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Abstract

In previous contributions we presented a new class of algorithms for or-

thonormal learning of linear neural networks with p inputs and m outputs,

based on the equations describing the dynamics of a massive rigid frame in

a submanifold of IRp. While exhibiting interesting features, such as good

numerical stability, strongly binding to the orthonormal manifolds, and

good controllability of the learning dynamics, the proposed algorithms

were not completely satisfactory from a computational-complexity point

of view. The main drawbacks were the non-efficient representation of the

learning matrix-quantities and the non-efficient integration of the result-

ing learning differential equations. In this Technical Report a new and

efficient representation of the learning equations is proposed, and a possi-

ble way to integrate them is suggested. Numerical experiments concerning

Principal Subspace Analysis and Independent Component Analysis were

carried out with both synthetic and real-world data in order to confirm

the effectiveness of the proposed theory.

1 Introduction

During the last years, several contributions appeared in the neural network

literature as well as in other research areas regarding neural learning and opti-

mization involving flows on special sets (such as Stiefel manifold).

The analysis of these contributions has raised the idea that geometric con-

cepts (such as the theory of Lie groups) give the fundamental instruments for
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gaining a deep insight into the mathematical properties of several learning and

optimization paradigms.

The interest displayed by the scientific community about this research topic

is also testified by several activities such as the organization of the special issue

on “Non-Gradient Learning Techniques” of the International Journal of Neural

Systems (guest editors A. de Carvalho and S.C. Kremer), the Post-NIPS*2000

workshop on “Geometric and Quantum Methods in Learning”, organized by

S.-i. Amari, A. Assadi and T. Poggio (Colorado, December 2000), the work-

shop “Uncertainty in Geometric Computations” held in Sheffield, England, in

July 2001, organized by J. Winkler and M. Niranjan, the special session of the

IJCNN’02 conference on “Differential & Computational Geometry in Neural

Networks” held in Honolulu, Hawaii (USA), in May 2002 and organized by E.

Bayro-Corrochano, and the workshop ”Information Geometry and its Applica-

tions”, held in Pescara (Italy), in July 2002, organized by P. Giblisco.

Understanding the underlying geometric structure of a network parameters

space is extremely important to designing systems that can effectively navigate

the space while learning.

Over the last decade or so, driven greatly by the work on information geom-

etry, we are seeing the merging of the fields of statistics and geometry applied to

neural networks and learning. Research topics include differential geometrical

methods for learning, the Lie group learning algorithms [22], the natural (Rie-

mannian) gradient techniques [2, 24, 30], the numerical aspects of the solution

of the matrix-equations on Lie groups and homogeneous spaces [8, 9, 14, 29].

Some specific exemplary applied topics that can be addressed under the

mentioned general methodology are: Principal component/subspace analysis

[20, 41]; Neural independent component analysis and blind source separation

[20, 42]; Information geometry [2]; Geometric Clifford algebra for the gener-

alization of neural networks [3]; Geometrical methods of unsupervised learn-

ing for blind signal processing [20, 22]; Eigenvalue and generalized eigenvalue

problems, optimal linear compression, noise reduction and signal representation

[13, 16, 34, 40, 41]; Simulation of the physics of bulk materials [15]; Minimal

linear system realization from noise-injection measured data and invariant sub-

space computation [15, 32]; Optimal de-noising by sparse coding shrinkage [35];

Direction of arrival estimation [1]; Linear programming and sequential quadratic

programming [6, 15]; Optical character recognition by transformation-invariant

neural networks [38]; Analysis of geometric constraints on neural activity for

natural three-dimensional movement [43]; Electrical networks fault detection
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[31]; Synthesis of digital filters by improved total least-squares technique [25];

Speaker verification [39]; Adaptive image coding [33]; Dynamic texture recogni-

tion [37].

