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Chapter 1

Introduction

1.1 Background and motivations

Free surface flow in the vicinity of rigid bodies is a very important class of problems for
naval architects and marine engineers. The fluid flow around, for example, a full ship
hull is nonlinear, turbulent and may involve physical phenomena such as breaking waves,
and is therefore a very challenging problem. Maneuvring and resistance perfomances of
ships may differ to a great extent by even small differences in the hull form. In restricted
waters, knowledge and understanding of ship maneuvrability is very important. Therefore
an accurate calculation of drag and lift forces of a ship is a major concern in the design of
a ship. So far, experience and experimental data (mainly from model tests) are the main
sources of information used in the design of ships. However, two problems are usually
associated with the experimental approach: its cost and the scaling effects in model test
data. Indeed, maintaining the Froude number similarity usually leads to a violation of
the Reynolds number similarity and vice-versa. Thus experimental results from model
tests and full scale tests are not similar. Consequently, other types of prediction methods
have been seeked for.
Theoritical predictions of hydrodynamic characteristics are usually limited to simple ge-
ometries and physics. On the other hand, the computational tools currently available
for ship design use approximations that simplify the equations representing the physical
model. These approximations are usually referred to as potential flow approximations.
Methods based on potential theory can predict wave resistance quite well. According to
Beck et al. [5] this type of codes are ready to be used in industry for wave resistance
and sea-keeping. These methods are very cost and time efficient and still receive much
attention by the marine engineers and naval architects. However, several reviews (Gorski
[25], Larsson et al. [49]) show the limitations of potential flow computations in reproduc-
ing some of the important physical features of the flow field around a ship hull. They
state that potential flow based methods are not sufficient for many important applications
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2 CHAPTER 1. INTRODUCTION

and that viscous flow calculation methods need to be considered and developed. Viscous
methods in ship hydrodynamics are based on the solution of the incompressible Navier-
Stokes equations. The incompressibility approximation can be considered as a good one
for ship hydrodynamics applications since, according to Tannehil et al. [81] fluid flows can

be considered as incompressible for Mach numbers (M =
V

a
) smaller than 0.3. V is the

fluid velocity and a the speed of sound in water. For the temperature range of interest
in marine hydrodynamics applications, the speed of sound in water (tabulated in [93])
is about 1460 m/s. In order for the Mach number M to be smaller than 0.3, the fluid
velocity must be smaller than 438 m/s (or equivalently 851 knots for a ship!!), which is
always the case.
Moreover, the focus will be put on methods for three-dimensional problems since Barkley
& Henderson [4] and Henderson [31] show that for high Reynolds number simulations,
three-dimensional computations must be performed.
Nowadays, most of the existing codes computing three-dimensional incompressible viscous
fluid flows are based on the Reynolds-Averaged Navier-Stokes (RANS) [83] formulation
of the flow equations. This approach accounts for turbulence through modelling of the
momentum effects. The increasing power of computers allows for more advanced meth-
ods like the Large Eddy Simulation (LES) technique where the large scale motions are
computed directly while the small scale motions are modelled, or like the Direct Numer-
ical Simulation (DNS) where all scales are computed. The latter technique is however
currently possible only for problems with very low Reynolds number.
Another very important aspect in ship hydrodynamic applications is the prediction of the
free surface location and evolution. It is a critical issue in naval applications. For instance,
breaking of waves around a ship hull can increase considerably the ship’s resistance. The
signature of a ship, i.e. the wavy configuration and the turbulence pattern in the wake of
the ship, relevant for ship detection, is also another example where an accurate prediction
of the free surface is important. Free surface prediction is a very difficult problem which
is still not completely solved. Many special techniques have been developed through the
years in order to predict the motion of the flow around surface piercing bodies. Two main
trends exist: the interface tracking type of methods and the interface capturing type of
methods. Both types have their strengths and weaknesses.

1.2 Outline of the literature review

In the sequel, the governing equations of incompressible fluid flows and some of the solu-
tion methods used for solving them will be presented. Indeed while seeking for a numerical
solution of these equations, the algebraic system arising from the spatial and temporal
discretisation can be very large when dealing with real life applications. Moreover an
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extra-difficulty is added by the coupling between velocity and pressure fields. Various
methods have been devised in order to reduce the computational complexity either by a
decoupling of velocity and pressure or by the introduction of a small perturbation in the
mass conservation equation.
Secondly, some of the most used methods, in ship hydrodynamic applications, for the pre-
diction of free surface flows interacting with general curved boundaries will be presented,
and some of their advantages and disadvantages will be enlighted.
Then some short comments concerning initial and boundary conditions will be made and
finally, some interesting test cases that will be used for validation purposes will be de-
scribed.
This text is not meant to be an exhaustive review of the existing methods for simulation
of flow with free surface but only a presentation of some of the most commonly used
methods in marine hydrodynamics.



Chapter 2

General solution methods

The cornerstone of Computational Fluid Dynamics (CFD) is the fundamental governing
equations of fluid dynamics. These equations represent a mathematical model for describ-
ing viscous (Newtonian) flows. They are usually referred as Navier-Stokes equations and
were first derived in 1822 by the French Engineer C. M. L. H. Navier upon the basis of
a suitable molecular model. Curiously, these equations were recognized, by the scientist
community of that time, to be totally inconsistent from a physical point of view for several
materials, and in particular for liquids. It was only twenty-three years later, in 1845, that
the english scientist G. H. Stokes derived the same equations in a quite general way, by
means of the theory of continuum.
In this chapter, these equations will be shortly presented, as well as different solution
methods for the three-dimensional incompressible bulk flow.

2.1 Governing equations

These Navier-Stokes equations are mathematical statements for the following three phys-
ical laws:

1. mass is conserved,

2. Newton’s second law (F=ma),

3. energy is conserved.

4



2.1. GOVERNING EQUATIONS 5

In the case where the fluid is subject to the action of a external force f, the general
Navier-Stokes equations can be written as follows:

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.1)

∂u

∂t
+ (u · ∇)u =

1

ρ
∇ · σ + f (2.2)

∂(cpρT )

∂t
+ cpρu · ∇T = ε+ ∇ · (λ∇T ) (2.3)

where σ is the stress tensor given by:

σij = −pδij + 2µSij (2.4)

p is the pressure, S the rate-of-strain tensor and µ the dynamic viscosity. Further, u is the
fluid velocity, ρ the fluid density, T the temperature, ν the kinematic viscosity, cp the heat
capacity, λ the heat conductivity and ε the viscous dissipation. f and ε are considered to
be known.

We will in the following make two main assumptions:

• the fluid is incompressible and homogeneous: the density is then constant in time
and space,

• the heat conductivity and capacity are constant.

The first assumption allows us to write equation of mass (2.1) as

∇ · u = 0 (2.5)

While using both assumptions, the energy equation (2.3) becomes:

cpρ
∂T

∂t
+ cpρu · ∇T = ε+ λ∆T (2.6)

If further the viscosity is taken to be constant throughout the fluid, the momentum
equation (2.2) can then be written as:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u + f (2.7)

Here p represents the kinematic pressure (i.e. pressure divided by the density). Equations
(2.5), (2.7) and (2.6) are a mixed set of elliptic-parabolic equations where the unknowns
are the velocity u, the kinematic pressure p and the temperature T .
Note that the energy equation (2.6) can be uncoupled from the other two ones since it is
the only equation where the temperature appears explicitly.



6 CHAPTER 2. GENERAL SOLUTION METHODS

However, the fluid properties cp, λ and the kinematic viscosity ν usually depend on the
temperature. Therefore this uncoupling is exact if these fluid properties (and in particular
the viscosity) are independent of temperature. For many applications, the temperature
changes are either insignificant or unimportant, and it is not necessary to solve the energy
equation. However, if one wishes to find the temperature distribution, this can easily be
done, since the unsteady energy equation is parabolic (provided that the velocity field u

is known). With this in mind, we will here only focus on the solution of the continuity
and momentum equations (2.5) and (2.7).

Equations (2.2) is said to be the stress formulation of the momentum equation, while
equation (2.7) is the Laplace formulation. The latter form is simpler to implement and
work with. However, there might be cases where the stress formulation is preferred. This
is for example the case when using turbulence models or if a force is given on a boundary.
Nevertheless, equations (2.5) and (2.7) are the governing equations (for incompressible
viscous fluid flows) that we will deal with through this section, unless something else is
explicitly stated.
In addition to these equations, appropriate boundary and initial conditions for the flow
variables are needed (see chapter 4) in order to close the system and have a well-posed
problem.

2.2 Methods for the bulk flow equations

The analytical solution of problem (2.7), (2.5), together with appropriate initial and
boundary conditions is seldom known in a closed-form. Therefore, one needs to seek for a
numerical solution. In order to compute this solution, one needs to discretise the equations
(as well as the initial and boundary conditions) both in time and space. Although the
approaches (choice of solution method and discretisation technique) can be very different,
the combined time and spatial discretisation reduces the problem to finding, at each time
step, the solution of an equation system of the form:

Ayn+1 = bn+1 (2.8)

where A is a (known) coefficient-matrix, bn+1 is a known vector and yn+1 the unknown
vector.
Several solution methods for solving the governing equations of an incompressible vis-
cous fluid flow, and arrive at a system of the form (2.8) have been developed and used
successfully over the years. These methods can be classified into two main types:

• methods solving for the so-called primitive variables i.e. the velocity and the pres-
sure,

• methods solving for the derived (or non-primitive) variables which are the vorticity
and stream function.
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Each type can be further subdivided.

2.2.1 Vorticity-stream function approach

Methods solving for the derived variables, also referred as vorticity-stream function ap-
proaches, have been very popular when it comes to solving the two-dimensional incom-
pressible Navier-Stokes equations. In this type of approach, a change of variables that
replaces the velocity components with the vorticity ω and the stream function ψ is made.
The vorticity vector is defined as:

ω = ∇× u (2.9)

while the scalar value of the vorticity ω is defined as the z-component of the vorticity
vector:

ω = ∇× u · k (2.10)

where k is the unit vector in z-direction.
If the computational domain Ω is a simple-connected domain of IR2, a well-known result
(see [69]) states that a vector function u ∈ (L2(Ω))

2
satisfies ∇·u = 0, if and only if there

exists a function ψ ∈ H1(Ω), called stream function, such that in a Cartesian coordinate
system one has:

∂ψ

∂x
= −v and

∂ψ

∂y
= u (2.11)

In the two-dimensional case, taking the curl of the momentum equation (2.7), using the
continuity equation (2.5) and inserting the previously defined scalar vorticity and stream
function gives:

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= ν

(
∂2ω

∂x2
+
∂2ω

∂y2

)

(2.12)

or
Dω

Dt
= ν∆ω (2.13)

where
D()

Dt
=
∂()

∂t
+ V · ∇() is the substantial derivative.

