derived. However, choosing the velocity field u from a space X of solenoidal—or
divergence free—vector fields satisfying the imposed boundary conditions and the pressure
p from a space M of scalar functions satisfying any necessary compatibility and uniqueness
conditions, allows the Navier-Stokes equations to be recast in a variational form as [4]:
Find u ∈ X and p ∈M such that for almost all t ∈ [0, T)

d

dt
(u(t),v) + νa(u(t),v) + c(u(t);u(t),v) +

1

ρ
b(v, p(t)) = (f(t),v) ∀v ∈ X (16)

b(u(t), q) = 0 ∀q ∈M (17)

u(0) = u0. (18)

Here a(v,w) =
∫
Ωp(t)

∇v : ∇w dΩ is a bilinear form derived from the viscous term,

b(w, q) =
∫
Ωp(t)

q div w dΩ is the variational form of the solenoidality constraint and

5

c(w;v, z) =
∫
Ωp(t)

[
(w · ∇)v

]
· z dΩ is a trilinear form derived from the non-linear convec-

tion term. In addition (w,v) =
∫
Ωp(t)

w :v dΩ is the standard L2 inner product for scalar

or vector-valued functions defined on Ωp(t).

3 Arbitrary Lagrangian Eulerian Formulation

3.1 Introduction

In solving computational fluid problems there are two traditional points of view to for-
mulating the setting. On one hand we have the Eulerian approach, in which the domain
of interest is kept fixed. That is our reference frame remains stationary while the fluid
flows through it. The alternative way to look at the problem is to use the Lagrangian
description. In this case we do not work in a domain fixed in time and space, but instead
concentrate on a specific set of particles. The coordinate system is now embedded in the
fluid. The domain of interest captures the set of particles and follow them and deform
along with the volume made up of the particles.

Both approaches have their advantages and disadvantages. In a Lagrangian description
the mesh is fixed to the material and no convective effects are present. The Lagrangian
point of view may result in good resolution of details and the capability to resolve bound-
aries. A serious disadvantage though, become apparent when experiencing great defor-
mation of the domain. These cases may result in great distortions of the computational
grid. Problems involving flow over sharp corners may not be represented appropriately.
For example, look at the somewhat artificial case of fluid flowing through a nozzle. It does
not take a lot of fantasy to imagine that the grid moving into the narrowing nozzle soon
becomes too skewed and unsuited for computations. The Eulerian point of view, on the
other hand, can handle distortions, but possibly at the cost of resolution. The Eulerian
approach is obviously not suited for representing free boundaries or moving boundaries
like simulation of material deformation.

When considering problems like flow through blood vessels, wing oscillation or multi-
body simulation or fluid-structure interaction dynamic meshes are essential. None of the
approaches mentioned above is quite capable of modelling the interaction between objects
moving relatively to each other or dealing with moving, possibly deforming boundaries.
New ways of attacking the problem are needed and one such approach is the Arbitrary
Lagrangian Eulerian (ALE) method. The ALE approach is (somewhat) a mixture of the
Eulerian and Lagrangian points of view. The ALE formulation introduces a reference
computational domain that is moving arbitrarily, or in other words independently of the
fluid or material. We can recover the Eulerian or Lagrangian points of view by setting the
velocity of the domain equal to zero or equal to the material/fluid velocity respectively.
In the ALE case the mesh does not have to remain fixed to the material in the course of
deformation, thus possibly eliminating entanglement of the grid.

3.2 Geometry and Conservation Laws in ALE Formulation

In an ALE formulation the system under study occupies a moving domain Ωt in its present
configuration. As indicated by the suffix, Ωt is time dependent, which means we have
to solve our conservation laws in a non-stationary domain. To overcome this difficulty
it is convenient to recast the conservation laws into a fixed reference configuration Ω0

(usually the initial configuration). For this reason we assume there exists a time-dependent

6

t

−
−x

Ω0

Γ0 Γt

Ω t

A
ξ

Figure 1: ALE formulation

mapping At, which describes the connection between the current configuration and the
reference configuration.

At : Ω0 ⊂ R
d −→ Ωt ⊂ R

d

ξ 7−→ x(ξ, t) = At(ξ)

The situation is illustrated in Figure 1. We denote the coordinates in the reference
configuration Ω0 by ξ and the coordinates in the current configuration Ωt by x. Apart
from small changes we will adopt the notation of Formaggia and Nobile [5] in the rest of
this section. We denote by JAt = det∇At = det ∂x/∂ξ the Jacobian determinant of the
ALE mapping. The velocity of the particle at position x in Ωt is denoted w(x) = ∂x/∂t|ξ.

3.2.1 Formulation of The Conservation Laws

Several studies involving ALE have presented to us a wealth of equations tuned for the
ALE framework. We do not attempt to cover them all so we stick to a general presentation
of recasting a PDE, and in special a conservation law, into the equivalent ALE format.
Transporting the conservative laws, written in Eulerian format, in Ωt into the reference
configuration Ω0 is done using two main tools: the chain rule of differentiation and the
identity ∂JAt/∂t|ξ = JAt∇x · w.

Given a PDE of the form
∂u

∂t

∣∣∣∣
x

+ L(u) = f, (19)

we may incorporate the ALE map x = x(ξ, t) = At(ξ) and straight forward use of the
chain rule of differentiation results in the ALE counterpart of our PDE

∂u

∂t

∣∣∣∣
ξ

+ L(u) −w · ∇xu = f. (20)

Conservation laws have the general form

∂u

∂t

∣∣∣∣
ξ

+ ∇x · F (u) −w · ∇xu = f, (21)

7

and the associated integral form of (21) can be written as [5]

d

dt

∫
Kt

u dx+

∫
Kt

∇x · (F (u) − w) dx =

∫
Kt

f dx. (22)

Integrating by parts, (22) may be recast in flux form as

d

dt

∫
Kt

u dx+

∫
∂Kt

(F (u) − w) · n ds =

∫
Kt

f dx, (23)

which is the form normally used in the context of FVM.

3.3 Regularity of the ALE Map

A well established method for solving ALE problems is to use some variant of a finite
element discretisation. One concern in implementation is to make sure the regularity of
the solution is conserved as the solution evolves and the domain under study moves. In [5]
Formaggia and Nobile look at conservation laws in the setting of ALE. By assuming the
solution u(x, t) to be in H1(Ωt) for all times their goal is to establish sufficient conditions
on the ALE mapping to assure this assumption. They achieve this by demanding that the
initial domain Ω0 be bounded with a Lipschitz continuous boundary and preserving these
properties as it evolves in time under the ALE map, Ωt = At(Ω0). By demanding At to be
invertible on Ω0 and for each time At ∈W 1,∞(Ω0) and A−1

t ∈W 1,∞(Ωt), then v ∈ H1(Ωt)
if and only if v̂ = v ◦ At ∈ H1(Ω0). This result comes in handy when looking at the
finite element solution of the ALE problem as it can establish a connection between the
space of test functions on the current and the initial configurations. If K0 is an element
in the discretisation of Ω0 and Kt = At(K0) its corresponding element in Ωt, where MK0

k

and MKt

k are their homeomorphic mapping from the reference element to the elements
respectively. The subscript k is the order of the parametric mapping chosen for the finite
element function space of the solution u of our PDE. Formaggia and Nobile conclude that
they are able to find a discretisation of the ALE map as Ah,t|K0 = MKt

k ◦ (MK0

k)−1, (h
indicates the discrete version), belonging to an isoparametric function space of order k.
Please refer to Figure 2 for illustration. Having established this fact we have to look for
ways to actually move or deform the boundary and the interior of the domain. We will
cover this topic later on.

3.4 Geometric Conservation Laws

When considering problems formulated in the ALE setting, the Geometric Conservation
Law (GCL) becomes integral part of the problem. In the continuous formulation, the
solution of the flow problem is independent of the domain movement. In the discrete
case this is not necessarily true. When solving computational flow problems on moving
domains we are faced with estimating geometric quantities involving grid velocity like for
example numerical fluxes in finite volume schemes. To every numerical scheme there is a
Discrete Geometric Conservation Law (DGCL) corresponding to the continuous one. The
DGCL equips us with guidelines on how to evaluate these quantities, by enforcing that
the numerical scheme preserve a uniform flow exactly. For the method to be consistent,
this is a natural requirement.

8

t

| 0K

K0Mk

KR

K0

Kt

Ah,t

Mk
K

|

Figure 2: Discrete ALE map

The GCL can be derived from the weak form of the conservation law (23) in the
absence of source terms by inserting the constant solution u = u∗ and noting that∫

∂Kt

nds = 0. (24)

Dividing by u∗ we get identity

d

dt

∫
Kt

dx =

∫
∂Kt

w · n ds. (25)

This is the GCL, and it basically states the change of volume of a cell Kt is equal
to the volume swept over by the moving boundary. To find the DGCL we start with
the same conservation law (23) (without the source term) and do a semi-discretisation
either by a finite volume or a finite element method. The appropriate ODE solver is
then applied to the resulting semi-discrete system. The DGCL for that specific solver is
found by demanding the discrete scheme to exactly reproduce a constant solution. It is
important to note that there is no unique DGCL, rather the DGCL is associated with a
specific numerical procedure [6].

Guillard and Farhat [6] studied finite volume discretisation of the conservation law.
They assume the boundaries e of the cells K to remain planar during deformation. Using
consistent and conservative numerical fluxes they arrive at a DGCL of the form

δ

δt
|K| =

∑
e∈∂K

|e|we · ne. (26)

in which δ/δt is a p’th order approximation of the time derivative. The size of a face is
denoted |e|, ne and we are time-averaged values of the normal vector and the velocity of
the face respectively. The DGCL (26) resembles the continuous one, equation (25).

The DGCL includes position and velocity of the mesh. So we are not able to use an
arbitrary routine to update the mesh if it violates the DGCL. The DGCL also provides

9

guidelines on how to estimate parameters as those on the right hand side of (26). Con-
structing a scheme which satisfies its DGCL has been shown to have several advantages.

Guillard and Farhat [6] showed that the moving mesh counterpart of a p-order time
accurate fixed grid method is at least first-order accurate if it satisfies its DGCL. Satisfying
the associated DGCL becomes increasingly important for higher order schemes. This
result is also confirmed by experiments both in [6] and [7]. Koobus and Farhat [8] have
later constructed second order time accurate schemes which obey their corresponding
second order DGCL. Satisfying the DGCL will also have an impact on the stability of the
numerical scheme. In [5] Formaggia and Nobile show that satisfying the corresponding
first-order DGCL is sufficient for the backward Euler scheme to be unconditional stable.
Nonlinear stability have been investigated by Farhat, Geuzaine and Grandmont [7]. They
show that satisfying the DGCL is a necessary and sufficent condition for a numerical
scheme to be nonlinearly stable in the sense of the maximum principle.

4 Adaptive Mesh Generation Methods

When solving either ODEs or PDEs numerically we need to discretise the domain of
interest, and represent the solution by a set of discrete values. Classically this have been
done using a fixed uniform grid on the computational domain. If one chooses to use a
uniform grid the implementation will probably be of no great challenge, but in order to
achieve an acceptable solution the mesh sometimes get too fine. There are several reasons
for this. One obvious reason is that the geometry of the domain of the problem at hand
may be so complex that you need a very fine mesh to represent it well. In a subset of
the domain there might be features of the solution that demands a finer resolution than
needed elsewhere. This is the case in the presence of large variations, such as shocks for
example. Using an uniform mesh, we then need to refine the mesh for the whole domain,
resulting in a large number of unknowns. Ideally we would like to arrive at an acceptable
solution in the shortest possible time and cheapest fashion available. So the next obvious
idea is to think of ways to create an adaptive mesh, with the fewest possible number of
unknowns. There is a vast amount of literature on adaptive mesh methods. They are all
based on various indicators to where adaption should occur. We choose to divide them
into three main classes

1. r-refinement methods keeps the the total number of nodes constant and adjusts
their positions in order to get the best possible approximation. These methods have
been used to create optimal meshes for stationary problems or an optimal initial
mesh for time-dependent problems. r-refinement have also been reported used for
non-stationary problems during the time evolution, in particular for fluid-structure
interaction.

2. h-refinement methods is a wide class of adaptive methods which can be subdivided
into two groups. A common feature is that the mesh arrived at is a result of an
iterative process. Given a mesh, a specific procedure is chosen to indicate where the
mesh is too coarse or too fine. A new mesh is then produced upon the information
from the previous mesh, and the process is continued until the specified specifications
of the grid is met. The first variant is to keep an initial mesh as basis and either
subdivide (refine) or coarsen the individual elements when needed, but the initial
mesh is always kept as a basis. We may denote this approach as element subdivision.

10

u

Ω0

ξϕ = x

da n
da n

ξ

dξ ξd ϕ

ϕ ϕ

Ωϕ

Figure 3: Deformation of a nonlinear elastic material

The second way to go is to completely regenerate the mesh, in which new element
sizes is predicted for the whole domain and a totally new mesh is created upon this
information. This approach usually results in fewer degrees of freedom compared to
the first alternative. To completely regenerate the mesh is well suited for situations
where severe element distortion may occur.

3. p-refinement is a method that keep the element size but instead increases the order
of the polynomial used to represent the solution within each element. Again there
is two alternative techniques. The first one increases the order of the polynomials
uniformly for all elements on the whole domain. Secondly we could hierarchically
increase the polynomial order locally.