As a contribution to this research field, a new learning theory derived from

the study of the dynamics of an abstract system of masses, moving in a mul-

tidimensional space under an external force field, was presented and studied

in details in [21, 22]. The set of equations describing system’s dynamics was

interpreted as a learning algorithm for neural layers termed MEC. Relevant

properties of the proposed learning theory were discussed, along with results

of computer-based experiments performed in order to assess its effectiveness in

applied fields.

In particular, some applications of the proposed approach were suggested,

and cases of orthonormal independent component analysis and principal com-

ponent analysis were tackled through computer simulations, which showed the

MEC algorithm is effective and provides a good trade-off between numerical per-

formance and computational complexity even when compared to closely-related

algorithms.

An open question about the mentioned algorithm concerned the computa-

tional complexity which arises from the necessity of matrix computation, such

as the repeated evaluation of the exponential map. The aim of the present

Technical Report is to investigate a different formulation of the MEC learn-

ing equations and to suggest a possible numerical strategy for achieving their

solution based on geometric integration.

2 Summary of the MEC Theory and Proposed

Improvement

In orthonormal learning, the target of the adaptation rule for a neural network is

to learn an orthonormal weight-matrix related in some way to the input signal.

Since it is a prior knowledge that the final state must belong to the subset of the

whole weight-space containing the orthonormal matrices, the evolution of the

weight-matrix could be strongly bounded to always belong to the orthonormal

manifold.

We solved this strongly-binding problem by adopting as columns of the

weight-matrix the position-vectors of some masses of a rigid system: Because of

the intrinsic rigidity of the system, the required constraint is always respected.
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By recalling that a (dissipative) mechanical system reaches the equilibrium

when its own potential energy function (PEF) is at its minimum or local minima,

a PEF may be assumed proportional to a cost function to be minimized, or

proportional to an objective function to be maximized, both under the constraint

of orthonormality.

In the following sections we briefly recall the mentioned theory, its principal

features and the drawbacks related to its computational complexity. We then

describe the proposed improvement based on an advantageous parameterization

of the angular-velocity space.

2.1 Summary of rigid-body learning theory

Let Sm = {(µi,wi), (µi,−wi)}i∈{1,...,m} be a rigid system of masses, where the

m vectors wi ∈ IRp represent the instantaneous positions of 2m masses µi ∈
IR+

0 in a coordinate system. Such masses are positioned at constant (unitary)

distances from the origin O fixed in the space IRp, and over mutually orthogonal

immaterial axes. In [21] we assumed the values of the masses µi constant at 1.

In Figure 1 an exemplary configuration of Sm for p = 3 and m = 3 is illustrated.

Note that by definition the system has been assumed rigid with the axes

origin O fixed in the space, thus the masses are allowed only to instantaneously

rotate around this point, while they cannot translate with respect to it.

The masses move in the space IRp where a physical point P , endowed with

a negligible mass, moves too; its position with respect to O is described by an

independent vector x. The point P exerts a force on each mass and the set of

the forces so generated causes the motion of the global system Sm. Furthermore,

masses move in a homogeneous and isotropic fluid endowed with a non-negligible

viscosity: The corresponding resistance brakes the motion, makes the system

dissipative and stabilizes its dynamics.

The equations describing the motion of such abstract system are summarized

in the following proven result.

Theorem 1 ([21].) Let Sm ⊂ IR+
0 × IRp be the physical system described above:

Let us denote with F the p × m matrix of the active forces, with P the p × m

matrix of the viscosity resistance, with B the p × p angular speed matrix and

with W the p × m matrix of the instantaneous positions of the masses. The

dynamics of the system obeys the following equations:

dW
dt

= BW , (1)
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Figure 1: A configuration of Sm for p = 3 and m = 3. The µi represent the

masses, vectors wi represent their coordinates and x is the coordinate-vector of

the external point P .

dB
dt

= (F + P)WT − W(F + P)T , (2)

P = −νBW , (3)

with ν being a positive parameter termed viscosity coefficient. 2

The set of equations (1)-(3) may be assumed as a learning rule (briefly

referred to as MEC ) for a neural layer with weight-matrix W. The MEC adap-

tation algorithm applies to any neural network described by the input-output

transference y = S[WT x+w0], where x ∈ IRp, W is p×m, with m ≤ p, w0 is

a generic biasing vector in IRm and S[·] is an arbitrarily-chosen m×m diagonal

activation operator.