Equation (2.12), or equivalently (2.13), is a parabolic partial differential equation often
referred as vorticity transport equation. The one-dimensional version of this equation is
the advection-diffusion equation which is often used as an equation model:

∂ω

∂t
+ u

∂ω

∂x
= ν

∂2ω

∂x2
(2.14)

and therefore many successfull solution methods are available.
An equation for the stream function ψ can also be obtained by combining equations (2.10)
and (2.11):

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω (2.15)
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or again
∆ψ = −ω (2.16)

This is the elliptic Poisson equation.
As a result of this change of variables, we have been able to, first of all eliminate the
pressure (which is usually a source of problems) from the set of equations and secondly
to separate the mixed elliptic-parabolic incompressible Navier-Stokes equations into one
parabolic equation and one elliptic equation. These equations are usually solved sequen-
tially using the following time-marching procedure:

1. Specify initial values for ω and ψ,

2. Solve the vorticity transport equation for ω at each interior grid point at time tn+1,

3. Solve the Poisson equation for ψ at all points using the new values of ω at the
interior points,

4. Find the velocity components u and v by applying equations (2.11),

5. Determine the values of ω on the boundary using the values of ω and ψ at interior
points,

6. Return to step 2 if the solution is not converged.

The solution of the vorticity-stream function system can also be computed using tech-
niques of coupled type rather than sequential type. Rubin and Khosla [73] solved the 2×2
coupled system for ω and ψ efficiently by using a strongly implicit procedure.
Here, the implementation of the boundary conditions requires special attention. For solid
boundaries where the no-slip condition is to be imposed, equations (2.11) gives:

ψ = 0 and
∂ψ

∂n
= 0 (2.17)

on the solid surface. The first condition is used as it is with the Poisson equation for
the stream-function ψ, while the second one is used in the construction of a boundary
condition for the vorticity. See [23] for more details and for the specification of inflow and
outflow boundary conditions.
Note that the pressure does not appear explicitly in this approach. However when it is
of interest, it can be computed without difficulty by simply solving a Poisson equation
obtained by taking the divergence of the momentum equation (2.7) (cf. [23], [81]):

∆p = 2

(
∂u

∂x

∂v

∂y
−
∂v

∂x

∂u

∂y

)

(2.18)

Here p is the kinematic pressure (i.e. the pressure divided by the density).
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Hence, in the two-dimensional case, inserting ω and ψ in equations (2.5) and (2.7) yields
to a Poisson equation for the stream function and a transport equation for the vortic-
ity to solve. This approach is very attractive since it reduces the number of equations
to solve and does not require any pressure computations. However, it loses of its at-
tractiveness when it comes to three-dimensional applications. Indeed, the extension of
the vorticity-stream function approach to three-dimensional problems is not trivial since
stream functions do not exist for truly three-dimensional problems. However, it is possi-
ble to generalize this appraoch by introducing a vector potential [3], [23], [81] to obtain
a vorticity-potential formulation. It is also possible to derive a vorticity-velocity fomula-
tion as shown in [23]. In either case, the required computational effort is considerably
increased since now 3 Poisson equations (for the vector potential or for the velocity com-
ponents) and 3 transport equations for the vorticity need to be solved. Moreover, the
boundary conditions become very complex [34]. As a consequence, the incompressible
Navier-Stokes equations are most often solved in their primitive-variable form (u, v, w, p)
for three-dimensional problems. Even for two-dimensional problems, the use of primitive
variables is quite common.

2.2.2 Primitive variable approach

Methods for solving Navier-Stokes equations in their primitive-variable form have been,
for a long time, and still are an area of intense research. Methods for solving this form
of the Navier-Stokes equations can be divided into two main groups (each of them can
further be subdivided): the coupled-type and uncoupled-type of methods.

2.2.2.1 Approaches of coupled-type

There are two main trends in the coupled-type of approach: the direct methods and the
pseudo-compressibility methods.

Direct methods

The first one is to obtain a coupled system of equations from direct discretisation of the
governing equations (i.e. momentum equation, continuity equation, boundary conditions
and eventually an equation for the free surface). The resulting global system is usually
difficult to solve and standard methods can usually not be used. Nonlinear iteration tech-
niques (e.g. Newton-Raphson) or predictor-corrector techniques must be used (see [87]
and the references therein). This direct solution method of the Navier-Stokes equations
is usually computationally very expensive, especially for three-dimensional applications
when serial programming is performed. For parallel computations this method can be
attractive if the number of processors used is large enough so that a direct solution of the
algebraic system is possible on each processor.

Pseudo-incompressibility methods
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The second type of coupled solution methods takes advantages of techniques developed pri-
marily for compressible flows: the artificial compressibility method introduced by Chorin
[12], the penalty method of Hughes et al. [39] or the Petrov-Galerkin elliptic pressure regu-
larisation [69]. They are usually known as pseudo-compressibility (or quasi-compressibility)
methods.

Artificial compressibility method
In the artificial compressibility method, the continuity equation is modified to include an

artificial compressibility term of the form
∂ρ∗

∂t∗
that vanishes when the steady-state solu-

tion is reached. This new term is sometimes rewritten as ε
∂p

∂t∗
using the equation of state

p =
ρ∗

ε
where ε is the artificial compressibility factor, ρ∗ the artificial density and t∗ a

fictitious time that is analoguous to real time in compressible flow. The artificial com-
pressibility parameter can be seen as a device to generate a well-posed system. This new
term gives to the resulting Navier-Stokes equations a mixed hyperbolic-parabolic charac-
ter which can be solved using a standard time-dependent approach after substituting t

with t∗ in the momentum equation. One finally obtains the following problem:







∂u

∂t∗
+ (u · ∇)u = −∇p+ ν∆u + f

∇ · u + ε
∂p

∂t∗
= 0, p(t∗ = 0) = p0

(2.19)

This method is however only applicable to steady-flow problems because it is not time
accurate.

Penalty method
In the penalty method, the continuity equation is also modified but this time, the added
term is of the form εp where ε is a (small) penalty parameter such that ∇·u → 0 as ε→ 0
if the pressure p is finite:

∇ · u + εp = 0 (2.20)

Inserting this modified continuity equation into the momentum equation yields to a pe-
nalised momentum equation which does not contain the pressure and can then be solved
directly for the velocity:

∂u

∂t
+ (u · ∇)u =

1

ε
∇ (∇ · u) + ν∆u (2.21)

The pressure can thereafter be found by p = −
1

ε
∇ · u.

Unlike the artificial compressibility method, the penalty method can also be used for un-
steady problems since it is time accurate. It appears then as a significant simplification



2.2. METHODS FOR THE BULK FLOW EQUATIONS 11

compared to the u-p system and this is one of the reasons for its popularity. However
it has an important disadvantage: it is not, a priori, obvious how to choose the penalty
parameter ε. If ε is too large, the continuity equation will be poorly approximated. If ε is
too small, one may get numerically εp = 0 and the penalised momentum equation (2.21)
simply reduces to ∇ (∇ · u) ' 0.
Even though the pressure can be computed from equation (2.20), once the velocity field
is known, it is of interest to derive an analog of the pressure Poisson equation when the
penalty method is used [28]. The possible large effects of the small penalty parameter
ε on the pressure can in that way be prevented. It is particularly important to derive
this analog pressure Poisson equation for unsteady problems where transient phenomena
are of importance since the undesirable effects of ε on the pressure happen only for small
time. Those effects are related to a “spurious transient penalty shock wave” [28].

Petrov-Galerkin pressure regularisation
The Petrov-Galerkin regularisation, was first introduced by Hughes et al. in 1986 [40]
in the context of finite element method, in order to circumvent the LBB-condition and
enhance the stability properties of numerical schemes for Stokes and Navier-Stokes prob-
lems. Here the pressure is added in the form of its laplacian −ε∆p leading to the following
modified continuity equation:

∇ · u − ε∆p = 0, ∇p · n|Γ = 0 (2.22)

All the previous three methods have the effect of relaxing the incompressibility constraint.
The perturbation parameter ε must be sufficiently large in order to produce a significant
regularisation effect (and act on the stability) but as small as possible to minimize the
perturbation in the continuity equation.

2.2.2.2 Approaches of uncoupled type

The second group of general solution techniques, for the primitive-variable form of the
Navier-Stokes equations, contains techniques of uncoupled type. These solutions methods
are very popular techniques which separate the computation of the velocity from the
computation of the pressure. The idea is to solve sequentially a number of smaller, linear
equation systems instead of a larger, usually nonlinear and slowly converging one. Here,
the momentum equation is solved for the velocity components (using an estimate of the
pressure [90] or not [45]), then a Poisson equation for the pressure is solved and finally the
velocity field is updated by using the newly found pressure field. The third step, usually
called a correction step, is necessary in order to insure an incompressible velocity field.
Indeed, the first step does not usually yield to a velocity field satisfying the continuity
equation. In this type of methods, the incompressibility constraint (continuity equation)
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does not appear directly, but is accounted for through the Poisson equation solved for
the pressure. This type of techniques are known under several names: projection method,
fractional-step method or pressure-correction method, and was first introduced by Chorin
[13] and Temam [82] and have been very studied since (see for example [26], [29]).

The projection method

The theoritical background for this method is the decompisiton theorem of Ladyzhenskaya
[68] allowing to write any function in L2(Ω) as the sum of a divergence-free part and a
curl-free part.
The semi-discrete (discretised in time but not in space) form the projection method can
be written as:

1. Find an intermediate velocity ũn+1 in the domain Ω as the solution of:

ũn+1 − un

δt
= − (u∗ · ∇)u∗∗ + ν∆ũn+1 + fn+1 (2.23)

with ũn+1 satisfying the boundary condition on ∂Ω. u∗ and u∗∗ are to be chosen
suitably for the treatment of the nonlinear term (e.g. u∗ = u∗∗ = un for the explicit
Euler, u∗ = u∗∗ = un+1 for the implicit Euler and u∗ = un, u∗∗ = un+1 for the
Euler semi-implicit).