Of course it is possible to combine two or more of the methods above to create even
more specialised methods. An efficient hp-method is to first use h-refinement to arrive at
a final mesh and then use p-refinement. In what follows we will concentrate on r- and
h-refinement methods.

5 Elasticity Models for Mesh Adaption

When treating moving domains, a major concern is how to smoothly move the grid along,
hopefully without distortions. Several techniques have been proposed for this task. One
way of approaching the solution is to imagine the grid to be made up of some elastic
material. Either by thinking of the grid as a discretisation of a continuous nonelastic
material [9, 10], or by specifying restrictions on how the vertices can move mutually
[11]. Either way, incorporating material properties into the mesh, allows movement or
deformation according to certain material laws. Accompanied by a mathematical model
for elasticity, this enables ensuring desirable properties of a well-behaved moving grid. For
example folding can be avoided by forbidding self penetration in our model. Introductions
to elasticity theory may be found in both [12] and [13].

5.1 Deformation of a Nonlinear Elastic Material

A given body made up of some material can be attacked by various body and surface
forces. According to the material laws the position and shape of the body may change

11

due to the forces applied. One usually denotes this change as the action of the deformation
ϕ : Ω0 −→ Ωϕ from the reference configuration Ω0 to the current Ωϕ. The deformation ϕ
is 1-to-1 and orientation preserving, that is det∇ϕ > 0. An entity in Ω0 is changed under
the deformation map to its corresponding entity in Ωϕ indicated by the superscript ϕ.
Two tensors play a main roles in the play of elasticity, namely the deformation gradient
F = ∇ϕ and the right Cauchy-Green tensor C = F TF . The right Cauchy-Green tensor
is symmetric positive definite and have three invariants

I1(C) = traceC (27)

I2(C) =
1

2
((traceC)2 − trace(C2)) (28)

I3(C) = detC. (29)

The C tensor supply us with valuable information on how unit lengths ∂ξ, areas n da
and volumes dξ changes under the deformation. Approximative values of unit length,
area and volume after the deformation is respectively given as |∂ξϕ|2 = ∂ξC∂ξ, nϕ daϕ =
(detF)F−Tn da and dξϕ = detF dξ. See Figure 3 for reference. As pointed out in [10]
the first invariant is related to length variation, the second to area changes and the third
obviously to volume changes.

Under influence of external forces the material will always seek its state of equilibrium.
The equilibrium equation stated in the reference configuration reads∫

Ω

T : ∇v dξ =

∫
Ω

f · v dξ +

∫
Γ

g · v da, ∀v : Ω̄ → E, (30)

where T is the stress tensor, f is the density of body forces, g is the density of surface
traction and E is some Euclidean space. In the form presented above the equation does not
present us with the full picture. We are still lacking one essential piece of information.
What is the form of the stress tensor? Unless we know the connection between the
kinematic quantities of the material and the stress tensor, we cannot accomplish much.
This is were the constitutive laws enter. These are laws stating a connection between the
stress tensor and for example the displacement field u(ξ) = ϕ(ξ)− ξ of the material. The
construction of the constitutive laws are guided by experimental results, such that our
mathematical model mimics real life. Various examples of constitutive laws are given in
the literature [12, 13].

5.2 Mesh Adaption by Elastic Energy Minimisation

The stress tensor is usually linked to the internal elastic energy W of the material. For the
case of hyper elastic materials the relationship is T = ∂W/∂F . It can be shown that to
minimise the total energy of the material is equivalent to deciding its state of equilibrium.
This is a well known principle in physics [14].

5.2.1 An Indirect Approach

In [9] Tallec and Martin presents a method for constructing adaptive moving meshes in
2 dimensions, based on theory from continuum mechanics. They choose the physical
domain Ω as their reference region, letting the deformation map τ map Ω into a square Ω̂.

12

−1

Ω

ϕ

Ω

τ = ϕ

Figure 4: Elastic deformation

They construct a density function W depending on the position x and the deformation
map τ . Their ultimate goal is to minimise the total energy

Φ(τ) =

∫
Ω

W (x, F) dx

over the domain, for all admissible deformation maps. The elastic density function W
measures the quality of the mesh and consists of four terms. They assume there the
presence of some positive error estimate interpolated over the domain. Ideally one would
like to adapt the mesh in such a way that the error is equally distributed over the hole
domain. This results in a metric, which in a perfect world, the right Cauchy-Green tensor
should be equal to. The first term of W measures the distance to this ideal deformation.
The next three are penalty terms assuring positivity of W , one-to-one property of τ and
the last term is included to avoid mesh distortions. Finally for unsteady calculation it is
desirable to control the mesh deformation in time, so they restrict how fast the deformation
gradient F may change. The resulting system may be solved using a combination of
Dirichlet and Neumann boundary conditions. The Dirichlet conditions is used on the
part of the boundary where one want to preserve the distribution of the points, while
using Neumann conditions allow the points to slip along the boundary. The resulting
variational problem is then solved using the Newton-Raphson’s method. Constructing an
adaptive mesh on the current configuration, Ω, is accomplished by mapping a uniform
mesh on Ω̂ back to Ω by the inverse of τ . This is a result of the particular choice of Ω a
reference domain.

5.2.2 A More Direct Approach

A similar method to the one in the previous section is the one of Jacquotte [10]. Jacquotte
define energy-like functions of the three invariants (27)–(29). To keep things consistent
with our notation so far we will call these energy functions W as opposed to σ in [10].
By applying the axiom of frame indifference, the independence of orientation and the
homogeneous nature of W , they argue that the energy function may be written W =
W (I1, I2, I3). In order to ensure the existence and uniqueness of a minimum of the energy,
W is imposed to be convex around the reference configuration. The choice of reference
domain is now opposite to the one mentioned in the previous section. The deformation
map ϕ is now thought to be a map from the square domain Ω̂ to the current, and there
is no need to invert this mapping. In this setting the energy W function measures the

13

m

ji

Figure 5: Imaginary springs between nodes

deformation of an optimal cubic reference element into the current cell. A proposed choice
for the 3-dimensional case is

W = C1(I1 − I3 − 2) + C2(I2 − 2I3 − 1) +K(detF − 1)2, K > 4(C1 + C2)/3 > 0.

Using a finite element approximation we can construct local functions W e of Iei , i = 1, 2, 3,
which are polynomials of the nodal coordinates. Here e indicates an element and the total
energy to be minimised is then W =

∑
eW

e. The Euler equations corresponding to the
minimisation of W is then subjected to further study. To adapt the mesh according to a
monitor function M , depending on some qualities of approximative solution of our PDE,
we can replace detF with M detF . This is a way to adjust the reference configuration
for each cell. When it comes to boundary conditions for our mesh problem we have the
freedom to choose a combination of fixing the nodes on adjacent sides and let them be
free to move on the other sides.

5.3 Pseudostructural Mesh

Other ways of constructing moving grids is to to set restrictions on how the individual
nodes of the grid may interact when moving the grid. This can be done for example by
introducing functions measuring local smoothness and orthogonality of the grid depending
on the relative position of the nodal points [10] and minimising this measure. Another
way is to introduce ficticious springs between the nodes of the grid, as illustrated in
Figure 5 for the 2-dimensional case. This idea was introduced by Batina in [11]. The
spring stiffness for a given edge is taken to be the inverse of the length of that edge. So
referring to Figure 5 the stiffness of the spring in between nodes i and j is

kij =
1

‖xi − xj‖ , (31)

where xi indicates the coordinates of the i’th node and ‖·‖ is the usual Euclidean norm
in R

2. The method can be further improved by introducing strings for the diagonals of a
quadrilateral element, or for a triangular element introduce a string from the midpoint of
its longest edge to its opposit node. This enables better control of the deformation of the
elements [15]. Approaches as explained above have been used on fluid-structure problems
[11, 16] with unstructured grids. Grid point are held fixed on the outer boundary of
the mesh and the instantaneous locations of the point on the inner boundary, around the
body, are prescribed by the movement of the structure. At each step the static equilibrium

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Initial grid

(a) Initial grid

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Structured moved (x,y) = (0.05,0.03)

(b) Moved grid

Figure 6: Movement of solid square

equation is solved iteratively by a predictor corrector method. Let δni be the displacement
vector of node i at time step n. Let δ̃i be the predicted movement of node i for the next
step in time. Then the mesh updating routine reads:

• δ̃i = 2δni − δn−1
i

• The displacements are corrected using several Jacobi iterations of the static equi-
librium using

δn+1
i =

∑
j∈V (i) kij δ̃j∑
j∈V (i) kij

,

where V (i) is the set of neighbour nodes to node i.

• And finally xn+1
i = xni + δn+1

i

What makes this method appealing is its simple construction. Given that you know
the displacement of the interior grid points from the surface motion/deformation of the
structure then the displacement of the other grid points can be found in usual very few
iterations. A simple example for a structured grid around a solid square is illustrated
in Figure 6. In the first picture we see the initial grid around a solid square. In the
second picture the square is moved slightly to the right and upward and the grids adjusts
to the displacement. For a fluid-structure computation one would ideally have a much
better refinement of the grid nearby the structure. This will add to the quality of the
solution but also avoid a too great deformation of the grid close to the structure. The
better the refinement the smaller the distance in between the neighbour nodes gets and
thus the stiffness of the imaginary springs get larger and will change less. This kind of
pseudostructural grid has been used in fluid structure computations where the structure
movement is pressure driven. The solution process of the fluid-structure problem is then
described in three basic steps:

a) Advance the structural part of the system under a given pressure load

b) Adjust the fluid mesh accordingly

15

c) Advance the fluid system and compute a new pressure load

5.4 Harmonic Extension of Boundary Movement

Often in practice we are given the initial configuration Ω0 and the evolution of its boundary
g : ∂Ω0 ×T → ∂Ωt. A simple method for finding the mesh movement in the domain from
elastic dynamics was proposed in [5]. The idea is to harmonically expand the evolution
of the boundary onto the whole of Ω0.

∂x

∂t
−∇ξ · (κ∇ξx) = 0, ξ ∈ Ω0, t ∈ I (32)

x(ξ, 0) = ξ, ξ ∈ Ω0 (33)

x(ξ, 0) = g(ξ, t), ξ ∈ ∂Ω0, t ∈ I (34)

In practice we need only know the ALE map at discrete time levels. If we know the
evolution of the boundary for to a given time, h : ∂Ω0 → ∂ΩT , we are left with solving

∇ξ · (κ∇ξx) = 0, ξ ∈ Ω0 (35)

x(ξ, 0) = h(ξ), ξ ∈ ∂Ω0, (36)

for each time step. Here κ is a positive constant. Letting κ be a tensor function depending
on the numerical solution of the problem at hand, may allow an adaptive scheme as well.
Since the mesh is moved anyway, adaptivity can be achieved at very low additional cost.

6 Moving Grid Methods

6.1 Grid Deformation

The deformation method is a fairly new method for generating adaptive grids to both
stationary and time-dependent problems. The deformation method looks at the overall
problem and produces a coordinate mapping of the whole domain. As for elasticity
problems the deformation method determines a deformation map, but rather than using
knowledge from continuum mechanics, the method is based on differential geometry. It
moves the nodal points of the grid in such a way that the resulting grid adapts to a
prescribed physical monitor function.

The idea behind the method dates back to the results of Moser [17] and Moser and Da-
corogna [18]. Assuming that the Jacobian determinant equals a strictly positive monitor
function, they prove the existence of a coordinate map, φ, which adapts the cell volume of
the resulting grid to the monitor. This result is used by Liao and coworkers to create an
adaptive method based on grid movement. Through several articles [19, 20, 21, 22, 23, 24]
the method was first presented for the stationary case and then later developed in the
time-dependent case.

The methods are both directly based on the proofs and follow the same path towards
the final coordinate mapping. The main result for the stationary case, as given in [20]
and [21] is the following theorem 6.1.

Theorem 6.1
Let Ω be a bounded open set in R

n, B be a ball in R
n. Suppose there exists φ : Ω → B,

an orientation preserving Ck+3 diffeomorphism, k ≥ 1. Let f > 0 be in Ck(Ω̄) and

16

∫
Ω

1/f(x) dx = |Ω|. Then there exists u ∈ Diff k(Ω̄) satisfying

det∇u(x) = f(u(x)), x ∈ Ω, (37)

u(x) = x, x ∈ ∂Ω.

The proof of Liao and Su is based on the observation that if w(x) solves the problem

det∇w(x) = f(x), x ∈ Ω (38)

w(x) = x, x ∈ ∂Ω,

then u(x) = w−1(x) solves (37). This follows from the identity w(u(x)) = x. The problem
in (38) is the one dealt with by Dacorogna and Moser in [18]. This is the form of the
deformation method as it was presented in [19]. In this case the Jacobian determinant
is prescribed at the old coordinates. The method was later modified to prescribe the
Jacobian determinant of the coordinate mapping at the new coordinates. The proof of
theorem 6.1 boils down to proving the existence of w(x) in [18]. The proof is composed
of two steps, and follows basically the one by Dacorogna and Moser.