Provided that initial conditions B(0) = B0 and W(0) = W0 are given and

the expression of F as a function of W, the equations (1)-(3) represent an initial-

value problem in the matrix-variables (B,W) whose asymptotic solution W?

represents the neural network connection pattern after learning.

The basic properties of this algorithms may be summarized as follows:

• Let us denote by so(p, IR) the set of skew-symmetric matrices. It is imme-

diate to verify that if B(0) ∈ so(p, IR) then equation (2) provides Ḃ(t) ∈
so(p, IR) and thus B(t) ∈ so(p, IR) because so(p, IR) is a linear space;
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• Let us denote by St(p, m, IR) the set of the real-valued orthonormal p ×
m matrices (usually termed Stiefel manifold [5]). Because of the skew-

symmetry of B(t) we see from equation (1) that if W(0) ∈ St(p, m, IR)

then W(t) ∈ St(p, m, IR) for all t > 0;

• The equilibrium conditions for the system (1)-(3), i.e. the stationarity con-

ditions for the learning rule, write: BW = 0p×m, FWT −WFT = 0p×m,

W ∈ St(p, m, IR), B ∈ so(p, IR), where 0p×q denotes the null element of

IRp×q. It is important to recall that both W(t) and B(t) are unknown and

that F(t) is in general a non-linear function of the network’s connection

weights;

• As a mechanical system, stimulated by a conservative force field, tends

to minimize its potential energy, the set of learning equations (1)-(3) for

a neural network with connection pattern W may be regarded as a non-

conventional (second-order, non-gradient) optimization algorithm.

The MEC learning rule possesses a fixed structure, the only modifiable part

is the computation rule of the active forces applied to the masses. Here we

suppose that the forcing terms derive from a potential energy function (PEF)

U , which yields force:

F def= − ∂U

∂W
. (4)

Generally we may suppose U dependent upon W, w0, and on the statis-

tics of x; more formally U = Ex[u(W,w0,x,y)], where u(·, ·, ·, ·) represents a

network’s performance index. Recalling that a (dissipative) mechanical system

reaches an equilibrium state when its own potential energy U is at its mini-

mum (or local minima), we can use as PEF any arbitrary smooth function to

be optimized. Vector w0 may be arbitrarily adapted.

If we regard the above learning rule as a minimization algorithm, the follow-

ing observations might be worth noting:

• The searching space is considerably reduced; if fact, the set of matrices

belonging to IRp×m, with p ≥ m, has pm degrees of freedom, while the

subset of same-size orthonormal matrices has pm − m(m + 1)/2 degrees

of freedom;

• Non-orthonormal local (sub-optimal) solutions are inherently avoided as

they do not belong to the search-space;
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• The searching algorithm may be geodesic: The space of the orthonormal

matrices is endowed with a specific geometry and a geodesic connecting

two points, which is the shortest pathway between them, may be defined.

A geodesic algorithm follows the geodesics between any pair of searching

steps, thus providing the best local search-path.

To conclude the summary of MEC theory, it is useful to mention that we

possess two proven results about the stationary points of the algorithm and on

their stability.

Theorem 2 ([22].) Let us consider the dynamical system (1)-(3) where the

initial state is chosen so that W(0) ∈ St(p, m, IR) and B(0) is skew-symmetric.

Let us also define the matrix function F def= − ∂U
∂W , and denote as F? the value

of F at W?. A state X? = (B?,W?) is stationary for the system if FT
? W? is

symmetric and B?W? = 0. These stationary points are among the extremes of

learning criterion U over St(p, m, IR).