2. Determine the pressure pn+1 and the end-of-step velocity un+1 as the solution of the
problem:







un+1 − ũn+1

δt
= −∇pn+1

in Ω
∇ · un+1 = 0

(2.24)

with the boundary condition un+1 ·n = 0 on ∂Ω. This step can be reformulated such
that the computation of the pressure and of the velocity can be separated. Indeed,
by taking the divergence of the first equation in (2.24), the following problem is
obtained for the pressure:







∆pn+1 =
1

δt
∇ · ũn+1 in Ω

∂pn

∂n
= 0 on ∂Ω

(2.25)

The end-of-step velocity can now be determined by:

un+1 = ũn+1 − δt∇pn+1 (2.26)



2.2. METHODS FOR THE BULK FLOW EQUATIONS 13

Note that the conservation of mass is ensured in this method since un+1 plays the role of
the solenoidal part in the Ladyzhenskaya theorem. This method (and all its variations)
is perhaps the most widely used method for solving the incompressible fluid flow equa-
tions. The main advantage of this type of methods is the reduced computational cost of
time-dependent, nonstationary incompressible flows at higher Reynolds number. In other
words, their computational efficiency for problems of practical importance. Another ad-
vantage of this method in the Finite Element context, is the fact that the LBB-condition
(stability condition between the functional spaces containing the velocity and the pres-
sure) needs not to be satisfied. This allows an implementation using equal order elements
for velocity and pressure.
However, the projection method has some drawbacks. The main one is perhaps the spec-
ification of boundary conditions. First of all, a nonphysical boundary condition is needed
in order to solve the pressure Poisson equation (2.25) and the choice of this condition is
not as obvious as its seems to be [43]. Second of all, as pointed out by several authors
[26], [29], the end-of-step velocity field does not satisfy the intended boundary conditions:
the tangential component of the boundary condition cannot be controlled as a conse-
quence of Ladyzhenskaya theorem where only the normal component of the velocity can
be prescribed. Another potential drawback of the projection method is the apparition of
a spurious numerical pressure boundary layer introduced by the nonphysical boundary
condition imposed in (2.25).

Algebraic Splitting

Algebraic splitting methods [37], [64], [71] can be seen as the discrete counterpart of the
projection method. They are based on approximate LU-factorisation of the system (2.8)
obtained from the discretisation of the flow equations. The system (2.8) can be put into
the form: [

C G

D 0

] [
un+1

pn+1

]

=

[
bn+1

u

bn+1
p

]

(2.27)

where C is the sum of the mass, convection and stiffness matrices, D is the divergence
matrix and G the gradient matrix.
The matrix in (2.27) can be factorised as:

[
C 0
D −DC−1G

] [
I C−1G

0 I

]

(2.28)

Then setting
[

ũn+1

p̃n+1

]

=

[
I C−1G

0 I

] [
un+1

pn+1

]

, (2.29)

the system can be solved in 3 steps:

1. Cũn+1 = bn+1
u
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2. DC−1Gpn+1 = Dũn+1 − bn+1
p (2.30)

3. un+1 = ũn+1 − C−1Gpn+1

The main advantage of this method over the continuous projection method is the fact that
all boundary conditions are prescribed on the original, unsplit system (2.28). Therefore
no auxiliary or nonphysical boundary conditions are needed for neither the velocity nor
the pressure.
However, in order for this type of methods to be used in practical compuations, the
expensive inversion (at every time step) of the matrix C should be avoided. Therefore,
C−1 is usually substituted by some proper approximations H1 and H2 in steps 2 and 3 of
(2.30):

1. Cũn+1 = bn+1
u

2. DH1Gp
n+1 = Dũn+1 − bn+1

p (2.31)

3. un+1 = ũn+1 −H2Gp
n+1

Several choices for H1 and H2 are possible. Two particular cases have been much studied
and used:

• H1 = H2 introduced by Perot [67] which leaves the continuity equation unchanged
and therefore gives a solenoidal solution,

• H2 = C−1 which leaves the momentum equation unchanged [70].

In the context of finite element discretisation, one disadvantage of the algebraic splitting
over the projection method is the necessity to satisfy the LBB-condition and therefore
the necessity of using mixed-element in the implementation.

Some other pressure-correction approaches

SIMPLE
The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) family of methods
introduced by Patankar and Spalding in 1972 [66] is also a possible solution technique for
solving the incompressible Navier-Stokes equations. It is based on the same basic idea
as the projection method, namely a series of guess-and-correct operations: the velocity
components are first computed from the momentum equation using a guessed-pressure
field. The pressure and velocity are then corrected so that the continuity equation is
satisfied. The main distinction between this method and the projection method is the
way in which the pressure and velocity corrections are performed [66], [81], [23]. The
SIMPLE procedure can be described as follows:

1. Guess the pressure (p0) at each grid point;
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2. Solve the momentum equation to find the velocity field u∗ = (u∗, v∗, w∗)T ;

3. solve the following pressure correction equation: ∆p∗ =
1

A
(∇·u∗) to find p∗ at each

grid point, where A is a fictitious time increment;

4. Correct the pressure and velocity according to:

p = p0 + p∗ (2.32)

u = u∗ −
A

2∆x
δxp (2.33)

v = v∗ −
A

2∆y
δyp (2.34)

w = w∗ −
A

2∆z
δzp (2.35)

where δxp is the variation of the pressure p in x-direction evaluated at the grid
points. Simirlarly for δyp and δzp.

5. Replace the previous intermediate values of pressure and velocity p0 and u∗ by the
new corrected values p and u and return to step 2.

Note that in certain cases the convergence rate of the method is found unsatisfactory.
This is due to the fact that pressure correction p∗ is somehow overestimated in (2.32)
[81]. Therefore equation (2.32) is often replaced with p = p0 + αpp

∗, where αp is an
underrelaxation parameter.

PISO
The PISO (Pressure-Implicit with Splitting of Operators) method is another solution
technique. It is also based on a preditor-corrector strategy. Here one predictor step and
two corrector step are used [22].

A chart of the different methods presented here is shown figure 2.1.

2.3 Spatial discretisation techniques

Independently of which one of the previous solution techniques is used, a discretisation
method has still to be chosen in order to transform the continuous problem into a dis-
crete one. Four discretisation techniques have globally gained acceptance in the CFD
community. The Finite Difference method (FDM) was historically the first applied. It
was quickly followed by the Finite Element (FEM) and Finite Volume (FVM) Methods
and then the Spectral Element Method (SEM).
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Figure 2.1: Chart flow presenting some of the existing methods for bulk flow.

2.3.1 Finite Difference Method

The philosophy behind the Finite Difference Method is the discretisation of differential
operators i.e. to replace the partial derivatives in the equations with algebraic differ-
ences within a certain accuracy. This discretisation of the partial differential equations
yields to a system of algebraic equations, whose unknowns are the nodal values. We can
choose among many different equation solvers (both linear and nonlinear) in order to ob-
tain an approximate solution. There exist many finite difference discretisation schemes,
and each of them will give a different algebraic system. Applying, for instance, the
second-order centered-space method at the point of coordinates (xi, yj) on figure 2.2, the
first component of the momentum equation (2.7) and the continuity equation (2.5) for
a two-dimensional problem reads to the following semi-discrete equations (for a three-
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x

i,j+1

i+1,ji,ji-1,j

i,j-1
y

Figure 2.2: Two-dimensional finite difference grid.

dimensional problem, the results are strictly analogous, they only contain more terms):

∂ui,j

∂t
+ ui,j

ui+1,j − ui−1,j

2∆x
+ vi,j

ui,j+1 − ui,j−1

2∆y
=
pi+1,j − pi−1,j

2∆x

ν

(
ui+1,j − 2ui,j + ui−1,j

∆x2
−
ui,j+1 − 2ui,j + ui,j−1

∆y2

)

+ f1i,j (2.36)

and

0 =
ui+1,j − ui−1,j

2∆x
+
vi,j+1 − vi,j−1

2∆y
(2.37)

where f1i,j is the first component of the body force, u and v are the velocity components in
the x- and y-directions respectively, and ∆x, ∆y are the grid spacings. ν is the kinematic
viscosity and p is the kinematic pressure. The subscripts i, j indicates the value of the
variables at the grid point (xi, yj).
The second component of the momentum equation can be written in a similar manner,
and the three-dimensional extension is straight forward.
FDM is usually based on regular meshes and it can be very efficient if the spacing
is equidistant and the cells are rectangle (in two-dimensions) or hexaedrons (in three-
dimensions). Good results can be obtained when using staggered grids i.e. grids where
the pressure is not evaluated at the same nodes as the velocity. The main disadvantages
of the FDM are the implementation of boundary conditions for a general geometry and
problematic mass conservation properties [51], [81].

2.3.2 Finite Volume Method

In the Finite Volume Method, the conservation principles are applied to a fixed region in
space known as control-volume and no longer to nodes as in the FDM. Here, the discreti-
sation is applied to an integral formulation of the equations and is based on balancing
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variable fluxes between control-volumes. Therefore, in a finite volume discretisation, the
flow characteristics are directly used. The conservation properties are much better than
in the FDM case since here both local and global mass conservation can be satisfied in
an easy way. Therefore FVM is often seen as the most natural method for treating fluid
dynamics problems. Another advantage of FVM over FDM is the treatment of boundary
conditions for complex geometry which is less cumbersome. Except for that, the resulting
formulae and systems of algebraic equations can be treated as in FDM.
As FVM is based on flux balances between controle volumes, it is common in this method-
ology to first write the flow governing equations under a more convenient manner:

∂

∂t

∫ ∫ ∫

V (t)

UdV +

∫ ∫

S(t)

Fc · ndS −

∫ ∫

S(t)

FV · ndS =

∫ ∫ ∫

V (t)

fdV (2.38)

where for an incompressible fluid:

• U =







0
u

v

w







• Fc1 =







u

u2 + p

uv

uw






,Fc2 =







v

uv

v2 + p

vw






,Fc3 =







w

uw

vw

w2 + p







are the convective

fluxes in the x-, y-, z-directions respectively, and Fc ·n = Fc1 ·nx+Fc2 ·ny +Fc3 ·nz;

• Fv1 =







0
τxx

τxy

τxz






,Fv2 = ν







0
τyx

τyy

τyz






,Fv3 = ν







0
τzx

τzy

τzz







are the viscous fluxes in

the x-, y-, z-directions respectively, where τij = ν

(
∂ui

∂xj
+
∂uj

∂xi

)

, and Fv · n =

Fv1 · nx + Fv2 · ny + Fv3 · nz;

• V (t) is an arbitrary controle volume enclosed by the surface S(t) and n is the normal
to S(t) pointing outwards.

• f =







0
fx

fy

fz







is the body force.

Equation (2.38) is found by integrating (2.5) and (2.7) using the divergence theorem.
The computational domain is divided into controle volumes that can be identified with
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an index i. Vi and Si are then the volume and the total face area of the controle volume
i. The first term of equation (2.38) can be expressed as the product of the volume Vi of
the cell i and the time derivative of the cell average of the flow variables Ui. This yields
to the following semi-discrete form of the governing equations:

Vi
∂Ui

∂t
+

∑

j

Fc(i+j)/2 −
∑

j

Fv(i+j)/2 = fi (2.39)

where i is the cell index and j is the index of the next cells of the cell i. (i+j)/2 denotes
the faces between cells i and j as shown in figure 2.3.

Figure 2.3: Definition of the cell and face index.

Remain to evaluate the convective and viscous fluxes Fc and Fv. See for example [33],
[51], [81], [88], and the references therein for more details about the FVM.