1. Find v ∈ Ck+1(Ω,Rn) such that v solves

div v(x) = g(x) − 1, x ∈ Ω, v(x) = 0, ∈ ∂Ω (39)

2. Fix x ∈ Ω̄ and solve the ODE

∂

∂t
φ(x, t) = η(φ(x, t)), t > 0, φ(x, 0) = x, (40)

where η : Ω̄ → R
n is the deformation field

η(y) =
v(y)

t+ (1 − t)g(y)
, where g = 1/f. (41)

The solution w(x) = φ(x, 1) of (40) at t = 1 will then solve (38). This follows by proving
that the quantity H(x, t) = [t+ (1 − t)g(φ(x, t))] det∇φ(x, t) is independent of time.

As mentioned, viewing the mapping φ as a coordinate map, it is clear that a volume
element under the mapping φ will be deformed in such a way that its volume adapts
to the positive monitor function. The restriction that f > 0 and that the mapping is
bijective on the boundary of the domain ensures that the coordinate mapping is bijective
on the whole domain. In theory, grid crossing should not occur. The discussion of this is
included in [24] and rests on use of the rank theorem or the inverse function theorem.

To use the deformation method to create an adaptive grid one needs to prescribe a
monitor function that will concentrate on the particular properties of the solution that one
wants to zoom in on. The choice of monitor function may depend on the type of problem
at hand. In [25] the monitor function is chosen to adapt to large pressure gradients, so
their choice is

1

f
= C1(1 + C2∇p).

The time dependent version of the grid deformation method is not very different from the
stationary one. The idea is to construct a time-dependent coordinate mapping ψ, whose
Jacobian determinant is given as a time varying monitor function f(x, t). The deformation

17

method for non-stationary problems was presented in [23, 22]. Given a monitor function
f(x, t),

f(x, 0) = 1, x ∈ Ω (42)∫
Ω

(1
f
− 1
)
dΩ = 0, t ∈ [0, T] (43)

the time dependent deformation method constructs a mapping ψ : Ωc → Ωt such that

det∇ψ(x, t) = f(ψ(x, t), t), x ∈ Ω (44)

ψ(x, t) ∈ ∂Ω, x ∈ ∂Ω

ψ(x, 0) = x, x ∈ Ω

Ωc is here the reference domain, and Ωt the current configuration. Again the proof consists
of two steps, with only slight modifications to the stationary version.

1. Find a vector field v such that

div v(x) = − ∂

∂t

1

f(x, t)
, x ∈ Ω, t ∈ [0, T] (45)

(v, n) = 0, on ∂Ω,

where n is the outward normal to the boundary ∂Ω.

2. Then

∂

∂t
ψ(x, t) = η(ψ(x, t), t) = v(ψ(x, t), t)f(ψ(x, t), t), 0 ≤ t ≤ T, (46)

ψ(x, 0) = x, (47)

Finally one has to prove the time-independence of H(x, t) = g(ψ(x, t), t) det∇ψ(x, t).
Liao and coworkers have also used this point of view to generate grids on surfaces and

also implemented moving boundaries and grid morphing in [26].
When it comes to the implementation of the deformation method, there are several

challenging issues to be faced. In a numerical experiment one is forced to construct the
the monitor function based entirely on the properties of the numerical solution at hand.
The monitor function should reflect the need for grid refinement. The monitor function
is the link between the need and the actual implementation of the grid adaption. Several
candidates have been proposed in the literature. These choices are listed in [24]:

f(x, t) =
C

1 + α1|∇u|2 + α2|u|2

f(x, t) =
C√

1 + α|∇u|2

f(x, t) =
C

1 + |u| .

Another possibility is, given a positive error estimate δ(x, t) of the solution, one may
choose f(x, t) = C/δ(x, t). Regardless your choice, the initial (42) and normalisation (43)
conditions must be obeyed.

18

6.1.1 Solution Strategies and Implementation Issues

In the first step of both the static and time-dependent versions we have to find a velocity
field, with known divergence. This is clearly an under determined system because a
velocity field may be uniquely decomposed into a divergence free and a curl free part.
In order to find a unique velocity field Liao and coworkers set curl u = 0. The resulting
system is a div-curl problem

div u(x, t) = − ∂

∂t

1

f(x, t)
, in Ω (48)

curl u = 0, in Ω (49)

u · n = 0, on ∂Ω. (50)

There are several ways to solve this problem. In [27] Cao, Huang and Russell develop
a moving grid method. They end up solving the same type of problem, in fact the
deformation method is a special case of their method. One alternative is to minimise the
functional

I[u] =

∫
Ω

| div u− f |2 + | curl u|2 dx, (51)

and another is to solve the Euler-Lagrange equations of the functional directly. A third
alternative is to use equation (49) which implies that u = gradw. This results in the
Poisson problem with homogeneous Neumann conditions.

∇2w = 0, in Ω (52)

∂w

∂n
= 0, on ∂Ω. (53)

Getting the boundary conditions correct is a serious challenge. In the last alternative
mentioned the problem is to get a continuous velocity field v. Solving the Poisson problem
using a finite element method and setting v = gradw will not result in a continuous field.
A smoothing algorithm is needed as well. Issues of the implementation of the various
alternatives are discussed in [24] and [27].

Equipped with a velocity field v(x, t) we have to integrate the system (46) – (47). Liao
and coworkers claim that any ODE solver may be used. For example an explicit Runge-
Kutta method. Still there are obstacles to overcome. Using an s-stage Runge-Kutta
method, we have to evaluate the velocity field at s intermediate points. This means we
have to interpolate the velocity field.

One of the advantages of the deformation method is that it is not restricted by the
dimension of the problem. In theory it should produce an adaptive moving mesh, which
has no grid crossing. One drawback of the method is that it does not produce orthogonal
grids, and the velocity field is not necessarily rotation free. This may result in a grid which
is too skewed and, thus, inappropriate for the application of the finite element method.

6.2 Moving Mesh Partial Differential Equation

The Moving Mesh Partial Differential Equation (MMPDE) method for dynamic meshes
was first introduced by Huang et. al. in [28, 29]. It computes nodal positions alongside
the physical solution in a tightly coupled fashion.

The method comes in various shapes depending on the dimensionality of the physical
problem. In the simplest case of one space dimension, the MMPDEs are based on the

19

“equidistribution principle” which is also applied in the moving finite difference method
by Dorfi and Drury described in [30]. This form is presented in more detail below. Early
development of the method did, however, not show extendibility of this approach to prob-
lems of higher physical dimensionality. Nevertheless, the MMPDE method has, through
other generalisations, been successfully applied to 2D problems in fluid mechanics such
as air-foil analysis and laminar flame propagation.

6.2.1 The Equidistribution Principle

The “equidistribution principle” (EP) is, simply put, the placement of nodes, xi, in a
one-dimensional physical region, Ωp, in order to distribute a positive monitor function,
M = M(x, t), evenly across the various sub intervals, [xi, xi+1]. Furthermore Ωp can,
through a suitable scaling of the variables, be assumed to be equal to the interval [0, 1].
Stated in its integral form, the EP reads∫ x(ξ,t)

0

M(x̃, t) dx̃ = ξθ(t) (54)

in which θ(t) =
∫ 1

0
M(x̃, t) dx̃ and x(ξ, t) maps the computational coordinate ξ ∈ Ωc =

[0, 1] at time t into physical coordinates. The effect of equation (54) is to place the physical
variable x in Ωp such that a fraction ξ of the total integral of the monitor function is
accounted for. If the computational coordinate, ξ, is discretised by a uniform grid, eg.
ξi = i/n, i = 0, . . . , n, then between two consecutive nodes in the physical domain, xi and
xi+1, we will have ∫ x(ξi+1,t)

x(ξi,t)

M(x̃, t) dx̃ =
1

n
θ(t).

In other words, the total monitor integral is distributed equally among the n sub intervals.

6.2.2 The MMPDE Method

The EP in (54) can be restated in two different differential forms by differentiating with
respect to ξ to give what Huang et. al. denote as “quasi-static EPs” (QSEPs)

M(x(ξ, t), t)
∂

∂ξ
x(ξ, t) = θ(t) (55)

and

∂

∂ξ

{
M(x(ξ, t), t)

∂

∂ξ
x(ξ, t)

}
= 0. (56)

The concept of QSEPs is then used to formulate the MMPDEs by differentiation with
respect to time and [28] describes seven different MMPDEs with varying properties and
with or without temporal regularisation. The regularisation is used to decrease stiffness
of the resulting ODE system in much the same way as is often seen in numerical solution
of Differential Algebraic Equations (DAEs). The effect of temporal regularisation is to
make the system less sensitive to changing properties of the physical solution because exact
equidistribution is not required at every t. Without the regularisation the Jacobian matrix
may become singular, which indicates a defective coordinate transformation. Further
analysis of MMPDEs is available in [31].

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

x

u(
x,

t)

t = 0.00000
t = 0.20000
t = 0.60000
t = 1.00000
t = 2.00000

(a) Numerical solution, u(x, t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

t

(b) Grid trajectories, x(t)

Figure 7: Numerical solution to Burgers’ equation and associated grid trajectories, MM-
PDE case.

The MMPDEs are all continuous with respect to time and space and thus need to be
discretised in order to establish a complete discrete system to be solved in conjunction
with the physical problem. The discretisation most commonly suggested in the literature
is a semi-discretisation in space using finite differences according to the method of lines
(MOL) approach. This results in a system of ordinary differential equations (ODEs) which
is usually stiff. If the MOL is applied to the physical problem as well, the end result is
a system of ODEs of dimension 2n with n being the number of nodes. This system is
ordinarily integrated using a stiff ODE solver.

Figure 7 displays the numerical solution, and the induced grid movement, to the one-
dimensional boundary value problem composed of the Burgers’ equation

ut = εuxx − (1
2
u2)x, x ∈ [0, 1] (57)

and the following boundary and initial conditions

u(0, t) = u(1, t) = 0 (58)

u(x, 0) = sin(2πx) + 1
2
sin(πx) (59)

solved using the moving grid method derived from discretising the MMPDE known as
MMPDE6 in [28]

∂2ẋ

∂ξ2
= −1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
. (60)

The temporal regularisation parameter used in this test was τ = 10−3 and the plots were
produced from a slightly modified version of The MathWorks’ BURGERSODE demonstration
code for ODE15S in MATLAB R12. We note in particular that the grid points concentrate
around the shock and that grid distortions reflect from the right as the shock reaches
the right wall at approximately t = 1.42. In comparison, figure 8 displays numerical
solution and grid trajectories computed by the moving finite difference method of Dorfi

21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

x

u(
x,

t)
t = 0.00000
t = 0.20000
t = 0.60000
t = 1.00000
t = 2.00000

(a) Numerical solution, u(x, t)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

t

(b) Grid trajectories, x(t)

Figure 8: Numerical solution to Burgers’ equation and associated grid trajectories, moving
finite difference case.

and Drury. The overall behaviour is the same as in the MMPDE case of figure 7, but the
grid distortion as the shock reaches the right end of the interval is less abrupt.

An additional possibility in moving mesh methods based on MMPDEs is the incor-
poration of spatial smoothing. Several filters have been introduced and their proper-
ties in terms of resulting mesh movement, computational complexity and likelihood of
nodal crossings are somewhat varied. A consistent conclusion, however, is that spatial
smoothing, at the expense of introducing additional tunable parameters into the meth-
ods, greatly lessens sensitivity to swiftly varying or non-physical features of the physical
problem. This produces more smoothly transforming meshes and controls “wiggles” some-
times seen in non-regularised methods based on MMPDEs. On the other hand, too much
spatial smoothing will produce mesh movement lagging behind the important physical
features, yielding a method unsuited to resolve those features.

6.2.3 Monitor Functions

Monitor functions are, in general, problem dependent. The choice of the monitor function,
M , has been a matter of some debate. One approach is to choose the function based on a
set of important features of the physical problem and how well these features need to be
resolved in the numerical solution. Such a monitor might, for instance, attempt to place
a larger number of nodes within a steep front of the solution and thus view large solution
gradients and, perhaps in addition, second derivatives, as a significant metric.

A common monitor function of this kind is the “arc length” monitor

M(x, t) =
√

1 + u2
x(x, t) , (61)

which, u being the solution to the physical problem and ux = ∂u/∂x, aims to distribute
nodes in such a way that the arc length of u in each sub interval is more or less uniform.
Computational experience has shown this to be a satisfactory monitor function in many
cases, but other choices are indeed possible. These may include monitors based on derived
quantities, such as stresses in an elastic material.

22

Another possibility, not directly related to properties of the physical problem, is to
choose the monitor function to be an error estimate or other error indicators of the
numerical solution. Regions of high error will the be more resolved in this approach.

A conclusive study of implications of the monitor function has not been published
at the time of this writing, but [32] offers an analysis of some of the monitor functions
commonly used. It specifically aims at the case of two space dimensions and has a brief
discussion of the three-dimensional case.

6.2.4 Extension to Several Space Dimensions

In multiple space dimensions, the situation is not as clear cut as in one space dimension.
There is, as yet, no satisfactory generalisation of the one-dimensional EP to d spatial
dimensions and the possibility of, for instance, nodal crossing increases when going above
one space dimension. In [33], however, the authors, based upon work by Winslow and
Brown, develop high dimensional MMPDEs using other monitor functions.