Let us denote by SO(p, IR) the set of real-valued square orthonormal matrices

of dimension p.

Theorem 3 ([22].) Let U be a real-valued function of W, W ∈ SO(p, IR),

bounded from below with a minimum in W?. Then the equilibrium state X? =

(0,W?), is asymptotically (Lyapunov) stable for system (1)-(3) if µ > 0, while

simple stability holds if µ ≥ 0.

2.2 Present study motivation

The discussed equations describing the MEC learning rule are based on two

matrix state-variables, namely B and W, whose dimensions are p × p and p ×
m, respectively, where p denotes the number of neural network’s inputs and

m denotes the number of network’s outputs. As a consequence, even if the

dimension pm of the network is of reduced size, namely m � p, the state-matrix

B assumes the largest possible dimension. An extreme example is represented

by the one-unit network case, in which in order to train a single neuron (m = 1)

with many inputs (p � 1) a full p× p angular-velocity matrix is required. Also,

it is useful noting that B is a p× p matrix with only p(p− 1)/2 distinct entries,

because of skew-symmetry.

In order to overcome this representation problem, we propose to recast the
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learning equations into the following system of differential equations:{
Ẇ = V ,

V̇ = g(V,W) ,
(5)

where V ∈ IRp×m replaces B and g : IRp×n × IRp×n → IRp×m is describing the

dynamics of the considered rigid-body mechanical system.

It is worth noting that the new formulation of the equations is completely ad-

vantageous only if they are then integrated numerically in a proper and efficient

way. In particular:

• Preservation of the underlying structure: The rigid-body dynam-

ics differential equations should be integrated in a way that preserves the

rigidity of the system both in order to ensure the quality of the signal

processing solution provided by the neural system and to preserve some

quantitative features of the learning theory such as intrinsic stability. The

last point is well-represented by the very-long integration time question

arising in on-line signal processing tasks: The results of extensive numeri-

cal simulations presented recently in [23] clearly show that the major part

of existing algorithms are unable to tackle long signal processing tasks

because the network-state eventually loose the adherence to the invariant

manifold their learning theories are equipped with.

• Efficiency: It has been observed (see e.g.[22]) that certain classes of

learning algorithms involve rectangular matrices whose row/column ratio

(p/m) is quite low. This suggests that an integration method that takes

into account the structure of matrix-type expressions involved in these

learning equations might possess contained computational complexity. In

the following we suggest an integration scheme of complexity O(pm2).

2.3 New equations for the MEC algorithm

With the proposed representation, the learning dynamics is described by the new

pair of state-variables (V,W) representing a generic point on the tangent bundle

of the Stiefel manifold TSt(p, m, IR). In order to derive the new equations for

these state-variables we consider the following characterization of second order

differential equations on St(p, m, IR).

Theorem 4 Any second order differential equation on St(p, m, IR) can be ex-
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pressed in the form

Ẇ = V = (GWT − WGT) · W
V̇ = (LWT − WLT) ·W + (GWT − WGT) ·V

(6)

with G = V + W(−WTV/2 + S), S arbitrary m × m symmetric matrix, and

L = Ġ − GWTG.

Proof

It has been proven in [8] that any vector V tangent to the Stiefel manifold

at a point W can be written in the form

V = (GWT − WGT) · W (7)

where G = V + W(−WTV/2 + S) and S is an arbitrary symmetric m × m

matrix. S can be chosen arbitrarily because of the skew-symmetry of GWT −
WGT. In fact by substituting the expression for G in GWT−WGT we obtain

VWT − WWTVWT

2
+ WSWT − WVT − WVT WWT

2
− WSWT ,

which is independent of S.