2.3.3 Finite Element Method

In Finite Element Method, the governing equations are written in a variational form
before discretisation. This variational formulation corresponds to the minimisation of
some energy integral over the domain. The solution of the problem is assumed to have a
prescribed form and belongs to a particular functional space. The finite element discreti-
sation consists in the discretisation of that functional space. The integral formulation of
the problem confers to the FEM the ability to naturally incorporate differential type of
boundary conditions. Moreover, the combination of the representation of the solution in
a given function space, with the integral formulation treating rigourously the boundary
conditions, gives to the method a rigourous and strong mathematical foundation. This
allows a precise definition of accuracy and error analysis, while in FDM and FVM the
concept of accuracy is more loosely defined. FEM show its strength when unstructured
meshes are needed for complex geometry. However, in FEM mass conservation is satisfied
only globally. There is no local mass conservation as it is the case in FVM [69], [28].
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One of the most common finite element discretisation is the Galerkin discretisation. If Ω
is the computational domain with boundary ∂Ω = ∂ΩD + ∂ΩN where ∂ΩD and ∂ΩN are
non-overlapping and with boundary conditions:

rD(u) = 0 on ∂ΩD (2.40)

rN(u) = 0 on ∂ΩN (2.41)

The Galerkin finite element formulation of the problem is: find u ∈ V and p ∈ Q such
that

∫

Ω

(
∂u

∂t
v + (u · ∇)u v + ν∇u · ∇v − p(∇ · v)

)

dΩ =

∫

Ω

f · vdΩ +

∫

∂ΩN

rN · vdS ∀v ∈ V (2.42)

∫

Ω

q(∇ · u)dΩ = 0 ∀q ∈ Q (2.43)

where

•
V = { all functions v which are smooth enough and satisfy

v(x) = 0 ∀x ∈ ∂ΩD }

•
Q = { all functions q which are smooth enough and satisfy

∫

Ω
q dΩ = 0 }

The discretisation of the functional spaces V and Q gives the following matrix system to
solve:

M
∂u

∂t
+ [νKu + Lu] +Gp = rN + bu (2.44)

Du = bp (2.45)

where

M = [mij] =

∫

Ω

NiNjdΩ (2.46)

K = [kij] =

d∑

s=1

∫

Ω

∂Ni

∂xs

∂Nj

∂xs
dΩ (2.47)

L = [lij] =

∫

Ω

Ni

d∑

s=1

ns∑

k=1

Nk
∂Nj

∂xs
uskdΩ (2.48)

G = [gij] = −

∫

Ω

∂Ni

∂xs

φjdΩ (2.49)

busi
=

∫

Ω

NifsidΩ (2.50)
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with N and φ being the form functions for the velocity and pressure respectively, d being
the space dimension and ns the number of velocity nodes in the s-direction. For more
details see for example [28].

2.3.4 Spectral Element method

In the spectral element method, the global procedure is similar to FEM, except that the
solution has the form of a series of known functions of spatial coordinates with coefficients
to be determinated. The approximation functions are not defined locally, as in FEM, but
on the whole domain which puts severe restrictions on the domain geometry. Finally, a
set of algebraic equations is obtained for the function coefficients. See for example [69]
for more details on the FEM and SEM.

2.4 Time discretisation techniques

In the previous, spatial discretisation was briefly introduced. We now consider temporal
discretisation. One possibility is to treat the time as another spatial dimension as in [96].
This approach is however not very widespread for three main reasons [53]:

1. For higher-order schemes, this technique produces extremely large matrix system;

2. For lower-order schemes, the resulting algorithms are the same as in finite difference
schemes. As finite difference schemes are easier to derive and more studied, they
seem to be more convenient in this context;

3. Time, unlike space, has a definite direction. Therefore, schemes that reflect this
hyperbolic character will be most appropriate. This is the case of finite differences.

If it is assumed that the spatial discretisation has already been performed, the remaining
problem can be expressed as a system of ordinary differential equations to be solved. This
can be written on the form:

du

dt
= r(u) (2.51)

Time stepping schemes are usually divided into two main groups [53]: explicit and implicit
schemes.

2.4.1 Explicit schemes

Almost all explicit schemes may be recast into an m-stage Runge-Kutta scheme of the
form:

∆un+i = αi∆tr(u + ∆un+i−1), i = 1, m, ∆u0 = 0 (2.52)
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The coefficients αi are chosen according to the desired properties, such as damping or
temporal order of accuracy. Some popular choices are:

a) m=1 and α1=1.0: one-stage or forward Euler scheme;

b) m=2 and α1=0.5 and α2=1.0: two-stage scheme.

More examples can be found in [53] and [42].

The main properties of explicit schemes are:

• they allow for an arbitrary order of temporal accuracy;

• they are easy to implement;

• the prescription of boundary condition is relatively simple;

• they are easy to parallelise;

• the time-step is limited by stability constraints, such as the Courant-Friedrichs-Levy
(CFL) condition.

2.4.2 Implicit schemes

For implicit schemes, the right-hand side is evaluated somewhere between the present
time position tn and the next time position tn+1:

∆un+1 = un+1 − un = ∆t r(un+Θ) (2.53)

The right-hand side is usually linearised:

rn+Θ = rn +
∂r

∂u

∣
∣
∣
∣

n

· Θ∆un+1 = rn + An · Θ∆un+1 (2.54)

where the Jacobian
∂r

∂u

∣
∣
∣
∣

n

is denoted An . Equation (2.53) can then be written as:

(1 − ∆tΘAn) · ∆un+1 = rn (2.55)

Popular choices for Θ are:

a) Θ = 1.0: Backward Euler (first order accurate);

b) Θ = 0.5: Crank-Nicholson (second order accurate)

The main properties of implicit schemes are:
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• the maximum order of accuracy for unconditionnably stable schemes is two;

• “arbitrary” time-steps can be taken, i.e. the time-step ∆t is governed only by
accuracy consideration, not by stability. However, one should be careful with the
word “arbitrary”. Implicit CFD codes are usually run with CFL numbers no larger
than 100;

• the solution of (2.55) is usually expensive due to the large system of equations
appearing on its left-hand side.

2.4.3 Explicit versus implicit

Implicit solutions are often used for steady-state flow problems because they have the
potential of achieving rapid convergence. Rapid convergence implies that force imbalances
(i.e. transient) are highly damped in succeeding iterations. When using implicit schemes
for time-dependent problems, the damping feature which was advantageous for steady
solutions becomes a disadvantage. The reason is that this damping can easily overshadow
real transient behaviour. Moreover, for time-dependent problems, implicit schemes are
more expensive and more difficult to implement than explicit ones. There are however
certain classes of time-dependent problems where implicit schemes pay off:

a) In the cases where:

∆t|phys.relevant � ∆tCFL

This is often the case in incompressible flow computations.

b) When the computational grid contains small elements/cells, distorted elements/cells
(close to rigid bodies for instance), difficult surface (free surfaces for example), and
so forth.

2.5 Transformation of equations and grids

In practical CFD applications, the physical plane seldom allows the direct use of a uniform,
rectangular grid. Such grids are particularly interesting when using the finite difference
spatial discretisation.
For example, assume we want to compute the flow around a two-dimensional airfoil as
shown in figure 2.4.

It is easily noted some problems with this rectangular grid:

a) Some grid points fall inside the airfoil, where they are completely out of the flow.
What values of the flow properties should be prescribed there?
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y

x

Figure 2.4: Airfoil and rectangular uniform grid in the physical plane.

b) There are a few, if any, grid points that fall on the surface of the airfoil. This is a
problem since the airfoil surface is a primordial boundary for the determination of
the flow. Therefore the airfoil surface must be strongly modelled for the numerical
solution.

The rectangular grid shown in figure 2.4 is therefore not very appropriate for the numerical
solution of this problem. In contrast, the non-uniform, curvilinear grid shown in figure
2.5 is more appropriate for this problem. The new coordinates ξ and η are defined such
that the airfoil surface corresponds to a coordinate line η=constant. This type of grid is
called a boundary fitted grid.

Figure 2.5: Physical plane.

It is worth to enlight two features of this type of grids:

1. The grid points fall naturally on the airfoil surface;
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2. Conventional numerical schemes (and in particular finite difference quotients) are
difficult to use. The curvilinear physical plane is therefore often transformed into
a rectangular computational plane as shown in figure 2.6. This transformation is
defined such that there is a one-to-one correspondence the meshes in figure 2.5 and in
figure 2.6. For example, points a, b and c in figure 2.5 correspond to points a, b and
c in figure 2.6 which involves uniform ∆ξ and ∆η. The computations are performed
in the computational plane and the computed information is then transformed back
to the physical plane.

Figure 2.6: Computational plane.

Furthermore, the governing equations which are solved in the computational plane must
be expressed in terms of ξ and η and not x and y i.e. the governing equations must be
transformed from (x, y, t) to (ξ, η, τ).
For simplicity, we will consider a two-dimensional unsteady flow, with independent vari-
ables (x, y, t) in the remaining of this section. The results for three-dimensional unsteady
flow, with independent variables (x, y, z, t) are analogous and simply involve more terms.
We will only show the principle of the transformation of the equations for more details
see for example [92].

The transformation between physical and computational planes is defined by:

ξ = ξ(x, y, t) (2.56)

η = η(x, y, t) (2.57)

τ = τ(t) (2.58)

Using the chain rule of differential calculus, one can write:

∂

∂x
=

(
∂

∂ξ

) (
∂ξ

∂x

)

+

(
∂

∂η

) (
∂η

∂x

)

+

(
∂

∂τ

) (
∂τ

∂x

)

︸ ︷︷ ︸

=0

(2.59)



26 CHAPTER 2. GENERAL SOLUTION METHODS

∂

∂y
=

(
∂

∂ξ

) (
∂ξ

∂y

)

+

(
∂

∂η

) (
∂η

∂y

)

+

(
∂

∂τ

) (
∂τ

∂y

)

︸ ︷︷ ︸

=0

(2.60)

∂

∂t
=

(
∂

∂ξ

) (
∂ξ

∂t

)

+

(
∂

∂η

) (
∂η

∂t

)

+

(
∂

∂τ

) (
dτ

dt

)

(2.61)

Equations (2.59), (2.60) and (2.61) allow the derivatives with respect to x, y and t to be
expressed in terms of derivatives with respect to ξ, η and τ . Second order derivatives can
also be transformed in a similar manner (cf. [92]). Once all the terms in the governing
equations have been transformed, numerical schemes can be applied to the equations
expressed in ξ, η and τ (cf. [92]).