The basic idea is to construct the coordinate mapping, x = x(ξ, t), with ξ = (ξ1, . . . , ξd) ∈
Ωc = [0, 1]d being the computational coordinate and x = (x1, . . . , xd) being the coordinate
in physical space, Ωp ∈ R

d, such that a mesh adaption functional is minimised.
The mesh adaption functional

I[ξ] = 1
2

∫
Ωp

∑
i

(∇ξi)TG−1
i ∇ξi dx = 1

2

∫
Ωp

∑
i

(ai)
TG−1

i ai dx, (62)

is often used in deriving the MMPDEs in multiple space dimensions. We denote by
ai = ∇ξi, and ∇ = (∂/∂x1, . . . , ∂/∂xd). The matrices Gi, i = 1, . . . , d are assumed
symmetric and positive definite (SPD) and are the multi dimensional equivalents of the
simple monitor functions of section 6.2.3. Applying Hamilton’s principle to minimise the
functional in (62) yields the Euler-Lagrange equations

δI[ξ]

δξi
= 0 ⇔ ∇ · (G−1

i ai) = 0, i = 1, . . . , d (63)

which determine the coordinate transformation ξ = ξ(x, t), used in static mesh generation
and as a basis for dynamic adaption. The MMPDEs derived from (63) use the same
theoretical basis as the ones in the original papers [28, 29], and read

∂ξi
∂t

=
1

τ
∇ · (G−1

i ai), (64)

with τ > 0 being a user defined parameter adjusting the time scale, and thus responsive-
ness, of the mesh equation.

Alternatively, it is possible to compute the coordinate mapping x = x(ξ, t) directly by
inverting the rôle of dependent and independent variables in (63) and this is an approach
often used in actual computations. The resulting MMPDEs are highly non-linear and
read as

∂x

∂t
+
∑
i,l

xξi
τJ

∂

∂ξl

{ 1

Jgi
[(xξj)

TGixξm · (xξk)
TGixξn − (xξj)

TGixξn · (xξk)
TGixξm]

}
= 0, (65)

with (i, j, k) and (l,m, n) varying cyclically. Here gi = detGi, (xξi)r = ∂xr/∂ξi, r =
1, . . . , n and J = det ∂x/∂ξ. Huang et. al. [33] have additional details and give specific

23

simplifications for the two-dimensional case. It furthermore describes a method, known
as SEAF (Spatial-Eigenvalue Approximate Factorisation), to accommodate efficient nu-
merical integration of the discretised version of (65). Other notes on formulation and
implementation of moving mesh methods based on MMPDEs may be found in [34], which
also, briefly, discusses how spatial smoothing may be applied to the monitor function.

A couple of monitor functions are listed, notably the arc length-like

G1 = G2 =
1√

1 + ‖∇u‖2
2

(
I + ∇u(∇u)T

)
(66)

for the 2D case and the slightly more involved

G1 = G2 = G3 =
1
√
g
G (67)

G(x) = I + f(x, F (x))
∇F (x)

(
∇F (x)

)T
‖∇F (x)‖2

2

(68)

in three dimensional cases. Here f depends on the distance from a point x ∈ Ωp to the
surface F (x) = 0. It is assumed that f increases as this distance decreases. There are
however other choices possible and [35] studies a monitor function based on a posteriori
error estimates. This work is complemented by a comparison of various a posteriori error
estimate monitor functions in [36].

Both of these papers use spatial smoothing. The smoothing is accomplished by ap-
plying a low-pass filter m times to the discrete, monitor function. The low-pass filter
removes some of the most sensitive modes, thus normally making the method more sta-
ble. In particular, the low-pass filtering procedure is defined as follows

G(µ+1)(xp, t) =

∫
C(ξ

p
)
G(µ)(x(ξ

p
, t)) dξ∫

C(ξ
p
)
dξ

, µ = 0, . . . , m− 1

in which xp is a mesh point in Ωp and ξ
p

is its corresponding mesh point in Ωc. The

integration domain C(ξ
p
) ⊂ Ωc is the union of neighbouring mesh cells having ξ

p
as one

of its vertices. The monitor function G(0) is the one computed from the monitor definition
in for instance (66) or (67)–(68).

6.3 Moving Finite Elements (MFE)

The moving finite element method was first introduced by Miller and Miller [37, 38] as
an extension to the ordinary finite element method. The method may be viewed as an
r-adaptive method similar to the moving finite differences of Dorfi and Drury [30] and
the moving mesh partial differential equations of Huang et. al. [28, 29], with a particular
focus on finite element solution to PDEs of the form

ut = Lu, (x, t) ∈ Ω × [t0, T). (69)

The differential operator L is in general nonlinear and dependent upon spatial derivatives
of the physical solution, u, in addition to u itself. It may additionally include source terms

The goal of all adaptive methods is to facilitate the computation of numerical solutions
to (69) more cheaply than static or non-adaptive methods. As such, the moving finite
element method aims to achieve a given accuracy, and, possibly, stability requirement
by relocating nodal points to regions of the computational domain where they are most
needed.

24

6.3.1 Standard Finite Elements for Time Dependent Problems

This section gives a short review of a basic technique for solving time dependent prob-
lems, such as (69), using standard finite elements. The approach taken here is that of
spatial semi-discretisation or the method of lines which produces a system of stiff ordinary
differential equations to be subsequently discretised in time. Other approaches include
first discretising in time by some well-known ODE solver, eg. multi-step methods such as
BDF or other temporal finite differencing, and then solving the resulting elliptic differen-
tial equation on each time step by finite elements. For details on the latter approach one
might consult [39, 4, 40] or similar references.

A point of departure when formulating a numerical procedure for (69) is to restate
the problem in variational form and minimising the residual error

R(w) =

∫
Ω

(wt −Lw)2 dΩ

where w ∈ U and U is the space of admissible functions. Elements of U have to be
sufficiently differentiable and satisfy the essential boundary conditions. In other words:
Find ut ∈ U such that

ut = arg min
w∈U

R(w). (70)

As R(w) = (wt −Lw,wt −Lw)2 = ‖wt − Lw‖2
2, this is by Pythagoras’ theorem equiva-

lent to requiring that the variational error, ut − Lu, be orthogonal to the space U . Thus
problem (70) is mathematically equivalent to the following orthogonality conditions: Find
ut ∈ U such that

(ut − Lu, v)2 = 0 (71)

for all v in U and all t ∈ [t0, T).
Standard finite element theory solves this problem by introducing a simplified, finite

dimensional space, Uh ⊂ U . It is assumed that Uh is endowed with a basis {φi}ni=1 which
fully describes the resulting numerical method. The space of piecewise linear functions
is often used in practice, but higher order polynomial basis functions may be applied
equally well. The numerical solution is then defined as a linear combination of these basis
functions with coefficients depending on time. In particular, the numerical solution is
often stated as

uh(x, t) =

n∑
j=1

uh,j(t)φj(x) (72)

and thus

∂uh
∂t

=
n∑
j=1

∂uh,j
∂t

(t)φj(x). (73)

We wish to compute the numerical solution, uh, which is closest to the exact solution,
u. Closeness is here measured by the L2-norm of the error, ‖u− uh‖2, and we define the
following minimisation problem: Find ∂uh/∂t ∈ Uh such that

∂uh
∂t

= arg min
w∈Uh

‖ut − wt‖2.

Appealing once more to the Pythagorean theorem, this means ut − ∂uh

∂t
⊥ Uh.

25

Inserting the numerical solution (72) into the variational problem (71) and requiring
that the numerical error u− uh be orthogonal to Uh leads to the requirement that

(∂uh

∂t
− Luh, v)2 = 0 (74)

for all v in Uh. This is a less stringent requirement than the full variational formu-
lation (71). On the other hand it produces a discrete system to which a solution is
computable by numerical methods.

Using v = φi, i = 1, . . . , n as test functions in (74) the following system of ordinary
differential equations (ODEs) is derived

Mhu̇h = Ahuh (75)

in which (Mh)ij =
∫
Ω
φjφi dΩ, (Ah)ij =

∫
Ω
φiLφj dΩ and (uh)i = uh,i. As the various

entries in Mh are defined through symmetric inner products, Mh is symmetric and posi-
tive definite (SPD). Mh and Ah are respectively denoted as the “mass matrix” and the
“stiffness matrix” in the literature.

6.3.2 Finite Elements with Moving Basis Functions

The basis functions, φj , in the ordinary FE method all depend implicitly on the static
nodal locations X ∈ T with T being the set of all meshes on Ω. The moving finite
element method extends the notion of a basis function to allow the nodal locations to
dynamically move in time. In the following we will make the implicit dependence on
nodal locations explicit and denote by φj(x,X) the j’th basis function evaluated at x ∈ Ω
and defined by the current mesh. Most of the MFE theory presented here is contained in
the monograph [41] to which we refer for further details.

Inserting this into the numerical solution (72), we obtain the extended numerical
solution

∂uh
∂t

=
n∑
j=1

∂uh,j
∂t

φj +
n∑
j=1

uh,j
∂φj
∂t

. (76)

Let Xk be the k’th node in the mesh X with k ranging from 1 to n. Then the final term
of (76) through the chain rule becomes

n∑
j=1

uh,j

n∑
k=1

(∇Xk
φj)

T ∂Xk

∂t
=

n∑
k=1

[n∑
j=1

uh,j(∇Xk
φj
)T]∂Xk

∂t
.

Introducing “second-type basis functions”, ψj , defined as ψj =
∑n

k=1 uh,k∇Xj
φk = ∇Xj

uh,
(76) may be rewritten as

∂uh
∂t

=

n∑
j=1

[∂uh,j
∂t

φj + ψTj
∂Xj

∂t

]
. (77)

In the case of φj being piecewise linear, continuous functions, ψj are piecewise linear and,
in general, discontinuous functions. A drawing of φj and ψj in this special case may be
found in figure 9.

The nodal velocities, ∂Xj/∂t, are, as yet, undetermined and the basic mechanism by
which the MFE determines these velocities is derived similarly to static finite elements.

26

j−1 jX Xj+1

ϕj

X

(a) first-type basis function, φj

j−1 Xj Xj+1

ψ
j

X

(b) second-type basis function, ψj

Figure 9: First and second type basis functions, 1D, linear φj

We wish to minimise the residual error, R(uh), but now taking into account that the min-
imisation may be done over an extended space. This leads to the variational formulation:
Find ∂uh

∂t
∈ U, ∂X

∂t
∈ T such that

(∂uh

∂t
− Luh, φi)2 = 0 (78)

(∂uh

∂t
−Luh, ψi)2 = 0 (79)

for all i = 1, . . . , n. Inner products are taken component wise when there is more than
one component. Inserting the numerical solution (77) into the system (78)–(79) yields
the following system of ODEs for all i:

n∑
j=1

(φi, φj)2u̇h,j +
n∑
j=1

(φi, ψ
T
j)2Ẋj = (φi,Luh)2 (80)

n∑
j=1

(ψi, φj)2u̇h,j +

n∑
j=1

(ψi, ψ
T
j)2Ẋj = (ψi,Luh)2. (81)

Denoting by Y the vector composed by the n sub-vectors

Yi =

(
uh,i
Xi

)
, i = 1, . . . , n,

the system of ODEs may be written in matrix form as Ah(Y)Ẏ = Fh(Y). The matrix
Ah is, in the case of a scalar equation (69) in d space dimensions, an n× n block matrix
in which each of the (d+ 1) × (d+ 1) blocks are

(Ah)ij =

(
(φi, φj)2 (φi, ψ

T
j)2

(ψi, φj)2 (ψi, ψ
T
j)2

)
. (82)

The right hand side vector Fh is constructed similarly to Y in that

(Fh)i =

(
(φi,Luh)2

(ψi,Luh)2

)
. (83)

27

6.3.3 Gradient Weighted Moving Finite Elements

A weighted form of the variational formulation (78)–(79) is often recommended, in partic-
ular when the method is overly sensitive to specific features of the physical problem (eg.
steep fronts). Such weighting replaces the inner products (f, g)2 in equations (82)–(83)
by inner products with respect to a given, positive, weight function w : Ω → R

+ defined
as

(f, g)w =

∫
Ω

f(x)g(x)w(x) dΩ. (84)

One of the most studied such weighting functions give rise to what is known as the
“gradient weighted” moving finite element (GWMFE) method. In this case w is defined
as

w(x) =
1√

1 + ‖∇u‖2
2

(85)

with u denoting the solution to (69) and ∇u the gradient with respect to the physical
variable x. This weight function lessens the emphasis on regions of high solution gradients
which means that the effect of minimisation in the steep parts is reduced. The effect is
to limit the method’s sensitivity to high gradients which, although an important feature,
may introduce more stiffness into the mesh movement differential equation.

In addition to this direct effect, the GWMFE method has a more geometric interpreta-
tion than the “bare” MFE method and this is reflected in practical implementations of the
method. Carlson and Miller have published papers [42, 43] which detail design and appli-
cation of GWMFE codes based on this interpretation. The basic idea is to transform the
equation locally by dividing both sides of (69) by the gradient weighting function (85) and
recognising the term ut/

√
1 + ‖∇u‖2

2 as the normal velocity of the graph of the function
u. Thus the physical equation becomes

ṅ = Ku (86)

in which Ku = (Lu)/
√

1 + ‖∇u‖2
2.

The consequences of this reformulation may not be immediately apparent, but when u
is allowed to be an evolving, oriented manifold in Euclidean space some simplification are
more easily realised using this version. In particular, embedding the nodal positions Xj

into the numerical definition of the manifold as uh,j = (Xj , uh,j), j = 1, . . . , n, we obtain
the finite element discretisation

uh =
n∑
j=1

uh,jφj. (87)

The basis functions φj do not depend on time in this version of the MFE method, and
this obviates the use of the second type basis functions, ψj , because the motion u̇h may
be expressed as

u̇h =

n∑
j=1

u̇h,jφj.