By differentiating (7) with respect to time we obtain,

Ẅ = V̇ = (ĠWT + GVT − VGT − WĠT) ·W + (GWT − WGT) · V. (8)

Now by multiplying out V = (GWT − WGT) · W and using the property

WTW = Im, we obtain V = G − WGTW, which we substitute in the first

term of the right hand side of (8), and we obtain

V̇ = ((Ġ − GWTG)WT − W(Ġ − GWTG)T) · W + (GWT − WGT) · V,

which concludes the proof. 2

By comparing the equation (1,2,3) with (6), and recalling that Ẇ = V =

BW which implies V̇ = ḂW+BV, we recognize that B = GWT −WGT and

L = F + P.

The matrix S plays a role in the computation of G, but not in the evaluation

of the rigid-body learning equations. In this paper for simplicity we choose

S = 0. It is worth noting that other choices for the matrix S could be useful

e.g. for reasons of numerical stability, [8].

The final expressions for the new MEC learning equations read then:{
Ẇ = V , P = −νV, G = G(V,W) def= V − 1

2W(WT V) ,

V̇ = F + P − W(F + P)T W + (GWT − WGT )V .
(9)
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In order to limit the computational complexity of the above expressions, it is

important to compute the matrix products in the right order. For instance, the

function g(V,W) should be computed as follows:

g(V,W) = F + P − W((F + P)T W) + G(WTV) − W(GTV) ;

in this way, the matrix products involve p×m and m×m matrices only, making

the complexity burden pertaining to function g(·, ·) evaluation of order O(pm2).

3 Integration of the Equations

In order to implement the new MEC algorithm on a computer platform, it is

necessary to discretize in time the learning equations (9). In order to respect the

orthogonality constraints we here use a geometric numerical integrator based on

the classical forward Euler method.

3.1 Geometric integration of the learning equations

Geometric Integration (GI) is a recent branch of numerical analysis and compu-

tational mathematics. The traditional efforts of numerical analysis and compu-

tational mathematics have been to render physical phenomena into algorithms

that produce sufficiently precise, affordable and robust numerical approxima-

tions. Geometric integration is concerned also with producing numerical ap-

proximations preserving the qualitative attributes of the solution to the possible

extent. Examples of GI algorithms for differential equations include Lie group

integrators, volume and energy preserving integrators, integrators preserving

first integrals and Lyapunov functions, Lagrangean and variational integrators,

integrators respecting Lie symmetries and integrators preserving contact struc-

tures [27].

In the present case, the differential equation for V may be solved by the

standard Euler method, because it belongs to the tangent space to the Stiefel

manifold at W, which is a linear space. We integrate the differential equation

for W using the Lie-Euler method which advances the numerical solution by

using the left transitive action of SO(n) on the Stiefel manifold. The action is

lifted to the Lie algebra so(n) using the exponential map. In formulas, we thus

get: 


Vn+1 = Vn + hg(Vn,Wn) ,

Gn = Vn − 1
2Wn(WT

n Vn) ,

Wn+1 = exp(h(GnWT
n − WnGT

n ))Wn ,

(10)
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where h denotes the time step of the numerical integration, n denotes the

discrete-time index, and proper initial conditions are fixed. In the present report

we always consider W0 = Ip×m and V0 = 0p×m.

3.2 Efficient computation of the matrix exponential

In this section we will discuss the importance of the new formulation of the

MEC system for deriving efficient implementations of the method (10).

The computation of the matrix exponential in the equation for Wn+1 is a

task that should be treated with care in the implementations of (10). Computing

exp(A) def=
∑∞

j=0 Aj/j!, for a p × p matrix A, requires typically O(p3) flops

complexity. The numerical methods for computing the matrix exponential are

in fact either based on factorizations of the matrix A, e.g. reduction to triangular

or diagonal form [36], or on the use of the powers of A. Among these are for

example techniques based on the Taylor expansion, or on the Cayley-Hamilton

theorem, e.g. the Putzer algorithm [28] page 506.

