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Preface

This report is a result of the fifth year project (SIF5095P2), covering half a semester.

The idea behind this project emerged from the recent papers [17] and [16], which presented a new
algorithm for parallel time-iteration, the parareal algorithm. Initially the idea was to implement
and test the algorithm on some specially chosen test problems. An early rising question was
how the convergence and the computational complexity of the algorithm would be affected by
the order of the coarse propagator. During some initial testing, an instability in the algorithm
was discovered for some choice of the coarse propagator, especially for the Heat equation. To be
able to understand this instability, a theorem for the stability of predictor-corrector scheme was
derived. In order to test this theorem, the “Theta-test” was developed. Most of the time and
recources was put in to the theorem and its influence on the Heat equation. This came at the
expense of the analysis of the other test problems. As a consequence, all the other test-problems
needs additonal analysis and testing in order to fully understand the implications of applying the
parareal algorithm.

I would like to thank my advisor Einar M. Rønquist for his support and supervision. Without
him, this report would never existed. Beside my advisor, I recieved valuable guidance from the
following persons: Yvon Maday for his suggestions and advise during our two meetings, especially
on how to handle the fine propagator in deriving the stability-expression. Syvert P. Nørsett for his
patience in helping me understand the implications of Runge-Kutta schemes. Vegard Kippe for
helping me recognize the binomial coefficient in the stability expression for the parareal algorithm.
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Abstract

A short introduction to the parareal algorithm is made on basis of [17]. Then, for the autonomous
differential equation, a theorem for the stability property of the algorithm is derived. The theorem
states that G∆T must be strong A-stable with limz→−∞ |R(z)| ≤ 1

2 , in order for the algorithm to
be stable for all n, k. Several test problems involving periodic solutions, semidiscretized parabolic
PDE’s, stiffness and nonlinearity are calculated using different implicit Runge-Kutta schemes with
different order and stabiliy properties. Using the theta-method, the property limz→−∞ |R(z)| ≤ 1

2
is tested, and the results verifies the theorem. Instabilities in the two different heat-equation test
problems are predicted using the theorem. Different formulations of the system, for which the
coarse propagator G∆T operates, are tested. Substantial differences is found, and explenations are
discussed.
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1 Introduction

Time is by it’s very nature strictly sequential. It’s natural to think that we need to know our
systems state tomorrow in order to find the state the day after.

So why this desire to parallelize time-integration? The main reason is the need to solve important
problems more rapily then is currently possible. Examples are problems where solutions are needed
in real-time, e.q flight/boat-simulators or control-problems, or when the computational time is so
long that no one bothers to wait for the result.

In [12] the following reasons for this are given.

• f , from y′ = f(t, y), is expensive to evaluate, as might be the case if each f evaluations
requires the solution of an auxiliary problem.

• The number of equations, m, in the system is large, a property characteristic of semi-
discretized PDEs or large system of electrical circuits.

• The interval of integration t ∈ (t0, T ) is long.

• The IVP must be solved repeatedly, as hapens in parameter fitting problems.

We can increase computational speed by either using a faster chip or by developing a faster
algorithm. Another alternative is to buy more chips. At the time this article was written it was
possible, for less then 200’000USD, to by a complete 128 nodes cluster with the following spec:

• 256 1.5GHz AMD processors (2 processors per node)

• 256GByte Main Memory (2GBytes per node)

• 15TByte Disc (IDE)

• 1GBits/sec Ethernet

This is a tremendous number-cruncher for a price that several companies can afford.

But how do we put all our chips to work?

For space there exist a variaty of parallel methods, e.g domain decomposition and parallel linear
algebra. Most of these methods work for different kinds of problem, and they often scale well with
the problem-size/number of prosessors.

There exist some parallel algorithms for Initial Value Problems (IVP) of ODE as well, but they
have more restrictions then the space parallel-methods.