Furthermore, the normal motion, ṅ, is given as ṅ = u̇ · n in which n is the unit normal
vector of the manifold.

The discrete equations derived from this method may be based on either a minimi-
sation statement applied to the residual error or a local force balance at each node.
Regardless of derivation, the equations are nevertheless expressed as∫

S

(u̇h · n)nφi dS =

∫
S

Kunφi dS (88)

28

for each node. The integrals are evaluated over the GWMFE manifold, denoted here by
S. Equation (88) leads to a system of n · (d+1) non-linear ordinary differential equations
which is usually stiff and may be written similarly to the MFE case as Ah(Y)Ẏ = Fh(Y).

When extending this method to systems of PDEs, Carlson and Miller use a single,
shared mesh to represent the computational nodes for each differential equation. The
rationale behind this is simplicity of implementation because the data structures involved
in keeping track of which nodes belong to which mesh in a multi-mesh implementation
quickly become overly complex. They also claim that the resulting system of ODEs is
non-smooth when a node in one grid becomes part of a different cell or element in another
grid which has severe implications for the ODE solver. The shared mesh implementation
adds extra unknowns to each node and extends the local force balance to use a weighted
sum of forces stemming from each of the single PDEs.

6.3.4 Regularisation of MFE and GWMFE

It should be noted that Ah of (82) has a non-linear dependence on Y even if the PDE (69)
is linear. This makes numerical solution of Ah(Y)Ẏ = Fh(Y) more difficult than in the
static FE case. The latter requires the solution of (75) in which the positive definite mass
matrix Mh can be computed once and perhaps even factored to provide a more easily
computable system. On the other hand Ah of the MFE method must be recomputed at
least once every time step in an unmodified ODE procedure. Furthermore, it is only pos-
itive semi-definite which introduces additional difficulties to the solution process. Finally,
the sub-matrices (Ah)ij may become singular if nodes coalesce.

To overcome some of the problems with respect to semi-definiteness and singularities,
various types of regularisation have been proposed. A specific type of regularisation
is defined by adding penalty functions to the error residual R. In particular, adding
an inter-nodal viscosity term penalising relative nodal motion (terms of the form Ẋk −
Ẋk−1) has proved helpful. Such kinds of regularisation were deemed necessary even in the
introductory reports by Miller and Miller, and the specific one-dimensional error residual
was there listed as

R(w) = ‖w −Lw‖2
2 +

n∑
j=2

[
ε(Ẋj − Ẋj−1)

]2
. (89)

This is, however, not the only regularisation scheme which has been applied to MFE.
The situation is similar in the GWMFE case. Since the method only determines how

the nodes move in the direction normal to the GWMFE manifold, there is no inherent
mechanism for describing motion tangential to the manifold. This causes degeneracy of
the mass matrix in situations where the normal vectors of adjacent elements do no span
the whole of Euclidean space. Then there exists one or more directions in which nodal
movement causes no normal movement of the GWMFE manifold.

A solution proposed by Carlson and Miller in [42, 43] is to add extra inter-nodal
viscosity of the form

n∑
j=1

ciju̇h,j, cij = ε

∫
S

∇φi · ∇φj dS (90)

with ε > 0 being a small parameter chosen in the interval [0.25, 25] · tol 2 for a specific
numerical tolerance, tol . Thus, the system Ah(Y)Ẏ = Fh(Y) becomes

(Ah(Y) + C)Ẏ = Fh(Y)

29

with the added bonus of the regularisation becoming negligible away from critical regions.
These regions are characterised by the solution varying less than tol between adjacent
nodes which means that the solution is numerically planar.

A further refinement to the regularisation scheme in the GWMFE case is the introduc-
tion of inter-nodal tension. This is normally not needed, but Carlson and Miller report
improvement of the results for problems which are integrated over long times.

7 h-Adaptive Methods

h-refinement methods change the mesh iteratively either by regenerating or refining the
mesh at each step, until the user specification are met. The most usual way of accom-
plishing this is to demand an error estimate or some indicator of interest to be equally
distributed among the elements.

7.1 Predicting Optimal Element Size

In order for solution adaptive finite element analysis to be effective, it is important that
the adapted mesh be optimal—or close to optimal—in some sense. Intuitively, an optimal
mesh should guarantee that the error be less than or equal to a user prescribed tolerance
while at the same time minimise the cost of obtaining the numerical solution. In [44],
Coorevits, Ladeveze and Pelle propose and analyse a procedure for automating the finite
element analysis of two-dimensional elasticity problems. The method is derived from a
specific finite element error estimate, but can be extended to any error estimate provided
the global error can be obtained through a sum of local error contributions. Such error
estimates include all methods based on aggregate integrals which can be decomposed into
elemental integrals on the finite element mesh. This subsection will, however, follow the
general discussion of [44].

Based on a conservative elemental estimate for the error, a new mesh is constructed
to cater for error in regular regions of the computational domain as well as regions of sin-
gularity. Assuming that a kinematically admissible displacement field, Û , and a statically
admissible stress field, σ̂, have been computed from finite element analysis of an elasticity
model, the quantity

ê = σ̂ −Kε(Û)

is called the error in the constitutive relation. K is the Hooke tensor which relates the
strain, ε, to the stress, σ, through the displacement, U , such that σ = Kε(U). ê is zero
whenever (Û , σ̂) is an exact solution to the elasticity problem, but otherwise

e = ‖ê‖Ω = ‖σ̂ −Kε(Û)‖Ω (91)

may be used to measure the error of the numerical solution. The norm used here is the
problem specific energy norm

‖v‖Ω =
[∫

Ω

vTK−1v dΩ
]1/2

,

and using this definition, the relative error, ε is defined as

ε =
‖σ̂ −Kε(Û)‖Ω

‖σ̂ +Kε(Û)‖Ω

.

30

Within a smaller sub-region T ⊂ Ω, we have the local contribution to this estimate defined
as

εT =
‖σ̂ −Kε(Û)‖T
‖σ̂ +Kε(Û)‖Ω

,

from which we note that ε2 =
∑

T ε
2
T . The authors relate this error estimate to other

estimates proposed in the literature, and furthermore show that it is conservative in the
sense that the true error is always less than or equal to e.

Two conditions which have been used in assessing optimality of meshes, use slightly
different definitions of optimality.

1. A mesh, T ∗
h , is optimal with respect to an error estimate ε, if

• ε∗ = ε0, ε0 user prescribed error tolerance.

• The number, N∗, of elements of T ∗
h is minimal.

2. A mesh, T ∗
h , is optimal with respect to an error estimate ε, if

• ε∗ = ε0, ε0 user prescribed error tolerance.

• ε∗ is uniformly distributed across T ∗
h .

The condition used in [44] is the first one, and the authors show that 1 and 2 are equiv-
alent for problems with regular solutions for which the obtained numerical accuracy is
determined by the spatial convergence rate of the finite element method only. This is,
however, not the case when singularities are present in the solution.

The equivalence for regular solutions is proved by assuming that the finite element
method has a convergence rate of q such that ε = O(hq) when the mesh size h tends to
zero. Then the local error εT of mesh Th is related to the local error ε∗T of mesh T ∗

h as

ε∗T
εT

=

[
h∗T
hT

]q
= rqT (92)

where rT = h∗T/hT is the refinement coefficient for element T . hT is the current mesh size
for element T whereas h∗T is the mesh size which must be imposed on T in order to assure
mesh optimality.

Using (92), the square of the error of mesh T ∗
h is evaluated as∑

T

(ε∗T)2 =
∑
T

r2q
T ε

2
T

and, as rT is the refinement factor of the mesh size in each spatial dimension of the element
T , the total number, N∗, of elements in the optimal mesh T ∗

h is

N∗ =
∑
T

1

r2
T

. (93)

Thus, determining the optimal mesh T ∗
h is equivalent to solving the constrained optimi-

sation problem 
minimise N∗ =

∑
T

1

r2
T

, subject to∑
T

r2q
T ε

2
T = ε2

0

(94)

31

for which the explicit solution

rT =
ε
1/q
0

ε
1/q
T

[∑
T ε

2/(q+1)
T

]1/(2q) ,
may be obtained by the method of Lagrange multipliers. This solution may then be
inserted into (92) to show that the contribution to the total error from an element T ∗ of
T ∗
h is

ε2
T ∗ = r2

T (ε∗T)2 = r2q+2
T ε2

T =
ε
2+2/q
0[∑

T ε
2/(q+1)
T

]1+1/q

which is uniform across all elements of T ∗
h .

On the other hand, as stated earlier, whenever the solution has singularities this result
is not true. The authors then discuss what needs to be taken into account to cater for
the non-regular solution. Singularities degrade the convergence rate depending on their
strength. This leads to a revised local relative error estimate of

εT = ChpT

with pT denoting the local convergence rate for the element T . pT is determined by
numerical estimates for elements connected to singular nodes and simply imposed as the
order of the shape functions in all other elements. Singular nodes, defined as mesh nodes
for which the numerical solution becomes singular, are detected through an automatic
procedure based on element area amplification of the local errors and a theoretical model
for convergence at singularities.

In this case the optimal mesh is defined through the optimisation problem
minimise N∗ =

∑
T

1

r2
T

, subject to∑
T

r2pT

T ε2
T = ε0

(95)

which is similar to (94) except that the constraint is extended to varying convergence
rates throughout the mesh. Solving (95) by means of a Lagrange multiplier A which has
to satisfy ∑

T

(ApT)−pT /(pT +1)ε
2/(pT +1)
T = ε2

0,

the refinement coefficients can be computed as

rT =
1

(ApT ε2
T)2(pT +1)

. (96)

This leads ultimately to deduction of the local error contribution from an element T ∗ of
the optimal mesh T ∗

h as

ε2
T ∗ = r2

T (ε∗T)2 = r2pT +2
T ε2

T =
1

ApT

which is not uniform throughout T ∗
h . The products

√
pT εT are, however, the same

throughout the whole of T ∗
h .

32

−1 −0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

(a) Initial grid

−1 −0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

(b) Refined grid

Figure 10: Uniformely refined grid

7.2 Mesh Generation

Several grid procedures for grid generation have been developed . To begin with the
generators could only generate grids with triangular elements. These generators were
based on the frontal method. Later generators for quadrilateral elements (in 2-dimension)
and for tetrahedral and hexahedral elements (in 3-dimension) have been developed. There
also exist methods based on the Delaunay triangulation.

7.3 Mesh Refinement Techniques

Instead of regenerating the mesh one may keep the mesh and refine it by subdividing its
elements. Generally this will result in a greater number of degrees of freedom compared
to a complete regeneration. For some time-dependent cases the transition in the solution
is not that great, so a re-meshing might not be necessary, and refinement may only be
needed in small areas. In this case a pure mesh refinement technique may be preferable.

Let us denote our finite element mesh by its collection of elements Th. If our goal is to
distribute the estimated error evenly among the elements there are two strategies used.

1. Let T ∈ Th be an element of the mesh, and let τ be obtained by subdividing T .
If we assume the error within each element T is chpT we may decide c and p with
our error estimate for T and τ , and this enables us to predict the error of further
subdividing the element.

2. Among all the elements let us pick the one with the greatest error and denote
η = maxT∈Th

ηT . An easy technique is to refine those elements where ηT ≥ γ · η for
some 0 < γ < 1 chosen buy the user.

When using a reasonable mesh generator it will make sure the elements are regular in shape
and well suited for finite element computation. It is important to maintain this shape
regularity during the refinement process. A much used strategy for the 2-dimensional
case is to refine an element by joining the midpoints of the edges. Figure 10 illustrates
this method for a uniform refinement technique. From a computational point of view it is

33

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.2

0

0.2

0.4

0.6

x

y

(a) Initial grid

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

y

(b) Refined grid

Figure 11: Adaptive refinement

cheaper to refine only in the areas most needed. Figure 11 shows the initial and adapted
grid for a plain strain problem. A material is attached to a rigid wall at its left hand side.
A force, directed downwards and slightly to the right, is then applied to its top face. Two
singularities are then created at the corners of the left-hand side of the object. The final
grid is refined only locally to these singularities. If we subdivide an element we introduce
hanging nodes on its edges. We are then faced with additional problem. Should we accept
hanging nodes or must the mesh be regular. If the latter is the case, we are forced to
introduce additional rules for subdividing the neighbour elements as well. An overview of
the techniques for triangular elements and their extension to the 3-dimensional case may
be found in [45].

8 Error Estimates

In an ideal world we would be able to find the exact solution of any problem. Unfortu-
nately, experience tell us this is not the case, so we have to look for approximate solutions
“good enough” for our use. If we denote the exact solution of a problem by u and the
finite element approximation by uh the error is defined

e = u − uh. (97)

In general the quality of an approximate solution is not equal at all points in space,
especially near singularities, so we usually consider some appropriate norm, ‖e‖, of the
error. To control the quality of our approximate solution we demand the error norm to
be less than some specified limit. Obviously, if we knew the exact solution there would
be no need of an approximation, so in general we are forced to look for ways to estimate
the error. In some applications only special qualities of the solution are emphasised. In
these cases we may use appropriate indicators to measure the solution quality instead.
This section is dedicated to various posteriori error estimation methods.