Matrix factorizations and powers of matrices require by themselves O(p3)

flops implying immediately a similar complexity for the mentioned algorithms

(see e.g. [26] for an overview).

The complexity is O(p2m) if instead we want to compute exp(A)X where X

is a p×m matrix. In this case one could use methods based on the computation

of AX and the successive powers AjX each one involving O(p2m) flops.

However, since the first two equations of (10) require O(pm2) flops, one

would hope to get the same type of complexity for computing Wn+1, instead

of O(p3) or O(p2m), especially when p is large and much bigger than m.

At the same time it is very important in our context to obtain approxima-

tions X̃ of exp(A)X with the crucial property that X̃ is an element of the Stiefel

manifold. In fact if this requirement is not fulfilled the geometric properties of

the method (10) would be compromised.

For this reason the use of approximations of exp(A)X based on truncated

Taylor expansions is not advisable, because in this case the approximation is

not guaranteed to be on the Stiefel manifold.

Since in the method (10) the matrix we want to exponentiate has the special

form A = GnWT
n − WnGT

n = [Gn,−Wn][Wn,Gn]T , the computational costs

for exp(A)X can be further reduced to O(pm2) flops.

In fact, in order to compute exp(A)X exactly up to rounding errors one could

use the strategy proposed in [10] and proceed as follows: Consider the 2m× 2m
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matrix defined by D def= [Wn,Gn]T [Gn,−Wn] and the analytic function φ(z) def=
ez−1

z , then it can be proven that:

exp(A)X = X + [Gn,−Wn]φ(D)[Wn,Gn]TX . (11)

Under the assumption that m is not too large, φ(D) is easy to compute exactly

(up to rounding errors) in O(m3) flops. For this purpose we can suggest tech-

niques based on diagonalizing D or on the use of the Putzer algorithm. The

cost of computing exp(A)X with this formula is 4pm2 + pm + O(m3) flops.

This results in a very convenient algorithm of O(pm2) complexity in the case

p � m.

Finally we propose a variant of formula (11) particularly attractive in the

case of Stiefel manifolds. We consider a qr-factorization of the p× (2m) matrix

[Wn,Gn] since Wn has orthonormal columns we have

[Wn,Gn] = [Wn,W⊥
n ]

[
I C

O R

]
,

and [Wn,W⊥
n ] has 2m orthonormal columns. Analogously

[Gn,−Wn] = [Wn,Gn]

[
O −I

I O

]
= [Wn,W⊥

n ]

[
C −I

R O

]
.

By putting together the two decomposed factors we obtain the following conve-

nient factorization for A,

A = [Wn,W⊥
n ]

[
C − CT −RT

R O

]
[Wn,W⊥

n ]T.

Now note that

exp(A) = [Wn,W⊥
n ] exp

([
C− CT −RT

R O

])
[Wn,W⊥

n ]T

and we have reduced the computation of the exponential of the p×p matrix A to

the computation of the exponential of a 2m× 2m skew-symmetric matrix. The

advantage of this new formula lies in the fact that the exponential of a skew-

symmetric matrix of moderate size, might be preferable to the computation of

the analytic function φ(D), for a non-normal matrix D. This approach implies

however the extra cost of computing a qr-factorization (O(pm2) flops).
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4 Experimental Set-up on Principal-Subspace and

Independent-Component Analysis

The discussed algorithm has been applied to two different problems, namely

Principal Subspace Analysis and Independent Component Analysis.

4.1 Principal subspace analysis

Data reduction techniques aim at providing an efficient representation of the

data; we consider the research stream which focuses on the compression pro-

cedure consisting in mapping the higher dimensional input space into a lower

dimensional representation space by means of a linear transformation, as in

the Karhunen-Loéve Transform (KLT). The classical approach for evaluating

the KLT requires the computation of the input data covariance matrix and

then the application of a numerical procedure to extract the eigenvalues and

the corresponding eigenvectors; compression is obtained by the use of the only

eigenvectors associated with the most significant eigenvalues as a new basis.