Chapter 3

Free Surface prediction

The prediction of the free surface is a crucial part in ship hydrodynamics. The position
of the surface is known initially and has to be determined as part of the solution at later
times. Many methods exist for the prediction of free surfaces. They neither have the
same computational efficiency nor can handle the same physical situations (i.e. types of
waves). Therefore the choice of the method is very important and must be decided by
both the physical problem at hand and the computational resources available.
In this chapter, we will present some of the main techniques used in marine hydrodynamics
to predict free surfaces as well as some of their advantages and disadvantages.
These methods can be classified into two main groups:

1. Interface Tracking methods: methods which define the free surface as a sharp inter-
face whose motions is followed. The tracking is usually performed by making use of
the kinematic and dynamic free surface boundary conditions. Here boundary fitted
grids are used and the grid must be readjusted each time the free surface is moved.
The leading question of Interface Tracking methods is: “where is the surface ?”

2. Interface Capturing also called Volume Tracking methods. Here the computations
are performed on a fixed grid, which extends beyond the surface. The shape of the
free surface is determined by cells which are partially filled. This is achieved by
either following massless particles introduced into the liquid phase near the surface
initially or by solving a transport equation either for the void fraction of the liquid
phase or for the distance from the interface. Here the leading question is: “where
is the fluid volume ? ”

The dominant methods in marine hydrodynamics have been of interface-tracking type.
These techniques have worked well for a variety of hull forms (see [46] and [50]) but they
have the disadvantage of dissipating the waves out too quickly far from the hull. One way
to avoid dissipation (if one needs an accurate description of the free surface away from
the hull) is to use RANS combined with potential flow methods or simply potential flow

27
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methods away from the hull.
Usually, surface fitted grids are used in interface tracking methods. This allows for a simple
and accurate way of prescribing the boundary conditions on the free surface. However
surface fitted grids can also be problematic since once the free surface starts changing, the
grid must be adjusted in order to accommodate the new free surface height. Here good
quality grid is easily lost close to the surface and if the changes are too large the grid can
become highly skewed, which is usually a problem for stability of Navier-Stokes solvers.
The grid should be readjusted in a manner that automatically generates a “good” grid.
Considering how difficult it can be to generate a “good” grid with predefined surfaces,
one can easily imagine how difficult it will be to automatically adjust a structured grid to
any new position of the water surface for a complex geometry. Unstructured grids have
the potential to overcome some of these inherent limitations [52]. However, such complex
physical situations like breaking waves cannot be handled.
On the other hand, volume tracking methods or interface capturing methods can handle
such complexities and are receiving an increased attention in ship hydrodynamics. They
have been used in combination with both RANS [8], [14], and LES [16], [84, 85].
Historically the first method of this type was the well-known Marker-And-Cell (MAC)
method. Then, more than one decade later came the Volume Of Fluid (VOF) method,
and finally the level-set method appeared in the late 1980’s early 1990’s.
Here also the interface evolves as a part of the solution, but no regridding is involved which
makes it less cumbersome than techniques where regridding is needed. In volume tracking
methods, there is a thickness assiocated to the free surface but this can be controlled by
the local grid size.
Generally speaking, interface tracking methods are more accurate than volume tracking
methods, and more efficient for very simple physical situations. However, as previously
mentioned, interface tracking methods are usually limited to simple physical situations.
Therefore, it could be ideal that a CFD code used for ship hydrodynamics applications
contains both an interface tracking and a volume tracking method. For simple physical
phenomena, the former is preferred because of its higher accuracy while the latter is used
when the former cannot be.
We will, in the remaining of this chapter, briefly present some of the most commonly used
methods in marine hydrodynamics for predicting free surfaces.

3.1 Height function method

The height function method [61, 62] is a simple but very efficient way, when it can be used,
of representing a free boundary. This method is based on treating the free surface directly
as a moving boundary and does not deal with volumes of the fluid. It is consequently
an interface tracking method. Here the free surface position is given by the values of
a function h, called height function, which is the distance between the free surface and
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Figure 3.1: Height functions for (a) open interfaces and (b) closed interfaces

a reference line (for two-dimensional problems, cf. fig.3.1) or a reference surface (for a
three-dimensional problem). h is then a function of position on the reference surface and
can be written as (in a three-dimensional problem):

z = h(x, y, t) (3.1)

This method works if h is a single-valued function as shown on the left of figure 3.1. This
means that physical situations like bubbles, drops, breaking waves cannot be handled by
this method. Further, it does not work well when the slope of the free boundary exceeds

the mesh cell aspect ratios
δz

δx
and

δz

δy
. However, this method is to be preferred when it can

be used because it is simple to implement, extremely robust, computationally efficient and
cheap when it comes to storage requirement. Indeed, it requires only a one-dimensional
storage array for the free surface height values.
The next step is to choose an equation or a set of equations allowing the calculation of
the values of h. The most widely used equations in order to do so are the kinematic and
dynamics free surface conditions which in fact are boundary conditions.
In the height function method, the basic procedure for advancing the solution in time
consist of three steps:

1. use the current values of the velocity un and of the pressure pn fields along with the
kinematic free surface condition in order to find the new position and shape of the
free surface,

2. impose the dynamic free surface condition at the newly computed position of the
free surface and solve for the bulk flow,
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3. extract the new velocity un+1 and pressure fields pn+1, and then go back to step 1.

3.1.1 The kinematic free surface condition

In order to derive the kinematic free surface condition let us define the function:

F (x, y, z, t) = z − h(x, y, t) (3.2)

If we let the free surface being at z = h(x, y, t), then F = 0 defines the surface. A
fluid particle on the free surface will stay there [47] and will therefore always satisfy the
equation F = 0. As a consequence, the time rate-of-change of all the particles on the
surface will be zero as they are followed in space. This can be written as:

DF

Dt
= 0 (3.3)

where
D()

Dt
=
∂()

∂t
+ u · ∇() (3.4)

represents the substantial derivative and u is the velocity of the fluid particle. Equation
(3.3) expresses the continuity of the velocity across the surface and can be rewritten as:

∂

∂t
[z − h(x, y, t)] + u · ∇ [z − h(x, y, t)] = 0 (3.5)

or again
∂h(x, y, t)

∂t
+ us

∂h(x, y, t)

∂x
+ vs

∂h(x, y, t)

∂y
− ws = 0 (3.6)

where u = (us, vs, ws)
T is the velocity of the fluid at the free surface. Equation (3.6) is

the well-known kinematic free surface condition. It is used at each time step, to locate
the position of the surface.
At that point, the next step is the integration of equation (3.6) in order to obtain the values
of h. In order to do so in an efficient way, one needs to know the nature and properties of
equation (3.6). Equation (3.6) is hyperbolic. One can then borrow efficient computational
techniques from the well-developed field of numerical solutions of hyperbolic conservations
laws, in order to integrate equation (3.6) and approximate h. [51] gives more details about
numerical solutions of hyperbolic conservation laws.

3.1.2 An integral form of the free surface equation

As mentioned in [51], it might sometimes be preferable, for numerical reasons, to use
an integral form of the free surface equation for variable conservation purposes. Several
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derivation of such a form are possible. One of them is to derive a weak form of equation
(3.6) as in [51]. A complete different possibility is to start from the continuity equation
(2.5) and integrate it along the vertical (z-axis) from the bottom z = −B(x, y) to the free
surface z = h(x, y, t):

∫ h

−B

∂u

∂x
dz +

∫ h

−B

∂v

∂y
dz +

∫ h

−B

∂w

∂z
dz = 0

Using Leibniz theorem1 to switch the order of the differentiation and integration yields
to:

∂

∂x

∫ h

−B

udz + ub
∂

∂x
(−B) − us

∂h

∂x
+

∂

∂y

∫ h

−B

vdz + vb
∂

∂y
(−B) − vs

∂h

∂y
+ ws − wb = 0 (3.7)

The subscripts b and s indicate values on the bottom and the free surface respectively.
The bottom is considered to be a solid boundary and a no-slip boundary condition should
be imposed there. The latter boundary condition can be expressed as three equations:
one for the normal velocity and two for the tangential velocity. Let us consider the normal
component of the the velocity at the bottom. It should satisfy:

ub · nb = 0 (3.8)

Equation (3.8) expresses the impermeability of a solid boundary. ub is the velocity vector
on the bottom, while nb is the normal vector to the bottom surface and is a function of x
and y. If the bottom is a flat boundary, then the normal nb will be constant. If the bottom
is not flat, the normal vector must be computed at every point of the bottom surface and
possibly (if it is a moving bottom) at every time step. In the case of a non-moving bottom,
the normal vector will be computed at the beginning of the simulation once and for all.
One way of finding nb is to proceed as it was done in order to find equation (3.6). This
means defining a function F (x, y, z) that describes the bottom. F can be defined such
that its value is zero at all points on the bottom surface. Assuming that the bottom is at
z = −B(x, y), it is easy to see that one expression for F is the following one:

F (x, y, z) = B(x, y) + z (3.9)

1Leibniz theorem:

∂

∂x

∫ b(x,y)

a(x,y)

f(x, y, z)dz =

∫ b(x,y)

a(x,y)

∂f(x, y, z)

∂x
dz + f(x, y, b)

∂b(x, y)

∂x
− f(x, y, a)

∂a(x, y)

∂x
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The normal vector is then given by:

c

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)T

= c

(
∂B

∂x
,
∂B

∂y
, 1

)T

(3.10)

where c is a normalisation constant.
Equation (3.8) can then be written as:

ub
∂B

∂x
+ vb

∂B

∂y
+ wb = 0 (3.11)

Inserting equation (3.11) into the integral form of the free surface equation (3.7) leads to:

∂

∂x

∫ h(x,y)

−B(x,y)

udz +
∂

∂y

∫ h(x,y)

−B(x,y)

vdz −

(

us
∂h

∂x
+ vs

∂h

∂y
− ws

)

= 0 (3.12)

The free surface must still satisfy the boundary conditions and in particular the kinematic
condition (3.6), which after insertion into (3.12) gives:

∂h

∂t
+

∂

∂x

∫ h(x,y)

−B(x,y)

udz +
∂

∂y

∫ h(x,y)

−B(x,y)

vdz = 0 (3.13)

One of the main advantages of using equation (3.13) to determine the free surface position
is that it accounts for both the kinematic boundary condition and the impermeability at
the bottom. This means that equation (3.13) satisfies the conservation of mass criterion.
Equation (3.13) is then a conservative form of the free surface equation and might be
preferable to use for finite water depth applications.

3.1.3 Moving grid techniques

When using the height function type of methods, it is common to use moving grid tech-
niques in order to solve the kinematic free surface condition (3.6). Descriptions of the
method can be found in [32], [36], [19, 20] and [6].
Briefly, the method consists first in casting the flow equations, together with the free
surface equations, into a curvilinear coordinate system, more convenient for numerical
computations, and then in moving the grid points (on the free surface and in the total-
or part of the fluid domain) to fit the new free surface shape [22], [57].