In [7], Gear classifies the means of achieving parallelism in IVP solvers into two main categories:

1. parallelism across the system, or equivalently parallelism across space

2. parallelism across the method, or equivalently parallelism across time

The class (1) will in general be methods to parallelize the right-hand-side of the system. In general
the space-parallelizing methods fall into this category. Naturaly, we can expect speedup from only
large or other computational-intensive systems since communication-cost will be significant for
small systems. Other methods are waveform relaxation and modular integration. In class (2)
there exist a variaty of methods, but they are in general limited to a maximum speedup of about
ten.
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Recently there has been proposed a new parallel algorithm for IVP ([17],[16],[1],[2]). This algorithm
is more in the spirit of domain decomposition. As proposed in [16], we call the algorithm the
parareal algorithm, after the desire to solve complex problems in real-time. The initial tests looks
promising. So far it has been tested on molecular dynamic simulations ([1]), PDE with nonlinear
right-hand-side ([16]), PDE with a control as the right-hand-side ([17]) and a non-differential PDE
([2]). Some analysis has been already been done, mostly in [2] and [16].

But this algorithm is still young, and some of it’s advantages and weaknesses are probably not
discovered. There has not (as far as the author knows) been done any tests with different classes
of odesolvers. Nor has it been tested how the algorithm handles solutions with different time-
periodicity, nor stiff equations.

This paper can be considered as a preliminiary research on this parareal algorithm. It will present
numerical simulations on three main test problems, where different solvers are applied.

Section 2 gives an introduction to the algorithm, as it is defined in [17]. It also points out some
obvious, and some not so obvious properties of the algorithm.

Section 3 presents the various solvers that we intend to use, and highlights some of their importent
properties. It also discusses general stability properties for single-step ode-solvers. This forms a
basis for Section 5.

Section 4 presents the test problems, and gives a brief analysis of how we expext the parareal
algorithm to perform.

Section 5 presents a stability analysis of the parareal algorithm, and ends with the most important
result in this report, the theorem formulating the stability properties of the algorithm for certain
class of problems.

Section 6 presents the results of the numerical simulations, and comments on the various properties.

Section 7 concludes, and points out problems that need further research.

The focus has not been on optimal implementation of the algorithm and the different solvers. Here,
a lot could have been done to increase speed. That is one of the reasons why all the implementation
and simulation is done in MATLAB. MATLAB increases the implementation speed, at the expense of
simulation-speed. All parallelism is simulated.

We expect the reader to have a basic knowledge in real analysis, complex analysis, linear algebra
and metric spaces. Some results, that we do not expect known to all, are presented in Section A.
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2 The Parareal Algorithm

For completeness we present the algorithm as presented in [17].

2.1 The algorithmic idé

We want to solve the general problem{
∂y
∂t + Ay = 0
y(t0) = y0 t ∈ (t0, T ),

(1)

where A is an operator from a Hilbert space V into V ′. The strategy is to do a time decomposition
in the spirit of domain decomposition. We define the decomposition as

t0 = T0 < T1 < · · · < Tn = n∆T < Tn+1 < TN = T.

We are now free to rewrite our problem (1) as{
∂yn

∂t + Ayn = 0
y(T +

n ) = λn t ∈ (Tn, Tn+1),
(2)

for any n = 0, . . . , N − 1. The collection of solutions of (2) {y0, y1, . . . , yN − 1} is connected to the
solution y of the original problem (1) if and only if, for any n = 0, . . . , N − 1

λn = y(Tn),

or written with the syntax of (2)

λn = yn−1(Tn) with y−1(T 0) = y0

We complement the problem with a cost functional to be minimized

J (Λ) =
N−1∑
n=1

‖ yn−1(T−
n )− λn ‖2,

where Λ = {λ0 = y0, λ1, . . . , λN−1}.
It’s obvious that the minimum of J is zero with the choice λn = y(Tn). We now assume that A
is time-independent, and introduce the propagator F∆T such that for any given µ, F∆T (µ) is the
solution at time ∆T of (1) with y0 = µ. We are now in a position to write (2) in a matrix form

I 0 0 . . . 0
−F∆T I 0 . . . 0

0 −F∆T I 0 . . .
...