When large data sets are handled, this approach is not practicable because the

dimensions of the covariance matrix become too large to be manipulated. In

addition, the whole set of eigenvectors has to be evaluated even though only

some of them are used.

In order to overcome these problems, neural-network-based approaches were

proposed. Neural principal component analysis (PCA) is a second-order adap-

tive statistical data processing technique introduced by Oja [34] that helps

to remove the second-order correlation among given random processes. In

fact, consider the stationary multivariate random process x(t) ∈ IRp and sup-

pose its covariance matrix Φ def= E[(x − E[x])(x − E[x])T] exists bounded. If

Φ is not diagonal, then the components of x(t) are statistically correlated.

This second-order redundancy may be partially (or completely) removed by

computing a linear operator L such that the new random signal defined by

y(t) def= LT(x(t) − E[x]) ∈ IRm has uncorrelated components, with m ≤ p ar-

bitrarily selected. The operator L is known to be the matrix formed by the

eigenvectors of Φ corresponding to its largest eigenvalues [34]. The elements of

y(t) are termed principal components of x(t); their importance is proportional

to the corresponding eigenvalues σ2
i

def= E[y2
i ] which are supposed to be arranged

in descending order (σ2
i ≥ σ2

i+1).

The data-stream y(t) represents a compressed version of data-stream x(t);
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after that the reduced-size data-stream has been processed (i.e. stored, retrieved,

transmitted), it needs to be recovered, that is brought back to its original size.

However, the principal-component based data reduction technique is not lossless,

thus only an approximation x̂(t) of the original data-stream may be recovered.

As L is an orthonormal operator, an approximation of x(t) is given by x̂(t) =

Ly(t) + E[x]; it minimizes the reconstruction error E[||x − x̂||2] which equals∑p
k=m+1 σ2

k.

A simpler – yet interesting – application is Principal Subspace Analysis

(PSA), which focuses on the estimation of an (orthonormal) basis of the sub-

space spanned by the principal eigenvectors without computing the eigenvectors

themselves. The dual case of Minor Subspace Analysis is discussed in details in

[23].

To this aim, we may define a criterion U as an Oja’s criterion, as J(W) def=

ktr[WTΦW], to be maximized under the constraint of orthonormality of the

connection matrix W, where k > 0 is a scaling factor. In real-world applications

the covariance matrix is unknown in advance (and its explicit estimation is to

be avoided for computational-burden reasons), thus we may resort to its (rough)

instantaneous approximation by replacing Φ with xxT .

4.2 Independent Component Analysis

Independent component analysis techniques allow to recover unknown signals

by processing their observable mixtures, which are the only available data. In

particular, under the hypothesis that the source signals to separate out are

statistically independent and are mixed by a linear full-rank operator, the neu-

ral independent component analysis (ICA) theory may be employed: it aims

at re-mixing the observed mixtures in order to make the resulting signals as

independent as possible [4, 11, 17, 18, 19]. In practice, a suitable measure of

statistical dependence is exploited as an optimization criterion which drives

network’s learning.

In the following we use the well-known result [11] whereby it is known that an

ICA stage can be decomposed into two subsequent stages: A pre-whitening stage

and a orthonormal-ICA one, therefore the signal z = MT s at the sensors can be

first standardized and then orthonormally separated by a three-layer network

as depicted in Figure 2. Here we suppose the source signal stream s ∈ IRp,

observed linear mixture stream z ∈ IRp, thus mixing matrix MT ∈ IRp×p.

In the following experiments, the aim is to separate out m independent
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Figure 2: Three-layer neural architecture for blind source separation.

signals from their linear mixtures. To this aim, the following simple potential

energy function may be used as optimization criterion [7, 12]:

U(W) =
k

4

m∑
i=1

Ex[y4
i ] , (12)

where k is a scaling factor. The resulting active force has the expression:

F = −kEx[x(xT W)3] , (13)

where the (·)3-exponentiation acts component-wise.