Taking x1 = x, x2 = y, x3 = z, using Einstein’s convention and following Hinatsu [32],
the momentum and continuity equations can be transformed into a free surface fitted
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curvilinear system (ξi, τ) to give

∂

∂τ

(ui

J

)

+
∂

∂ξj

(
ui

J

∂ξj

∂t
+
ui

J
ũj

)

= −
∂

∂ξj

(
p

J

∂ξj

∂xi

)

+ ν
∂

∂ξj

(
1

J
gjl
∂ui

∂ξl

)

(3.14)

∂

∂ξj

(
ũj

J

)

= 0 (3.15)

where J = det

(
∂ξi

∂xj

)

is the Jacobian of the transformation from the coordinate system

xi to the coordinate system ξi, ũj =
∂ξj

∂xk

uk is the contravariant velocity component along

the ξj-axis and finally gjl =
∂ξj

∂xk

∂ξl

∂xk
is the metric tensor.

The kinematic free surface condition (3.6) (as well as the dynamic free surface condition
see section 4.2) must also be cast into the free surface fitted coordinate system as the
momentum and continuity equations to give

∂h

∂t
+

j=2
∑

j=1

ũj
∂h

∂xj

= u3 (3.16)

Farmer et al. [19, 20] used this method in order to compute the fluid flow around a
Wigley parabolic hull and a Series 60, Cb = 0.6 hull. The results presented for the wave
elevation are in good agreement with experimental data. One particularity of Farmer et
al.’s algorithm is the existence of temporary leakage of flow through the free surface.
Beddhu et al. [6, 7] used method of technique to also predict flow around a Wigley hull,
a Series 60 Cb = 0.6 and a Model 5415. Beddhu et al.’s algorithm differs from Farmer et
al.’s one in three aspects. First of all there is no leakage of the flow though the surface.
Secondly, Beddhu et al. used a background grid whose only purpose is to simplify the
grid regeneration process once the free surface evolves. This background grid is generated
by extending the free surface blocks of the computational grid beyond the free surface
(blocks with the free surface as a boundary are called free surface blocks). Finally, in
Beddhu et al.’s algorithm the curvilinear coordinate system is introduced on a curved
surface as opposed to a flat surface as in Farmer et al.’s. This gives to the algorithm the
ability to model breaking waves to the point of re-entry.
Farmer et al. [19] note that this type of method usually suits to inviscid computations
better than to viscous ones when computing flow around surface piercing bodies. This is
due to the fact that according to the kinematic free surface condition, the flow should be
tangential to the free surface. In inviscid computations, tangent flow along a rigid wall can
easily be enforced. However, this is not the case for viscous computations since the no-slip
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boundary condition at rigid walls is inconsistent with the free surface boundary condition
at the wall/waterline intersection. One way to circumvent this difficulty is to evaluate the
water elevation on the wall by extrapolating the value inside the fluid domain.
Löhner et al. [52] also use moving grid techniques to compute the flow field around various
hull forms. However, in contrary to the previous authors they do not update the grid at
every time step but only every 100-250 time steps. This leads to a minimisation of the
computational cost associated to geometry recalculation and grid repositioning.

3.2 Line segment method

The line segment method [60] is a generalisation of the height function method which uses
chains of short line segments in order to represent the free surface. The length of these
lines must be less than the minimum mesh size (δx, δy, or δz) for accuracy purposes.
Each line is represented by its two endpoints, and the coordinates of each point must be
stored. Therefore, the storage requirement is slightly increased compared with the height
function method, but the method is not limited to single-valued surfaces.
The evolution of the free surface in time is accomplished by moving each line segment,
or more precisely the endpoints of each segment, with the local fluid velocity, determined
by interpolation of the surrounding mesh.
There are however two main difficulties with this method. The first one is when surfaces
intersect or when a surface folds over itself. A special scheme is needed to first detect
such situations and secondly to reorder the segments. This is in general not a trivial task.
The second main difficulty is the extension of the methods to three-dimensional surfaces.
In three dimensions, the determination of neighbouring points defining the local surface
configuration requires a large effort. Moreover, the determination of surface intersections
and the reordering process is considerably more complex than in two dimensions. There-
fore this technique is almost exclusively applied to two-dimensional problems, and very
few three-dimensional applications can be found in the literature.

Both the height function and the line segment methods are interface tracking type of
methods. But the height function method is usually preferred because of its simplicity
and of its higher computational efficiency.

3.3 Marker-And-Cell method

The Marker-And-Cell technique of Harlow and Welch is a volume tracking type of method
which uses particles with no mass nor energy, distributed in the whole fluid volume to trace
the free surface [30] (see figure 3.2). Those massless particles are fictitious, of Lagrangian
type, play no role in the dynamics of the fluid and are not accounted for in the solution
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Figure 3.2: Representation of an interface by the Marker And Cell method.

of the flow governing equations. Initially distributed in the whole fluid volume, they are
moved passively with the local fluid velocity. The instantaneous surface configuration,
can be determined by finding the markers’ position after advection.

The computational procedure is very simple and consists of two main steps:

1. the governing equations of the flow are solved on a fixed computational grid and
the velocity field is determined inside the fluid domain.

2. each particle is moved according to the velocity at its position.

The fixed computational mesh covers the whole area of possible fluid movement, so that
some cells might remain empty. Cells with no marker particles are considered to be empty.
Cells with marker particles and with at least one empty neighbour are on the free surface
and are called boundary cells. Finally, cells with marker particles and no empty neighbour
are considered to be filled with fluid.

The method has been much studied and utilised and consequently has been improved in
various ways. For instance, by Miyata et al. [54], Miyata [56], Tomé and McKee [86]
in the framework of the finite difference method or again by Nakayama and Mori [59] in
the context of finite elements. All these authors showed computations in good agreement
with experimental data for two-dimensional problems.

One great advantage of this method is its ability to handle complex and general situations
as breaking surfaces, dam breaking, splash, or fluid detachment. This method is however
computationally prohibitive for large scale three-dimensional applications because of the
need to use a large number of continually redistributed particles in order to capture the
free surface shape properly. The markers need to be continually redistributed because
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their distribution varies with time due to velocity gradients, inflows, outflows, and it is
therefore necessary to redistribute the markers evenly in all fluid cells when they tend
to spread disproportionally. Further, the storage requirement is significantly high since a
very large number of point coordinates must be stored in addition to the bulk flow grid
points.
Moreover, even with a large number of markers, it is difficult to determine the orientation
of the surface in a cell. The fact that the number of particles is finite can lead to a new
problem: false regions of void can be generated in regions with large velocity gradients.
Another problem is the difficulty to impose boundary condition on the surface and espe-
cially for the pressure as first noted by Harlow & Welch [30].

3.4 Volume of fluid method

The Volume of Fluid (VOF) method is another volume tracking type of technique. It
was originally introduced in 1981 by Hirt & Nichols [35] and can be applied to problems
where several fluids with different densities are present. It can handle complex physical
situations as breaking surfaces, splash, fluid detachment, etc... (see figure 3.3).

Figure 3.3: Example of interface reconstruction with the VOF method.

The main idea of the VOF method is to introduce a function φ whose value is one at any
point occupied by fluid and zero otherwise. The average value of φ in a cell will then
represent the fractional volume of the cell occupied by the fluid. In particular φ = 1
corresponds to cell filled with fluid, φ = 0 to a cell with no fluid at all, and 0 < φ < 1 to
cell containing the free surface (see figure 3.4).
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Figure 3.4: Volume fraction on a discrete mesh.

The time dependence of φ is governed by the following pure advection equation [35]:

∂φ

∂t
+ ∇ · (uφ) = 0 (3.17)

A typical VOF algorithm generally consists of two parts:

1. a device to track the volume and locate the free surface. This device must be able
to keep the interface as sharp as possible,

2. a way to impose boundary conditions at the surface.

The first part of a VOF algorithm, i.e. the location of the free surface consists in a device
allowing the accurate computation of the evolution of the function φ. This means solving
equation (3.17). This is usually done on a grid which extends beyond the fluid domain.
As a consequence, air flow can also be computed.
Several approaches have been used. In [35], Hirt & Nichols used a finite difference scheme
in order to compute the values of φ using a modified equation obtained by combining
equation (3.17) with the continuity equation (2.5):

∂φ

∂t
+
∂(φu)

∂x
+
∂(φv)

∂y
+
∂(φw)

∂z
= 0 (3.18)

where u, v, w are the components of the velocity filed v in x, y, z-direction respectively.
Azcueta et al. [1, 2] and Muzaferija & Perić [58] solved the following integral form of
equation (3.17) using finite volume discretisation:

d

dt

∫

V

φdV +

∫

S

φu · ndS = 0 (3.19)

In any case, flow rates at cells’ interfaces must be computed. These flow rates usually
depends on several geometrical factors. For instance, the flow rate Qn

ik through the face
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k of cell i at time tn can be written as:

Qn
ik = −αk

∫

k

un
jnjdS (3.20)

where αk is the wet fraction of face k, un
j is the velocity field at face k and nj is the unit

normal vector.
An important aspect of the first part in the algorithm is a scheme preventing an important
smearing of the surface. The critical issue here is the discretisation of the convective term
in equation (3.17). The problem comes from the fact that the free surface is represented
by a discontinuity in the values of the volume fraction φ. Indeed, if classical high-order
schemes are used, unphysical oscillations will appear in the vicinity of the surface. But
on the other hand, if low-order schemes are used, then numerical diffusion will be intro-
duced, leading to a smearing of the free surface over several cells, typically one to three
cells. Grid refinement and numerical schemes with high resolution are therefore important
parameters for an accurate resolution of the free surface. Chen et al. [11] developed a
grid refinement technique called the surface marker and micro cell method using a simple
refinement criterion: each cell with a value of φ ∈ ]0, 1[ need to be refined. High resolution
schemes can be “borrowed” from the area of numerical solutions of hyperbolic conserva-
tions laws, and φ can be approximated accurately (see [51] and the references therein for
more details about numerical solutions of hyperbolic equations) since equation (3.17) is
an hyperbolic equation and the function.

It is also possible to use other approaches than those described in [51] in order to ob-
tain Qn

ik. A number of techniques based on purely geometrical considerations have been
developed and used with the Volume Of Fluid method. Rudman [74] reviews and dis-
cusses advantages and disadvantages of some the existing schemes: the donor-acceptor
algorithm as in [72], [35] and [21], the SLIC algorithm [63], the FCT-VOF [95, 74] and
Youngs’ method [94, 74]. All these methods have been applied to hydrodynamics prob-
lems and have given reliable results [21], [35]. Others methods, not included in Rudman’s
review [74], also give good results for the computation of free surface flows. The high-
resolution interface-capturing scheme (HRIC) of Muzaferija & Perić [58] was used by
Azcueta et al. [1, 2] to compute both the flow around hydrofoils under the free surface
and the breaking bow waves for a ship hull. Kawamura & Miyata [44] developed the
density function method (product of the density and VOF function φ) and located the
free surface as the iso-contour of value 0.5. Both the liquid and gas flow are computed
here and, the free surface is treated as a boundary where the kinematic and dynamic
boundary conditions have to be prescribed.