34

8.1 Recovery Methods

The idea of recovery methods is to post process the approximate solution and in return get
an even better approximation. We will cover two such techniques, namely superconvergent
patch recovery (SPR) and recovery by equilibration of patches (REP). The two methods
recover an improved stress field. In elasticity problems the error in the stress field may
be a good indicator for adaptivity. In this subsection we will direct our attention to the
following strain-displacement equations, the elastic stress-strain law and the equations of
equilibrium

ε = Du in Ω (98)

σ = Cε in Ω (99)

D
Tσ + b = 0 in Ω. (100)

In two dimensions, the above are ([46])

σ = [σxx, σyy, σxy]
T the vector of stress components

ε = [εxx, εyy, 2εxy]
T the vector of strain components

u = [u, v]T displacement vector

b = [bx, by]
T body forces

D =

 ∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

 strain-displacement operator

C =
E

1 − ν2

1 ν 0
ν 1 0
0 0 1

2
(1 − ν)

 stress-strain matrix.

E is Young’s modulus and ν is Poisson’s ratio. To complete the problem, we prescribe
displacements and tractions on non-overlapping parts of the boundary.

u = ũ on ∂Ωu (101)

Qσ = t̃ on ∂Ωt, (102)

where ∂Ω = ∂Ωu ∪ ∂Ωt. The Cauchy transformation matrix, Q, is given as

Q =

[
nx 0 ny
0 ny nx

]
,

where n = [nx, ny]
T is the outward unit normal at the boundary. In a variational for-

mulation, used in FEM, the system of equations (98)–(100) is solved in terms of the
displacement u. The result is a continuous displacement field, but the recovered stress
field, σh = CDuh, is in general discontinuous across element boundaries. Our goal for
this subsection is thus to present ways of improving the stress field.

8.1.1 Superconvergent Patch Recovery

For regular quadrilateral meshes, it is a well known fact that the solution is best approx-
imated at the elements nodes, while solution gradients are best approximated at points
inside the elements. These points correspond to the Gauss points used in obtaining the

35

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Patch recovery points

Gauss−Legendre points

Nodal points

Figure 12: A patch of four 8-node elements

finite element solution itself. At these points the gradients have a convergence rate one
order higher than elsewhere, and the points are called superconvergent. With the knowl-
edge of superconvergent points it is only natural to take advantages of these to recover
better gradients. One way of improving the solution is to extrapolate new nodal values
from the superconvergent points. Another very common method is to consider a patch of
elements and interpolate or “smooth” the superconvergent values within the patch by a
p’th order polynomial. This is the nature of superconvergent patch recovery (SPR). The
number of sampling points in the recovery process can be taken higher than the number
of parameters in the polynomial. This way one can obtain a smoothed stress field which
is superconvergent for all points within the element. Denoting by σh the finite element
approximation to the true stress field, we seek a smoothed stress field, σ∗, in which each
component is a p’th order polynomial. Thus, we may write

σ∗ = Pa, (103)

where P = diag(pT) and pT = [1, x, y, . . . , yp].
The smoothed stress field is then found by minimising

Π1 =

n∑
k=1

(σh − Pka)2, Pk = P(xk). (104)

over all superconvergent points xk in the patch, see Figure 8.1.1. For many familiar types
of meshes, triangular meshes being a prime example, there are no superconvergent points.
Zienkiewicz and Taylor [47] nevertheless report that the SPR method has produced good
results in these cases as well. An alternative approach is to, for each element, take the
average value of the stress field at the element centroid point and use those values in
interpolating the smoothed stress field over the patch. This approach has been taken by
Kvamsdal in [48]. This method will be detailed a bit more in follwing subsections.

Although the recovered stress field σ∗ is an improvement compared to σh from the
FE solution, the quality of the recovered derivatives at the boundaries is not as good as
for internal nodes. In general, the recovered stress field neither satisfies the equilibrium
equation (100), nor the boundary condition (102). An obvious enhancement would be to
meet these requirements as well. Unfortunately this is not easily achieved, instead one
seeks an approximation which satisfies the restrictions in a least square sense. Wiberg
and Abdulwahab [49] included a weighted residual of the equilibrium equation, and later
Wiberg, Abdulwahab and Ziukas [50] and Blacker and Belytschko [51] also included a

36

weighted residual for the boundary condition. The recovered stress field is now found by
minimising

Π2 = Π1 + α1‖D
Tσ∗ + b‖2

Ω̃
+ α2‖Qσ∗ − t̃‖2

∂Ω̃
, (105)

over each patch Ω̃. The coefficients α1 and α2 introduced above, are penalty numbers,
and can be controlled depending on what term you wish to emphasise and where in
the domain Ω you want them to play a role. An alternative approach for including the
interior equilibrium enhancement, is done by choosing the monomials in the P matrix such
that the equilibrium equation is satisfied a priori. Armed with these so-called “statically
admissible” polynomials we may set α1 = 0 in (105) and minimise the resulting functional.
Extending this approach, Kvamsdal and Okstad [46] introduced the idea of combining self-
equilibration of residual with statically admissible polynomials. Their method, termed
SPR+S for “Superconvergent Patch Recovery with Statically admissible polynomials”,
yields a conservative error estimate and, for smooth solutions, is an improvement over
SPR.

Generally an element can belong to more than one patch, thus the SPR method does
not produce unique values at interior points of an element. Blacker and Belytschko [51]
proposed to replace the standard nodal interpolation scheme by a cojoint polynomial.
The polynomial is constructed as a weighted sum of the overlapping local patch fields,
where the weighting factors are the values of the shape functions associated with the patch
assembly nodes. The cojoint polynomial is defined over each element e as

σ̂e(x) =

q∑
j

Nj(x)σ∗
j (x), (106)

where q is the number of corner nodes, Nj(x) are shape functions and σ∗
j (x) is the local

patch field associated with node j. Blacker and Belytschko concluded that using the co-
joint polynomial makes more effective use of the overlapping patches and showed improve-
ments for bi-linear quadrilateral elements. When using SPR+S, the interior equlibrium
equation will generally not be satisfied after cojoining the local patch field. However,
Kvamsdal and Okstad [46] proved that, provided each local recovered stress field is close
to the average of all overlapping fields, the residual in the equilibrium equation is small.

8.1.2 Recovery by Averaging

This subsection is based on the work by Ainsworth and Craig [52], where they study the
recovery of ∇u by averaging. We will mainly follow their notation, though with slight
modifications. Let n denote the number of space dimensions of the problem at hand, and
let Nh denote the number of elements used in its finite element approximation. Let Gh

denote an abstract averaging operator with the following properties

R1 Consistency condition. When the true solution is a polynomial of low degree Gh

should recover the true gradient. Whenever u ∈ Pp+1(Ω)

Gh(Π
h
pu) ≡ ∇u (107)

where Πh
p is the nodal interpolation operator onto the finite element space of order

p.

37

R2 Localising condition. The value of Gh at a point should be simple to evaluate,
without any global computations. This condition is more of practical reasons. Define
a domain, Ω̂h

i , local to the finite element Ωh
i as

Ω̂h
i =

⋃
j∈adj(i)

Ωh
i , (108)

where adj(i) is an indexing set containing i and the numbers of those elements local
to Ωh

i . The condition on Gh then reads. For x∗ ∈ Ωh
i , Gh[v](x

∗) depends only upon

the values of ∇v on the domain Ω̂h
i . Further the size of the local domain is limited

by a constant M , independent of h, meaning

card[adj(i)] ≤ M.

R3 Boundedness and linearity conditions. The recovery operator Gh should be simple
in the sense that it should be easy to evaluate and integrate. Furthermore, Gh need
only be defined on the finite element space of test functions Vh, since it is to be
applied to uh ∈ Vh. Finally, Gh is required to be bounded and linear, so the third
condition reads

|Gh[v]|0,∞,Ωh
i
≤ C|v|1,∞,bΩh

i
, ∀ Ωh

i ∈ T h, ∀ v ∈ Vh. (109)

These three conditions guarantee that when the true solution u is smooth, Gh(Π
h
pu)

is a good local approximation to ∇u.

Lemma 8.1
Suppose that Gh satisfies (R1)–(R3) and that u ∈ Hp+2(Ω̂h

i), 2p > n. Then for s = 0 or
s = 1

‖∇u−Gh(Π
h
pu)‖s,2,Ω ≤ Chp+1−s|u|p+2,2,Ω,

In a finite element computation we do not know the true solution, so we need to use uh
instead of Πh

pu. The difference between uh and Πh
pu is commonly known as the pollution

error. The pollution error is a globally transported error independent of local approxi-
mation properties. Under certain regularity conditions regarding the partition and the
regularity of the true solution we have the by now the familiar superconvergence phe-
nomenon

|uh − Πh
pu|1,2,Ω ≤ C (u)hp+1. (SC)

When superconvergence is present, ∇uh is a better approximation to ∇Πh
pu than it is

to ∇u, and the pollution error is small. Under these special circumstances we have the
following important result

Lemma 8.2
Suppose u ∈ Hp+2(Ω), p > n/2, that (SC) is valid and that Gh satisfies (R1)–(R3). Then
for s = 0 or s = 1 ∣∣∇u+Gh(uh)

∣∣
s,2,Ω

≤ Chp+1−s{|u|p+2,2,Ω + C (u)}. (110)

We may then estimate the error in the energy norm by

ε2 =

Nh∑
i=1

ε2i ,

38

where
ε2i = |||Gh[uh] −∇uh|||Ωh

i
, i = 1, . . . , Nh.

Ainsworth and Craig show that this estimator is asymptotically exact provided that Gh

satisfies (R1)–(R3) and (SC) is valid.

Theorem 8.1
Let ε be the a posteriori error estimator defined above, assume that (SC) and (R1)–(R3)
hold and 2p > n, then ε is an asymptotically exact estimator:

|||e||| = ε{1 + Chγ} as h→ 0

where γ > 0 and C are constants independent of h.

Several examples of a posteriori error estimators satisfying the above conditions are pre-
sented in [52].

8.1.3 Recovery by Equilibration of Patches

The recovery by equilibration of patches (REP) is a recovery method which does not
assume the existence of superconvergent points, and can be used as an alternative to
SPR. The method was first presented by Zienkiewicz and Boroomand in [53]. The recovery
technique starts out the same way as the SPR routine, by recovering a smooth stress field
σ∗ over the patch. Consider a differential equation of equilibrium in the form

D
Tσ + b = 0, in Ω, (111)

with FE formulation

FΩ ≡
∫

Ω

BTσ dΩ −
∫

Ω

NTb dΩ −
∫

Γt

NT t dΓ = 0. (112)

Here Γt is the part of the boundary with prescribed traction, N, b and t denote shape
functions, body and traction forces respectively. As usual the FEM solution is written
uh = Nũ, represented by its vector of nodal values ũ. Finally, B ≡ DN. If we assume a
continuous displacement field the FEM solution produces a discontinuous strain field σh.

Considering a patch, Ωp, in the interior of the domain it interacts with the remaining
parts according to the equilibrium conditions∫

Ωp

BTσh dΩ = Fp. (113)

Fp is the sum of external forces from the remaining domain and the body forces over the
patch. The idea of the REP method is to look for a new continuous strain field σ∗ that
satisfy ∫

Ωp

BTσ∗ dΩ =

∫
Ωp

BTσh dΩ, (114)

as closely as possible. The continuous gradient field is given some polynomial expansion
σ∗ = Pa, and (114) is satisfied in a least square sense by minimising

Π =

(∫
Ωp

BTσ∗ dΩ −
∫

Ωp

BTσh dΩ

)T (∫
Ωp

BTσ∗ dΩ −
∫

Ωp

BTσh dΩ

)
. (115)

39

This is the REP version as it was first presented, but as pointed out by Boroomand and
Zienkiewicz [54] a more robust alternative would be to split σ∗ into its components and
satisfy the equilibrium condition for each component independently. Each component of
σ∗ is now a polynomial independent of the others. In this form REP is very similar to
SPR, but with a different smoothing procedure. Finally the smoothed stress field is used
to decide nodal values of the stresses and these are subsequently interpolated in the usual
way by standard shape functions. The accuracy of the method is highly dependent on the
size of the patch, the type of elements used and the form of the functions for recovery.

8.1.4 Error Estimates by Recovery

An important reason for doing some kind of solution recovery is the need of a posteriori
error estimates to adapt the mesh, and ultimately get even better solutions. The recovered
values are in general much more accurate than the direct finite element solution. To
estimate the error we simply replace the exact solution with the recovered one,

‖e‖ ≈ ‖ē‖ = ‖u∗ − uh‖, (116)

in some kind of norm. The quality of the error estimate is often measured by the effectivity
index

θ =
‖ē‖
‖e‖ . (117)

It has been concluded by Zienkiewicz and Zhu that any recovery process resulting in less
error will give a reasonable error estimate. If the recovered solution converges faster than
the FEM solution then the estimated error converges to the true error.

8.2 Residual Based Error Estimators

A large class of error estimators uses the residuals of the finite element approximation,
commonly known as residual error estimators. In [55] Babuška et. al. concluded that
element-residual estimators should only be used with equilibration. These are known as
equilibrated element residual estimators, and are the most robust among the class. Our
presentation of the method will mainly follow that of Zienkiewicz and Taylor in [47].
Consider a non-linear heat conduction problem in two dimensions.

−∇T (k∇ψ) = Q in Ω, (118)

with boundary conditions

ψ = ψ̄ on Γψ

(−k∇ψ)Tn = q̄ on Γq.