The whitening matrix pair (S,A) computes as follows: If Φzz denotes the

covariance matrix of the multivariate random vector z, then S contains the

eigenvalues and A contains (as columns) the corresponding eigenvectors of the

covariance matrix. The whitened version of z is thus x = S−1AT z.

4.3 Performance indices description

In PSA estimation, the quantity J(W) itself is a valid index of system perfor-

mance.

In ICA, since the overall source-to-output matrix K def= WT S−1/2ATMT ∈
IRm×p should become as quasi-diagonal (i.e. such that only one entry per row

15



and column differs from zero) as possible, we might take as convergence measure

the general Comon time-index [11]. The Comon index measures the distance

between the source-to-output separation matrix and a quasi-identity and is able

to measure also degeneracy, that is the case where the same source signals get

encoded by two or more neurons.

However, in the present context degeneracy is impossible, because pre-whitening

and orthonormal ICA inherently prevent the different neurons from sharing the

same source signals. Consequently, we may employ the reduced criterion:

F (t) def=

∑m
i=1

∑p
j=1 K2

ij(t) −
∑m

i=1 maxk{K2
ik(t)}∑m

i=1 maxk{K2
ik(t)} , (14)

that is a proper measure of distance between K and an unspecified quasi-

diagonal matrix at any time.

5 Experimental Results

In order to test the effectiveness of the proposed algorithm, two experiments

have been performed on the mentioned PSA and ICA problems.

5.1 Experiment on subspace iteration

In this experiment, a synthetic random process x with p = 6 components has

been generated which possesses zero-mean Gaussian statistics with covariance

matrix Φ = 1
2 (H6 + HT

6 ), where H6 denotes the sixth-order Hilbert matrix; in

this way Φ is symmetric and positive definite.

We wish to estimate (an orthonormal basis of) the principal subspace associ-

ated to the input signal of dimension m = 2 and suppose to have 2, 000 samples

of the input signal available.

In order to iterate with the new discretized MEC algorithm we chose param-

eters values ν = 0.5, k = 0.5 and h = 0.05. The result of iterations is illustrated

in the Figure 3. The obtained numerical results in the approximated-covariance

(stochastic) case are in excellent agreement with the expected result.

5.2 Experiment on independent component analysis

In this experiment we considered five gray-scale natural images as source signals.

Two of these are leptokurtotic signals (i.e. they have positive kurtoses) and the

remaining three are platikurtotic signals (they possess negative kurtosis). The

original images as well as their mixtures are shown in the Figure 4. By properly
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Figure 3: Results of the iteration in the PSA problem. The straight line repre-

sents the known exact value of the function U(·) at optimum.

selecting the sign of the constant k it is possible to extract the groups of images

from their linear mixtures.

In the present case we chose p = 5, k = −0.06 and m = 3. The images’ size

is 100×100 pixels thus we have a total of 10, 000 samples that the iteration may

be carried over. The other learning parameters were ν = 0.6 and h = 0.01.

Figure 5 shows the value of performance index F during iteration. It reaches

a substantially low value which reflects the quasi-diagonality of the separation

product K depicted in Figure 6.

The final appearance of the network output signals, shown in the Figure 7,

confirms the good level of separation achieved.

6 Conclusion

In previous papers we presented a new class of learning rules for linear neural

network learning based on the equations describing the dynamics of massive rigid

bodies whose main drawback was the inefficient representation of the involved

quantities. With the aim to lessen the computational burden pertaining to this

algorithm, we proposed here a novel formulation of the learning equations based

on an efficient parameterization of the angular-speed tensor.
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Figure 4: Original images and their mixtures in the ICA problem.
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Figure 6: Separation product K after iteration on the ICA problem.
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