The second part of a VOF algorithm is a way to impose boundary conditions on the
free surface. The grid points will usually not correspond to points on the free surface.
Figure 3.5 shows an example of this situation for a two-dimensional application. Here,
the shaded part represents the fluid domain. The computational grid is shown only for
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Figure 3.5: Prescription of the boundary conditions in the VOF method.

the air domain. The circles indicate points on the free surface that are not grid points
while the cross indicates a point on the free surface that is a grid point. From figure 3.5,
one can easily understand that the prescription of boundary conditions on the exact free
surface location can become a problem. In [35], where the momentum and continuity
equations are solved for the liquid phase only, Hirt and Nichols used a pressure interpo-
lation method, developed originally for the MAC method [60], in order to prescribe the
free surface conditions at the correct free surface location. Alternatively, Muzaferija and
Perić [58] treated both fluids as a single one whose properties vary in space according to
the volume fraction of each of each phase:

ρ = ρ1c+ ρ2(1 − c), µ = µ1c+ µ2(1 − c) (3.21)

where subscripts 1 and 2 denote the two fluids. In this method, the interface is not
treated as a boundary and therefore no boundary condition need to be prescribed on it.
The interface is simply the location where the fluid properties change abruptly.

The VOF method requires only a one-dimensional array (the value of φ in each cell)
storage as in the height function method. Furthermore, because it follows regions and
not surfaces, all problems associated with intersecting surfaces or surfaces folding over
themselves are avoided with the VOF technique. However, the computational cost is
increased with respect to the height function technique (but decreased with respect to the
MAC method).
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Volume of Fluid methods have been much used for marine hydrodynamics applications.
Primarily for internal flows as shloshing in tanks, but it has also lately been applied
to external flows problems like flows around ship hulls. Azcueta et al. [2] studied an
immersed hydrofoil close to the free surface with both an height function method and
volume of fluid method. They showed good results for breaking waves situations with
the volume of fluid method, while the height function technique was limited to non-
breaking wave situations. Azcueta et al. [1], showed that the VOF method can be applied
successfully to complex wave phenomena around ship hull, surface-piercing or submerged
bodies. Fekken et al. [21] showed that the VOF method can describe quite well the global
behaviour of the water surface for green water situations.

3.5 Level Set method

The level set technique was first introduced by Osher and Sethian [65]. A general de-
scription of the method can be found in [77]. It is, as in the VOF method, based on the
solution of following transport equation:

∂φ

∂t
+ ∇ · (uφ) = 0 (3.22)

However, the meaning of the unknown function φ is here slightly different from the VOF
method. While in the latter φ represented the fractional volume of liquid contained in a
cell, here it represents the signed distance between a point and the interface. The value
of φ at a point x indicates if x is in liquid or gas as follows:

φ > 0 → Gas
φ = 0 → Surface
φ < 0 → Liquid

The level set technique is often classified as an interface-capturing scheme. This might
be due to the fact that in the earliest level set algorithms, the zero level set of φ was
never found explicitly [78]. However, it is probably better to classify the more recent
level set methods [80] as “Eulerian” interface-tracking methods. There, interfaces are no
longer captured but tracked since the zero level set of φ is found explicitly as a part of
the numerical algorithm. The term “Eulerian” refers then to the fact that the interface is
not represented as a set of connected moving points but as an embedded boundary (the
zero level set of the function φ).
The level set technique can, as the VOF method, handle complex physical situations like
breaking waves, droplets, fluid detachment, etc... Surface tension can be included in a
simple way. Coupled with the momentum and continuity equations, equation (3.22) can
be solved to give the interface shape and location.
Typically, a level set algorithm consists firstly of a device solving equation (3.22) and
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secondly of a re-initialisation scheme.
Equation (3.22) can be solved in various ways. Sussman et al. [78, 79], Bet et al. [9], Cura
Hochbaum & Schumann [15] and Vogt & Larsson [91] use a two-phase flow formulation.
They compute both the water and air flow. The free surface is not sharply resolved
but it is given a finite thickness in terms of number of cells where the fluid properties
change smoothly. Therefore no free surface boundary conditions need to be prescribed.
The introduction of the transition region between the two fluids can be simply seen as a
numerical device avoiding the numerical difficulties represented by the abrupt change in
density and viscosity between the two fluids, and by the Dirac delta function contained
in the expression of the surface tension when it is accounted for.
Following Chang et al. [10], the surface tension can be written as:

−τκ(φ)δ(φ)∇φ (3.23)

where

• τ is the coefficient of surface tension,

• κ(φ) = ∇ ·

(
∇φ

|∇φ|

)

is the curvature of the interface,

• δ(φ) = 1 if φ = 0, and 0 otherwise, is the Dirac delta function.

The surface tension is important, and should be accounted for, when the Weber number

(We =
ρU2L

τ
, where U is a characteristic velocity and L a characteristic length) is of

order 1 or smaller. This usually happens when the size of curvature of the interface is of
the same order of magnitude as the liquid depth. Typical examples are droplets, ripple
waves. If We is very large, its effect can be neglected.

The finite thickness mentioned previously, is introduced through a smoothing of the Dirac
delta function δ(φ) and the introduction of a smooth Heavyside function Hε in the for-
mulations of the density ρ and viscosity µ functions, so that the change between the gas
(ρg, µg) and the liquid properties (ρl, µl) happens in a band of finite thickness. Many
expressions for the regularised Heavyside function have been used. One of them [79] is:

Hε(φ) =







0 if φ < −ε
1

2
[1 +

φ

ε
−

1

π
sin(

πφ

ε
)] if |φ| < ε

1 if φ > −ε

(3.24)

The Dirac delta function in the expression of the surface tension (3.23) is replaced by:

δε(φ) =
dHε

dφ
(3.25)
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The thickness of the interface can be regulated through the parameter ε.
The smooth density and viscosity are then written as:

ρε(φ) = ρg + (ρl − ρg)Hε, µε(φ) = µg + (µl − µg)Hε (3.26)

The regularised surface tension can then be written as:

−τκ(φ)δε(φ)∇φ (3.27)

However, in ship hydrodynamics the calculations mostly concern the water flow and the
fact that introducing a band through which the physical properties change smoothly is an
unphysical approximation. It is therefore favorable to keep the computations in the air
domain as well as the band width to a minimum. This led Vogt & Larsson [91] to develop
an one-phase formulation of the level set method where only the water flow is computed
and where the free surface is represented as a sharp interface. Boundary conditions on
the free surface are then needed and Vogt & Larsson use an interpolation/extrapolation
scheme in order to prescribe the dynamic boundary condition on the free surface. Vogt &
Larsson [91] concluded however that this formulation is so far less flexible and more com-
plicated to implement (particularly in three-dimensions) than the two-phase formulation.
They also noted that the one-phase formulation is generally slightly less accurate.

Sussman & Dommermuth proposed a coupled level set and volume of fluid method and
applied it to the flow around a DDG5415. They solve the transport equation (3.17,3.22)
for both the level set function (denoted by φ) and the volume fraction of liquid in each
cell (denoted by F). After φn+1 and F n+1 have been updated, the VOF reconstructed
surface is used in the re-initialisation step of the level set function. Their re-initialisation
step replaces the current value of φn+1 with the exact distance to the VOF reconstructed
interface.

The re-initialisation step of a level set algorithm is needed in order to insure that the
level set function φ remains a distance function through the computations. This is crucial
to keep the interface thickness constant in time. φ generally does not remain a distance
function under the evolution of equation (3.22). The re-initialisation step is then simply
the replacement of φn with φ̃n which in each point represents the distance to the interface
and will be use as starting point for the next time iteration in the solution of (3.22). The
function φ̃n is usually found as the steady state solution of the following equation:

∂φ̃

∂t̃
+ S(φ)

[

1 − |∇φ̃|
]

= 0 (3.28)

where t̃ is an artificial time and S(φ) is
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• either the sign function as in [79], [41]:

S(φ) =







−1 if φ < 0
0 if φ = 0
1 if φ > 0

(3.29)

• or a smooth sign function as in [15], [91]:

S(φ) =
φ

√

φ2 + ε2
(3.30)

Equation (3.28) is a nonlinear Hamilton-Jacobi type of equation, with discontinuous co-
efficients if (3.29) used or continuous coefficients if (3.30) is used. Efficient and accurate
solution techniques can then be borrowed from the theory of hyperbolic conservation laws.

The level-set technique has gained a large interest in the ship hydrodynamics community
the last decade. As an example of application, Bet et al. [9] applied it with and artifi-
cial compressibility technique and finite volume discretisation to compute the flow field
around a Wigley hull and a Series 60, both in deep and restricted waters. In [14], Chun
et al. also computed the flow around a Wigley hull and a Series 60 in shallow waters. In
[91], the flow around a submerged NACA0012 hydrofoil is computed.

3.6 Volume of Fluid versus Level-set

• Note that if in equation (3.5), we set z − h(x, y, t) = φ, then equation (3.5) can be
written as:

∂φ

∂t
+ u · ∇φ = 0 (3.31)

For an incompressible fluid this is equivalent to

∂φ

∂t
+ ∇ · (uφ) = 0 (3.32)

since ∇ · u = 0. The previous equation is the transport equation solved in both the
level set and the volume of fluid methods. It is then clear that the volume of fluid
and level set methods satisfy implicitly the kinematic free surface condition.

• Both techniques are of Eulerian nature, which make them very attractive compared
to Lagrangian techniques since they avoid many of the Lagrangian and topological
change problems.

• Due to the continuity of the level-set function φ and to the introduction of the reg-
ularised Heavyside function, no particular difficulties arise in solving the transport
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equation (3.22). This not the case in the VOF method where some special treat-
ment of the discontinuity is needed. As a consequence of this, level-set is usually
more accurate than VOF: higher order (and in particular second order for typical
practical computations) schemes can more easily be applied in the level-set tech-
nique. Indeed, as mentioned in section 3.4 a second order scheme for hyperbolic
conservation laws gives (if no particular treatment is done) oscillations near discon-
tinuities due to its dispersive behaviour. Since in the VOF method the free surface
is represented as a discontinuity (of the volume fraction), oscillations close to the
surface will appear. If first order schemes are used then there will be an important
smearing of the interface, due to the dissipative behaviour of first order schemes.

• Considerable work may be required to develop higher order versions of VOF schemes.

• Calculation of intrinsic geometric properties of the surface, such as curvature or
normal direction may be inaccurate in VOF. Even though the definition of those

characteristic geometric properties is exactly the same in both cases, n =
∇φ

|∇φ|
for

the normal to the surface and κ = ∇ ·
∇φ

|∇φ|
for the curvature, these are easier to

compute in the case of the level-set technique where the function φ is continuous
across the surface.