. . . . . . . . . 0
0 . . . 0 −F∆T I




λ0

λ1

λ2

...
λN−1

 =


y0

0
0
...
0

 , (3)

or in matrix notation

MΛ = F.

Normally an inversion of a triangular system involves O(N) resolutions. It’s now we introduce
our iterative scheme that allowes us to construct a sequence Λk that converges toward the exact
solution of (3). We discretize (2) using a coarse propagator G∆T and a numerical scheme, e.g. an
implicit Euler scheme:

G∆T (µ)− µ

∆T
+ AG∆T (µ) = 0,
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where G∆T is an approximation of F∆T . Our predictor-corrector scheme is then defined as

λk+1
n+1 = F∆T (λk

n) + G∆T (λk+1
n )− G∆T (λk

n), (4)

where the subscript n is time-partition in (2), and the superscript k is the iteration-number. Notice
that F∆T is calculated from Λk, which is known. This implies that F∆T is implemented in parallel.
G∆T on the other side is calculated from the previous (in time-partition) λ from this iteration, and
is therefore strictly serial. As for F∆T we introduce the matrix

M̃ =


I 0 0 . . . 0

−G∆T I 0 . . . 0
0 −G∆T I 0 . . .
...

. . . . . . . . . 0
0 . . . 0 −G∆T I


and write the iterative procedure in the matrix form

Λk+1 = Λk + M̃−1Resk,

where the residual Resk is defined by Resk = F −MΛk.

The algorithm we implement is then

Algorithm 1 The parareal algorithm
λ0

0 ← y0

for i = 0 : N − 1 do
λ0

i+1 ← G∆T (λ0
i )

end for
solve F∆T (λ0

i ) in parallel on i = 1, . . . , N processors
k ← 0
while true do

λk+1
0 ← λk

0

for i = 0 : N − 1 do
solve G∆T (λk+1

i )
λk+1

i+1 ← G∆T (λk+1
i ) + F∆T (λk

i )− G∆T (λk
i )

end for
if convergence then

break
end if
solve F∆T (Λk+1) in parallel on i = 1, . . . , N processors
k ← k + 1

end while

Convergence can be tested using ‖ λk+1
n − λk

n ‖≤ tol ∀n as test criteria.

2.2 A visual example of the algorithm

So how will this work? Lets look at a simple example and try to visualize the iterations.

We consider the simple differential equation for population growth with proper initial value

y′ = y(1− y),
y(t0) = 0.01 t ∈ (t0 = 0, T = 10)

The whole idea behind the algorithm is to find accurate (accurate enough) starting-values (Λ)
for the paralell implementation of the fine propagator F∆T . Therefore the quantities we want to
investigate are
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Legend
• ys + Λk

• yk+1
c × Λk+1

yk+1
f

Table 1: Legend for Figure 1

• The results from F∆T , yf . We name F∆T (Λk) = yk
f where k is the iteration-number. We

also denote F∆T (λk
n) = Fk

n∆T , illustrating which portion of the time domain this propagator
evaluate.

• The results from G∆T , yc. Again we name G∆T (Λk) = yk
c where k is the iteration-number.

• Λk, used to calculate yk
f and yk

c

• The corrected Λk+1 based on (4)

We discretize using δt = 0.01 for F∆T , and ∆T = 1 for G∆T . This gives us N = 10, which is both
the number of processors, and the maximun number of iterations. Implicit midpoint-scheme from
Table 3 is used for both G∆T and F∆T , but the type of solver is of no importence for the time
being.