As usual we define the error of the FEM solution as e = ψ − ψh. The residual in the
interior element i is known to be

ri = ∇T (k∇ψ) +Q. (119)

The element error indicator for the implicit element residual estimator is given as the
energy norm of the error taken over the element

ηi ≡ |||ei|||i , (120)

40

s

s

i

l

r

k
n

Figure 13: Two neighbouring elements sharing edge s

where
−∇T (k∇e) = ri in Ωi, (121)

with boundary conditions
−(k∇e)Tn = qi − qh,i. (122)

The two terms on the right hand side of (122) are the exact normal flux and the finite
element normal flux at the element edges. The exact normal flux is unknown for interior
elements and must be replaced by a recovered flux q∗i . To guarantee a solution of (121) the
recovered flux must be computed such that the residual satisfy the equilibrium equation∫

Ωi

Njri dΩ +

∫
Γi

Nj(q
∗
i − qh,i) dΓ = 0. (123)

The residual is then said to be equilibrated. In a well known flux recovery technique by
Ladevéze the flux takes the form

q∗ =
1

2
(q

h,i
− q

h,k
)Tns + Zs (124)

where the first term on the right hand side is the average normal flux of the finite element
solution from element i and its adjacent neighbour k over the edge s, see Figure 8.2. The
term Zs is a linear function defined over the edge s shared by elements i and k, with end
nodes l and r

Zs = Lla
s
l + Lra

s
r (125)

with

Ll =
2

|hs|
(2N s

l −N s
r) Lr =

2

|hs|
(2N s

r −N s
l) (126)

where N s
l and N s

r are linear shape functions defined over the edge s and hs is the length
of the edge. Inserting the residual (119) into (123) results in the equation∫

Ωi

NjQ dΩ −
∫

Ωi

∇T (k∇ψh) dΩ +

∫
Γi

Njq
∗ dΓ = 0 (127)

which will then decide the edge parameters. We can determine the parameters by look-
ing at local problems involving only patches of elements connected to a node Xn, see
Figure 8.2. For each patch around a node we obtain a linear system (see [47])

41

4

s3

e3xn

e2

s2

e1

1s
e5

s5

s4e

Figure 14: Patch of elements sharing node xn


−1 1 0 0 0
0 −1 1 0 0
0 0 −1 −1 0
0 0 0 1 1
1 0 0 0 −1



as1xn

as2xn

as3xn

as4xn

as5xn

 =


−fe1
−fe2
−fe3
−fe4
−fe5

 . (128)

The equations are linearly dependent and no unique solution exists. The linear system
is solved by first finding an optimal particular solution, which is then combined with a
corresponding homogeneous solution to form the final solution.

When the edge parameters have been determined the local error problem is solved,
for every patch, by a higher order approximation (p+ 1 or p+ 2). The solution will then
supply us with the error indicator (120).

8.3 Goal Oriented Error Estimators

In many applications only specific quantities of the solution are of interest. Other quan-
tities are of little or no interest. Examples of quantities of interest may be average value
of the solution, average flux through a boundary, specific point values of both the solu-
tion and its gradients, the recovery of forces acting on a certain parts of a construction.
The numerical error of the finite element approximation is now estimated in terms of
these quantities rather than the classical L2-norm or energy norm. Traditional adaption
techniques are not optimal in this sense, as the will spend to many grid cells in areas
not needed. The primary task of goal oriented adaption techniques is to control the er-
ror in the specific quantities. It has been confirmed by numerical experiments that such
procedures greatly accelerate the attainment of local features, to a satisfactory accuracy,
compared to traditional adaption methods based on energy norm estimates.

The specific quantity of interest is usually assumed to be given as a bounded linear
functional Q applied to the true solution u. An examples of such a functional is the
average of the solution u over a sub domain Ωs ⊂ Ω,

Q(u) =
1

|Ωs|

∫
Ωs

u(x) dx, (129)

In cases where the solution is vector-valued, the flux through ∂Ωs might be of interest

Q(u) =

∫
∂Ωs

u · n dΓ =

∫
Ωs

∇ · u dΩ. (130)

42

In some cases the quantity of interest cannot be characterised by a bounded linear func-
tional. In these cases the functional needs to be regularised [56, 57]. This is the case for
estimating point values for example.

In [58] Melbø and Kvamsdal study the forces applied by a fluid on a local part of a
structure. The authors use special extraction functions to express the force of interest in
terms of the weak form of the Stokes problem at hand. In this approach, no regularisation
is needed.

Instead of looking at the global error of the solution the goal oriented approach is to
concentrate on the error of the quantity of interest. For the moment let us assume the
weak form of our problem can be written as, find u ∈ V such that

B(u, v) = F (v), ∀v ∈ V, (131)

where V is some appropriate space of test functions. Let the finite element approximation
uh of our problem be the solution of

B(uh, v) = F (v), ∀v ∈ Vh ⊂ V. (132)

Here Vh is some discretisation of V . The residual are then defined as

Ru
h(v) = B(e, v) = F (v) − B(uh, v), ∀v ∈ V. (133)

The Galerkin orthogonality property now states that

Ru
h(v) = 0, ∀v ∈ Vh. (134)

In what follows we are interested in estimating the quantity Q(u). The quantity may be
estimated by Q(uh) with the error

Q(u) −Q(uh) = Q(e), (135)

where e = u − uh is the error in uh. The main target for goal oriented adaption is to
minimise the error in the functional. This is done by linking the error in the functional
(135) to the residual (133). One obvious approach would be to solve the problem (133),
say on a finer grid, and then by (135) give an estimate of the error in Q(uh). This
is generally too costly, instead one applies the Aubin-Nitsche trick and solve the dual
problem of (131). Find w ∈ V such that

B(v, w) = Q(v), ∀v ∈ V (136)

Let wh be its finite element approximation

B(v, wh) = Q(v), ∀v ∈ Vh. (137)

In a similar way let us denote the error of wh by ε = w − wh. A straight forward
computation [56] then links the error of the functional with the error of uh and its dual
wh as

Q(e) = B(e, ε) (138)

From this point on there are several ways to go about to estimate Q(e). One approach is
to use Cauchy-Schwartz and express Q(e) in terms of local error estimates of e = u− uh
and ε = w − wh. Let K denote an element in the discretisation Vh of V .

|Q(e)| = |B(e, ε)| ≤
∑
K

|BK(e, ε)| ≤
∑
K

|||e|||K |||ε|||K (139)

43

Assume at this point we have local error estimates |||e|||K ≤ ηuK and |||ε|||K ≤ ηwK , and
define ηQ =

∑
K η

u
Kη

w
K as an estimate of Q(e). This is the approach used by Becker

and Rannacher [57]. They look at local residuals, and propose to approximate the true
dual solution w by higher order polynomial interpolation of wh over a patch containing the
element K. Denote the higher order approximation of order q by I

(q)
h wh. Then approximate

ε by
∣∣∣∣∣∣∣∣∣I(q)

h wh − wh

∣∣∣∣∣∣∣∣∣.
Another approach, when B(·, ·) is symmetric, is to rewrite B(e, ε) as

B(e, ε) =
∣∣∣∣∣∣se+ s−1ε

∣∣∣∣∣∣+ ∣∣∣∣∣∣se− s−1ε
∣∣∣∣∣∣ , (140)

and choose the scaling factor s =
√

|||ε||| / |||e||| to minimise B(e, ε). The approach contin-
ues to find upper and lower bounds for the two terms in (140). Based on these bounds
an estimate for Q(e) is derived, see [56].

In many cases, problem (132) and its dual (137) are simply the same, but with different
right hand sides. Thus, the dual problem can be solved at little additional cost.

9 Open Problems and Future Work

The methods listed thus far have all been amply studied in detail when applied to the
problems for which they were designed. Combining them on the other hand remains a
challenge and possible future work lies in this direction.

More specifically, however, there are a couple of open problems with these methods as
presented earlier. Moving mesh methods are vulnerable to crossing nodes which destroy
the element topolgy. Creating methods wich, similarly to the deformation map method,
guarantee elemination of this problem is highly desirable. Furthermore, the system of
ODEs arising from a spatial semi-discretisation of the physical problem on the moving
mesh is usually stiff. This means that to apply moving meshes in several space dimensions,
accurate, efficient and stiffly stable integration methods for large systems of ODEs is a
necessity.

Another challenge is to combine h-adaptive methods and moving meshes. Identify-
ing which regions of the domain will benefit more from which adaption strategy is key
to developing a method which is applicable to a large range of problems in fluid flow.
In addition, carrying out the actual mesh adaption requires availability of efficient and
automatic mesh generation tools.

Combining different methods applied to a single problem this way may lead to in-
teresting topics, but another possibility is to combine already well known methods to
an ensemble of related problems, such as the interaction between fluid and structure.
Creating integration methods for time dependent fluid structure interaction problems
may involve splitting of the spatial operators in the different sub regions of the domain.
Compounding the difficulties in solving fluid structure interaction problems is the mere
fact that the data are not necessarily available in the same computational meshes for
each spatial differential opertor. Thus, simply transferring data between non-overlapping
sub-meshes while preserving distinctive features of the solution needs to be taken into
account.

Operator splitting methods for systems of ODEs have been subject to much interest
of late, in particular with respect qualitative properties of the resulting integrator and
how well certain features of the solution are preserved throughout the time integration.

44

These kinds of methods may well find new applicability in physical problems where the
spatial operators are naturally split in different regions.

Finally, much of the software created for solving fluid flow problems are based on
relatively low order approximations to the velocity and the pressure. Developing higher
order approximations, in particular for time dependent problems, is then a challenge.

References

[1] T. Parnell. The Pitch Drop Experiment. Internet: <URL:http://www.physics.uq.
edu.au/pitchdrop/pitchdrop.shtml>, 1927–. Live footage available at the web
site.

[2] C. C. Lin and L. A. Segel. Mathematics Applied to Deterministic Problems in the
Natural Sciences. Classics in Applied Mathematics. SIAM, 1995.

[3] F. M. White. Viscous Fluid Flow. Mechanical Engineering Series. McGraw-Hill, Inc.,
1991.

[4] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equa-
tions, volume 23 of Springer Series in Computational Mathematics. Springer-Verlag,
second corrected edition, 1997.

[5] L. Formaggia and F. Nobile. A Stability Analysis for the Arbitrary Lagrangian
Eulerian Formulation with Finite Elements. East-West Journal of Numerical Math-
ematics, 7:105–132, 1999.

[6] H. Guillard and C. Farhat. On the Significance of the Geometric Conservation Law
for Flow Computations on Moving Meshes. Computational Methods in Applied Me-
chanics and Engineering, 190:1467–1482, 2000.

[7] C. Farhat, P. Geuzaine, and C. Grandmont. The Discrete Geometric Conservation
Law and the Nonlinear Stability of ALE Schemes for the Solution of Flow Problems
on Moving Grids. Journal of Computational Physics, 174:669–694, 2001.

[8] B. Koobus and C. Farhat. Second-Order Time-Accurate and Geometrically Conser-
vative Implicit Schemes for Flow Computations on Unstructured Dynamic Meshes.
Computational Methods in Applied Mechanics and Engineering, 170:103–129, 1999.

[9] P. Le Tallec and C. Martin. A Nonlinear Elasticity Model for Structured Mesh
Adaption. In Computational Fluid Dynamics, pages 275–281. John Wiley & Sons
Ltd., 1996.

[10] O.-P. Jacquotte. A Mechanical Model for a New Grid Generation Method in Compu-
tational Fluid Dynamics. Computer Methods in Applied Mechanics and Engineering,
66:323–338, 1988.

[11] J. T. Batina. Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes.
In 27th Aerospace Science Meeting, Reno 18-20 apr. 1989, AIAA Paper 89-0115.
AIAA, 1989.

[12] P. Le Tallec. Handbook of Numerical Analysis, volume III, chapter Numerical Meth-
ods for Nonlinear Three-dimensional Elasticity, pages 465–622. North-Holland, 1994.

45

[13] P. G. Ciarlet. Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity. Num-
ber 20 in Studies in Mathematics and its Applications. North-Holland, 1988.

[14] R. A. Serway. Physics for Scientists & Engineers with Modern Physics. Saunders, 3
edition, 1992.

[15] P. Pegon and K. Mehr. Rezoning and Remeshing of the Fluid Domain. Technical
report, Structural Mechanics Unit, Institute for Systems, Informatics and Safety,
Joint Research Centre, European Commission, 1998.

[16] C. Farhat, M. Lesoinne, and N. Maman. Mixed Explicit/Implicit Time Integration
of Coupled Aeroplastic Problems: Three-Field Formulation, Geometric Conservation
and Distributed Solution. International Journal for Numerical Methods in Fluids,
21:807–835, 1995.

[17] J. Moser. On the Volume Elements on a Manifold. Trans. A.M.S., 120:286–294,
1965.

[18] B. Dacorogna and J. Moser. On a Partial Differential Equation Involving the Jacobian
Determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7(1):1–26, 1990.

[19] G. Liao and D. Anderson. A New Approach to Grid Generation. Applicable Analysis,
44:285–298, 1992.

[20] G. Liao and J. Su. Grid Generation via Deformation. Applied Mathematics Letters,
5(3):27–29, 1992.