• Thomas et al. [84, 85] pointed out that VOF method automatically satisfies the
conservation of mass and momentum but not the conservation of energy while, ac-
cording to Rudman [74] the level set technique does not guarantee mass conservation
in highly distorted flows and this can give unacceptable errors in the results.

• The re-initialisation process is also an important source of errors in the level set
methodology.

3.7 Arbitrary Lagrangian-Eulerian methods

As mentioned above, purely Lagrangian methods are limited by their ability to easily
handle the strong distortions which often characterise flows of interest. On the other hand,
Eulerian methods can relatively easily cope with those distortions but at the expense of a
accurate definition of the interface. The Arbitrary Lagrangian Eulerian (ALE) formulation
can be considered as a generalisation of of both Lagrangian and Eulerian formulations,
attempting to overcome their respective weaknesses.
In the ALE description, the computational mesh is treated as a reference frame moving
with an arbitrary velocity w. This velocity w basic link with the fluid velocity u. Three
cases can be enlightened, depending on the value of w:
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(a) w = 0, the reference frame is fixed and this corresponds to the eulerian description;

(b) w = u, the reference frame moves in space with the same velocity as the fluid: this
corresponds to the Lagrangian description;

(c) w 6= 0 and w 6= u, the reference frame moves in space with a velocity which is
different from the fluid velocity. This is the ALE description.

Donea et al. [17] present a general description of the ALE formulation of the governing
equations.

A summary of the different methods presented here is shown figure 3.6.

Interface Tracking
methods

Interface Capturing
methods

Height Function Line segment Marker-And-Cell Volume Of Fluid Level Set
Arbitrary

Lagrangian-
Eulerian

Figure 3.6: Chart flow presenting some of the existing methods for prediction of interfaces.



Chapter 4

Initial and Boundary conditions

In this section, initial and boundary conditions will be described briefly. Proper initial
and boundary conditions must be provided in order to have a well-posed problem, so that
the partial differential equations governing the flow have a unique solution which depends
continuously on the data.
The computational domain Ω ∈ IR3 will generally be bounded by a boundary Γ composed
by the bottom, by moving free surface, by lateral impenetrable (side boundaries, body)
and open (inflow, outflow) boundaries.

4.1 Initial conditions

The initial conditions should be provided for all the points inside the computational
domain as well as those on the boundary for all independent variables such as velocity
and free surface elevation. For incompressible flow it is highly important that the initial
velocity field uo is solenoidal and fulfills the boundary conditions [26] :

u(x, t) = uo(x, 0) for x ∈ Ω ∪ Γ and t = 0 (4.1)

∇ · u0 = 0 for x ∈ Ω and t = 0 (4.2)

u0 · n = w(x, 0) · n for x ∈ Γ and t = 0 (4.3)

where w is a known function.
It is of common practise to set the initial velocity field inside the domain to zero. However
other choices are possible like for instance the value of the inflow velocity.

4.2 Dynamic condition

The dynamic condition is a boundary condition that can be prescribed on all surfaces
where stress continuity is satisfied. This is for instance the case at the free surface. Once

46
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the shape of the free surface has been found, the dynamic condition is imposed as a
boundary condition for solving boundary condition in the Navier-Stokes equations for the
bulk flow.
This dynamic free surface condition is obtained from the continuity of the stress vector :

σ · n = σin · n = σout · n (4.4)

where n is the surface normal and σ the stress tensor. Owing that the free surface can
be represented by the equation F (x, y, z, t) = 0 (cf. equation (3.2) and section 3.1.1), the
surface normal is simply given by :

n =
∇F

|∇F |

The normal vector points out of the fluid domain.
The inner and outer stress tensor are respectively given by :

σin = (−pinI + 2µS) (4.5)

σout = (−poutI + τ ) (4.6)

where pin and pout are respectively the pressure in the fluid and the air, I is the identity
matrix, S the rate-of-strain tensor, µ the dynamic viscosity τ the outside boundary stress
tensor which contains the surface tension. Surface tension effects are important and must

be accounted for if the Weber number We (=
ρ1LU

2

σ
) is of order 1, or smaller than 1.

The rate-of-strain tensor S is defined as :

Sij =

(
∂ui

∂xj
+
∂uj

∂xi

)

The stress vectors σin and σout can be projected onto the normal direction to the surface,
and onto the tangential directions. This gives three conditions:

σn = (σ · n) · n

(4.7)

σt = (σ · n) · t

After some algebraic manipulations, one can find :

σn = −pin + 2µ
∂un

∂n
(4.8)

σt = 2µ

(
∂un

∂t
+
∂ut

∂n

)
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The tangential projection σt consists of two components.
The dynamic free surface condition can then be written as :

−pin + 2µ
∂un

∂n
= −pout + τn

(4.9)

2µ

(
∂un

∂t
+
∂ut

∂n

)

= τt

By neglecting the surface tension a simplified set of dynaimc boundary conditions is
obtained :

−pin + 2µ
∂un

∂n
= −pout

(4.10)

2µ

(
∂un

∂t
+
∂ut

∂n

)

= 0

Note that from equations (4.10), the dynamic conditions usually imposed in a potential
flow problem (i.e. equilibrum of pressure at both sides of the boundary) can be obtained
by simply setting the viscosity to zero :

pin = pout (4.11)

4.3 Open boundary conditions

Numerical solutions of most of the computational fluid dynamics problems are driven by
the boundary conditions, it is then extremely important to prescribe physically realistic
boundary conditions that will at the same time give a well-posed mathematical problem.
In numerical ship hydrodynamics, there are usually three types of boundaries: solid wall
boundaries, free surface, and open boundaries. Solid wall boundary conditions are usually
known (no-slip condition for viscous flow or no-penetration condition for inviscid flow).
The open boundaries appear due to the truncation of the flow domain and are usually of
two types: the inflow boundary and the outflow boundary.
At the inflow boundary, the conditions are usually known and easy to implement as they
are imposed values. The outflow boundary conditions need some care as they are more
difficult to apply since they are a priori unknown. Theoritically, the stress continuity
(4.9) have to be prescribed. Usually, the outflow boundaries are located where the flow
behaviour is known, for instance approximatively unidirectional or where the stresses are
known. For high Reynolds number flows far from solid objects in an external flow, or
for the fully developed flow out of a channel, there is no change in any of the velocity
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components in the direction across the boundary and σn = −p and σt = 0. This gives the
outflow boundary condition:

p = p0 and
∂un

∂n
= 0 (4.12)

Gresho [27] reviews some of the open boundary conditions for incompressible flow com-
putations and concludes that there are some theoritical concerns about the condition
∂un

∂n
= 0 but that it is in practise used successfully.

In ship hydrodynamics applications, the outflow boundary must also be non-reflective and
able to damp out the waves. Hinatsu [32] tests and studies two types of open boundary
conditions:

• an Orlanski type condition in which the Sommerfeld radiation condition is imposed
on the open boundary,

• the added dissipation zone method in which the computational domain is extended
with a coarse grid where fictitious damping forces are added.

In the Orlanski type of boundary condition, a physical variable ψ (usually the pressure
cf. [32]) is imposed to satisfy the condition :

∂ψ

∂t
− c

∂ψ

∂x
= 0 (4.13)

where the wave phase velocity c is determined locally by use of the wave elevation around
the open boundary.
In the added dissipation zone method, waves are damped by a numerical dissipation due
to fictitious damping forces added to a coarse extension of the grid. A Neumann type
boundary condition is prescribed at the outmost boundary and the fictituos damping
forces are assumed to have the form :

f = −αv (4.14)

where v is the vertical velocity component and α a positive constant.



Chapter 5

Some interesting test cases

In this chapter some interesting test cases for validation purposes of the free surface
method will be described.

5.1 Standing wave

Following Hinatsu [32], the first test problem will be the small amplitude standing wave
problem. Figure 5.1 shows the configuration. We consider a basin of breadth b and of
depth h, both equal to unity. The initial wave elevation is sinusoidal with wave height
0.01 and then, the free surface is allowed to oscillate freely. The free slip condition was
imposed at all walls so that the results could be compared more easily to potential theory.
The Froude number is set to one and two Reynolds number are tested: Re = 100 and Re
= 104. The results can be found in [32].

0.01

b = 1

h = 1

Figure 5.1: Standing wave problem
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5.2 Wave generated by a bottom obstacle

The last test case is the waves generated by a bottom obstacle in a uniform flow, which also
helps in assessing the performances of the open boundary conditions. The computational
setup is shown figure 5.2. The shape of the obstacle is sinusoidal with a length of 4 units

x=16

d=1
u=1

h=0.5

l=4x=-16

Figure 5.2: Waves generated by a bottom obstacle.

and a height of 0.5 unit. Reynolds number is set to 104 and Froude number to 1.

5.3 Flow around a fixed body at the free surface

Miyata et al. [54, 55] studied numerically and experimentally the flow around a two-
dimensional rectangular section in deep water (figure 5.3). Results and more details
about the computational setup can be found in [54, 55].

U

x

z0.1

0.1

0.1

0.6 0.6

Figure 5.3: Rectangular section at the free surface.
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5.4 Flow past a submerged hydrofoil

The flow past a hydrofoil under the free surface has been studied experimentally by
Duncan [18] and numerically by Azcueta et al. [2] among others.
The hydrofoil with the NACA0012 profile was used. The chord length was lc = 203 mm;
the maximum thickness of 25.4 mm was located 61 mm behind the nose. The hydrofoil was
towed at an angle of attack of 5o with a towing velocity of 0.8 m/s. The results presented
in [2] for non-breaking wave situations were for a depth of 210 mm. The Reynolds and
Froude numbers based on the chord length were 162400 and 0.567 respectively (see figure
5.4).

Figure 5.4: Airfoil under the free surface.
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[53] R. Löhner. Applied CFD Techniques - An Introduction based on Finite Element Meth-
ods. John Wiley & Sons Ltd, 2001

[54] H. Miyata, H. Kajitani, N. Suzuki and C. Matsukawa. Numerical and Experimental
Analysis of Nonlinear Bow and Stern Waves of a Two-Dimensional Body. (First
Report) Journal of The Society of Naval Architects of Japan, vol. 154, pp. 48-55,
1983

[55] H. Miyata, H. Kajitani, C. Matsukawa, N. Suzuki, M. Kanai and S. Kuzumi. Nu-
merical and Experimental Analysis of Nonlinear Bow and Stern Waves of a Two-
Dimensional Body. (Second Report) Journal of The Society of Naval Architects of
Japan, vol. 155, pp. 11-17, 1984

[56] H. Miyata. Finite-difference simulation of breaking waves. Journal of Computational
Physics, vol. 65, pp. 179-214, 1986
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