[21] G. Liao, T.-W. Pan, and J. Su. Numerical Grid Generator Based on Moser’s De-
formation Method. Numerical Methods for Partial Differential Equations, 10:21–31,
1994.

[22] Z. Lei, G. Liao, G. C. de la Pena, and D. Anderson. A Moving Grid Algorithm Based
on Deformation Method. Journal of publication unknown.

[23] B. Semper and G. Liao. A Moving Grid Finite-Element Method Using Grid defor-
mation. Numerical Methods for Partial Differential Equations, 11:603–615, 1995.

[24] P. Bochev, G. Liao, and G. de la Pena. Analysis and Computation of Adaptive
Moving Grids by Deformation. Numerical Methods for Partial Differential Equations,
12:489–506, 1996.

[25] F. Liu, S. Ji, and G. Liao. An Adaptive Grid Method and Its Applications to Steady
Euler Flow Calculations. SIAM Journal on Scientific Computing, 20(3):811–825,
1998.

[26] G. Liao, G. de la Pena, and G. Liao. A Deformation Method for Moving Grid
Generation. Journal of publication unknown.

[27] W. Huang W. Cao and R. D. Russel. A Moving Mesh Method Based on the Geometric
Conservation Law. Journal of publication unknown.

[28] W. Huang, Y. Ren, and R. D. Russell. Moving Mesh Partial Differential Equations
(MMPDEs) Based on the Equidistribution Principle. SIAM Journal on Numerical
Analysis, 31(3):709–730, June 1994.

46

[29] W. Huang, Y. Ren, and R. D. Russell. Moving Mesh Methods Based on Moving Mesh
Partial Differential Equations. Journal of Computational Physics, 113:279–290, 1994.

[30] E. A. Dorfi and L. O’C. Drury. Simple Adaptive Grids for 1-D Initial Value Problems.
Journal of Computational Physics, 69:175–195, 1987.

[31] W. Huang and R. D. Russell. Analysis of Moving Mesh Partial Differential Equations
With Spatial Smoothing. SIAM Journal on Numerical Analysis, 34(3):1106–1126,
June 1997.

[32] W. Cao, W. Huang, and R. D. Russell. A Study of Monitor Functions for Two
Dimensional Adaptive Mesh Generation. SIAM Journal on Scientific Computing,
20(6):1978–1994, 1999.

[33] W. Huang and R. D. Russell. A High Dimensional Moving Mesh Strategy. Applied
Numerical Mathematics, 26:63–76, 1998.

[34] W. Huang. Practical Aspects of Formulation and Solution of Moving Mesh Partial
Differential Equations. Journal of Computational Physics, 171:753–775, 2001.

[35] W. Cao, W. Huang, and R. D. Russell. A Two-dimensional r-Adaptive Finite Element
Method Based on A Posteriori Error Estimates. Journal of Computational Physics,
171:871–892, 2001.

[36] W. Cao, W. Huang, and R. D. Russell. Comparison of Two-Dimensional r-Adaptive
Finite Element Methods Using Various Error Indicators. Mathematics and Comput-
ers in Simulation, 56:127–143, 2001.

[37] K. Miller and R. N. Miller. Moving Finite Elements I. SIAM Journal on Numerical
Analysis, 18(6):1019–1032, December 1981.

[38] K. Miller. Moving Finite Elements II. SIAM Journal on Numerical Analysis,
18(6):1033–1057, December 1981.

[39] H. P. Langtangen. Computational Partial Differential Equations, Numerical Methods
and Diffpack Programming, volume 2 of Lecture Notes in Computational Science and
Engineering. Springer-Verlag, 1999.

[40] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Ele-
ment Method. Studentlitteratur, 1987.

[41] M. J. Baines. Moving Finite Elements. Monographs on Numerical Analysis. Oxford
University Press, 1994.

[42] N. Carlson and K. Miller. Design and Application of a Gradient-Weigthed Mov-
ing Finite Element Code, Part I, in 1-D. SIAM Journal on Scientific Computing,
19(3):728–765, May 1998.

[43] N. Carlson and K. Miller. Design and Application of a Gradient-Weighted Mov-
ing Finite Element Code, Part II, in 2-D. SIAM Journal on Scientific Computing,
19(3):766–798, May 1998.

47

[44] P. Coorevits, P. Ladeveze, and J.-P. Pelle. An Automatic Procedure with a Control
of Accuracy for Finite Element Analysis in 2D Elasticity. Journal of Computational
Methods in Applied Mechanics and Engineering, 121:91–120, 1995.

[45] R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-
Refinement Techniques. Wiley Teubner, 1996.

[46] T. Kvamsdal and K. M. Okstad. Error Estimation Based on Superconvergent Patch
Recovery Using Statically Admissible Stress Fields. International Journal for Nu-
merical Methods in Engineering, 42:443–472, 1998.

[47] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, The Basis, volume 1,
chapter 14. Butterworth-Heinemann, 5 edition, 2000.

[48] T. Kvamsdal. Variationally Consistent Postprocessing for Adaptive Recovery of
Sresses. In ECCM ’99, 1999.

[49] N.-E. Wiberg and F. Abdulwahab. Patch Recovery Based on Superconvergent
Derivaties and Equilibrium. International Journal for Numerical Methods in En-
gineering, 36:2703–2724, 1993.

[50] N.-E. Wiberg, F. Abdulwahab, and S. Ziukas. Enhanced Superconvergent Patch
Recovery Incorporating Equilibrium and Boundary Conditions. International Journal
for Numerical Methods in Engineering, 37:3417–3440, 1994.

[51] T. Blacker and T. Belytschko. Superconvergent Patch Recovery with Equilibrium and
Conjoint Interpolant Echancements. International Journal for Numerical Methods
in Engineering, 37:517–536, 1994.

[52] M. Ainsworth and A. Craig. A posteriori Error Estimators in the Finite Element
Method. Numerische Mathematik, 60:429–463, 1992.

[53] B. Boroomand and O. C. Zienkiewicz. Recovery by Equilibrium in Patches (REP).
International Journal for Numerical Methods in Engineering, 40(1):137–164, 1997.

[54] B. Boroomand and O. C. Zienkiewicz. An Improved REP Recovery and the Effectiv-
ity Robustness Test. International Journal for Numerical Methods in Engineering,
40(17):3247–3277, 1997.

[55] I. Babuška. Validation of A Posteriori Error Estimators by Numerical Approach.
International Journal for Numerical Methods in Engineering, 37(7):1073–1123, 1994.

[56] J. T. Oden and S. Prudhomme. Goal-Oriented Error Estimation and Adaptivity for
the Finite Element Method. Computers and Mathematics with Applications, 41:735–
756, 2001.

[57] R. Becker and R. Rannacher. A Feed-Back Approach to Error Control in Finite
Element Methods: Basic Analysis and Examples. East-West Journal of Numerical
Mathematics, 4(4):237–264, 1996.

[58] H. Melbø and T. Kvamsdal. Goal Oriented Error Estimators for Stokes Equations
Based on Variationally Consistent Postprocessing. Accepted for publication and in
press by the Journal of Computational Methods in Applied Mechanics and Engineer-
ing.

48

[59] A. S. Dvinsky. Adaptive Grid Generation from Harmonic Maps on Riemannian
Manifolds. Journal of Computational Physics, 95:450–476, 1991.

[60] D. F. Griffiths, D. J. Higham, and A. B. Ross. Equidistributing Grids. Technical
report, University of Dundee, 2001. http://www.mcs.dundee.ac.uk:8080/~dfg/

homepage.html.

[61] W. Cao, W. Huang, and R. D. Russell. A Moving Mesh Method Based on the Ge-
ometric Conservation Law. Accepted for publication in ”SIAM Journal on Scientific
Computing”.

[62] P. A. Zegeling. Moving Mesh Methods for Partial Differential Equations. Unpublished
lecture notes from lecture series given at NTNU, 2001.

[63] P. A. Zegeling, J. G. Verwer, and R. M. Furzeland. A Numerical Study of Three
Moving-Grid Methods for One-Dimensional Partial Differential Equations Which are
Based on the Method of Lines. Journal of Computational Physics, 89:349–388, 1990.

[64] J. M. Coyle, J. E. Flaherty, and R. Ludwig. On the Stability of Mesh Equidstribution
Strategies for Time-Dependent Partial Differential Equations. Journal of Computa-
tional Physics, 62:26–39, 1986.

[65] P. Zegeling and J. G. Blom. An Evaluation of the Gradient-Weighted Moving Fi-
nite Element Method in One Space Dimension. Journal of Computational Physics,
103:422–441, 1992.

[66] W. Huang and R. D. Russel. A Moving Collocation Method for Solving Time Depen-
dent Partial Differential Equations. Applied Numerical Mathematics: Transactions
of IMACS, 20(1–2):101–116, 1996.

[67] M. J. Baines. Moving Finite Element, Least Squares, and Finite Volume Approxi-
mations of Steady and Time-Dependent PDEs in Multidimensions. Journal of Com-
putational and Applied Mathematics, 128:363–381, 2001.

[68] R. L. Wenbin. Moving Mesh Finite Element Methods Based on Harmonic Maps.
Internet. http://citeseer.nj.nec.com/377116.html.

[69] P. Zegeling. Moving-Grid Methods for Time-Dependent Partial Differential Equa-
tions. PhD thesis, Centrum voor Wiskunde en Informatica, Amsterdam, 1992.

[70] P. Zegeling. r-refinement for Evolutionary PDEs with Finite Elements or Finite
Differences. Applied Numerical Mathematics, 26:97–104, 1998.

[71] J. Donea. Computational Methods for Transient Analysis, volume 1 of Mechanics and
Mathematical Methods, chapter 10: Arbitrary Lagrangian-Eulerian Finite Element
Methods, pages 473–516. North-Holland, Elsevier, 1983.

[72] T. Kvamsdal et al., editor. Computational Methods for Fluid-Structure Interaction,
1999.

[73] P. Le Tallec and S. Mani. Conservation Laws for Fluid-Structure Interactions. In
Computational Methods for Fluid-Structure Interaction, pages 61–78, 1999.

49

[74] C. S. Venkatasubban. A New Finite Element Formulation for ALE (Arbitrary La-
grangian Eulerian) Compressible Fluid Mechanics. Int. J. Engng Sci, 33(12):1743–
1762, 1995.

[75] M. S. Gadala and J. Wang. ALE Formulation and Its Application in Solid Mechanics.
Comput. Methods Appl. Mehc. Engrg., 167:33–55, 1998.

[76] M. Lesoinne and C. Farhat. Stability Analysis of Dynamic Meshes for Transient
Aerolastic Computations. In 11th AIAA Computational Fluid Dynamics Conference,
Orlando, AIAA Paper 93-3325. AIAA, 1993.

[77] M. Ainsworth, J. Z. Zhu, A. W. Craig, and O. C. Zienkiewicz. Analysis of the
Zienkiewicz-Zhu A Posteriori Error Estimator in the Finite Element Method. Inter-
national Journal for Numerical Methods in Engineering, 28:2161–2174, 1989.

[78] D. W. Kelly. The Self-Equilibration of Residuals and Complementary A Posteriori
Error Estimates in the Finite Element Method. International Journal for Numerical
Methods in Engineering, 20:1491–1506, 1984.

[79] H. Melbø. A Posteriori Error Estimation for Finite Element Methods and Itera-
tive Linear Solvers. PhD thesis, Norwegian University of Science and Technology
(NTNU), 2001.

[80] I. Babuška and A. Miller. The Post-Processing Approach in the Finite Element
Method - Part 1: Calculation of Displacements, Stresses and Other Higher Deriva-
tives of the Displacements. International Journal for Numerical Methods in Engi-
neering, 20:1085–1109, 1984.

[81] I. Babuška and A. Miller. The Post-Processing Approach in the Finite Element
Method - Part 2: The Calculation of Stress Intensity Factors. International Journal
for Numerical Methods in Engineering, 20:1111–1129, 1984.

[82] I. Babuška and A. Miller. The Post-Processing Approach in the Finite Element
Method - Part 3: A Posteriori Error Estimates and Adaptive Mesh Selection. Inter-
national Journal for Numerical Methods in Engineering, 20:2311–2324, 1984.

[83] M. Paraschivoiu, J. Peraire, and A. T. Patera. A Posteriori Finite Element Bounds
for Linear-Functional Outputs of Elliptic Partial Differential Equations. Computer
methods in applied mechanics and engineering, 150:289–312, 1997.

[84] M. Paraschivoiu and A. T. Patera. A Posteriori Bounds for Linear Functional Out-
puts of Crouzeix-Raviart Finite Element Discretization of the Incompressible Stokes
Problem. International Journal for Numerical Methods in Fluids, 32:823–849, 2000.

[85] G. Liao, F. Liu, G. C. de la Pena, D. Peng, and S. Osher. Level-Set-Based Deforma-
tion Methods for Adaptive Grids. Journal of Computational Physics, 159:103–122,
2000.

[86] G. J. Liao and J. Z. Su. A Moving Grid Method for (1 + 1) Dimension. Applied
Mathematics Letters, 4:47–49, 1995.

[87] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, The Basis, volume 1.
Butterworth Heinemann, 2000.

50

[88] J. E. Flaherty et al., editors. Adaptive Methods for Partial Differential Equations.
SIAM, 1989.

[89] P. M. Gerhart, R. J. Gross, and J. I. Hochstein. Fundamentals of Fluid Mechanics.
Addison-Wesley Publishing Company, 1992.

51