In Figure 1 these quantities, and a serial calculation named ys, are visualized for the initialization
and the three first iterations of the algorithm. yc and Λk+1 are drawn as points ( • versus ×)
marking their position, with lines between. The lines may be deceiving because this gives an
illution that they are continous. Remember that only the initial propagation of G∆T , y0

c uses it’s
previous calculated value as startingvalue for the next calculation. Otherwise, the propagation of
G∆T is based on the most updated Λ. Λ is the initial values of F∆T (and G∆T ). But the lines
are used to make the plot more readable. The result from Fi∆T are plotted as separate lines, but
a final result will of cource be a concatenation of all the Fi∆T , where the last value of Fi∆T is
substituted with the first value of Fi+1∆T . The separation is also done to increase readability.

The first we notice in Figure 1(a) (k=0) is that the F0
0∆T is exact equal the serial version. This

is obvious since they have the same initial value, and they propagate using the same scheme and
the same stepsize. Also Λ0 coincide with y0

c . This is also obvious since the initial G∆T generates
Λ0. The results from G∆T , y0

c , deviate from the serial solution, ys, to some extent. This is also
expected. If not the coarse solution would be accurate enough, and the fine solution would be
over-sampled.

In Figure 1(b) we notice that now also F1
1∆T coincide with ys. The predictor-corrector scheme

(4) is run for the first time, and forms Λ1, which is the initial values for F1
∆T . Notice that Λ1 is

considerably closer to the exact solution than Λ0.

In Figure 1(c), again a new segment of F∆T , F2
2∆T , coincide with ys. Notice that the first timesteps

of the G∆T doesn’t seem to get more accurate. The difference we see is the difference in accuracy
between G∆T and F∆T .

In Figure 1(d) there is no visual deviation between yf and ys.

During this small example we have discovered a couple of interesting things about the algorithm.
We will now formulate them more precise

2.3 Properties of the algorithm

First let’s summarize what we know about accuracy.
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(a) Initial calculation, k=0
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(b) First iteration, k=1
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(c) Second iteration, k=2
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(d) Third iteration, k=3

Figure 1: Visualization of the parareal algortihm’s approach to convergence. t ∈ (0, 10), ∆T = 1,
δt = 0.01. The legend can be seen in Table 1
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Proposition 1 Given that G∆T and F∆T are convergent and stable for the chosen schemes and
timestep dt and dT . Then, for iteration k (assuming k = 0 is first iteration)

‖ ys − yp ‖∼ eps, t ∈ (t0, k∆T ),

where eps is the machine accuracy. This means that

‖ ys − yp ‖∼ eps, t ∈ (t0, T ),

at N − 1 = T−t0
∆T − 1 iterations.

Like Conjugated Gradient the parareal algorithm is exact at maximum number of iterations.

Proposition 2 We are free to choose what kind of ode-solver we want for G∆T and F∆T . We
have no limitations in the choice of order or number of steps. The only requirement is that, of
course, the chosen methods have to be convergent and stable for the required stepsize. Nothing
prevent us from having “intermediate” steps in G∆T .

It would of course not be a good ide to choose a lot of intermediate steps for G∆T if it makes G∆T

a much larger time consumer then F∆T .

It will, in Section 5, become clear that G∆T has to be more then just A-stable (for autonomous
problems), but actually strong A-stable.

Proposition 3 G∆T doesn’t have to calculate on the same model as F∆T . We are free to simflify
the model by e.g. removing highly oscillating terms that is totally undersampled by ∆T , or use a
coarser space-grid if we calculate a PDE.

The use of a coarser space-grid will of course introduce a new problem, that is how to find the
missing values in Λ, used as startingvalue for F∆T . Interpolation is one option.

Proposition 4 The algorithm favors single-step methods in G∆T .

The startup-problems of the multi-step class is a big disadvantage in the parareal algorithm. If
we don’t want intermediate steps for G∆T , single-step methods is the only option. If we do allow
intermediate steps, we still have to start the multistep method with a single step method. If the
number of iterations for F∆T is large, the choice of a multistep method versus single-step method
would be based on other criteria (e.g adaptiv stepsize).

Proposition 5 G∆T can be implemented in parallel using a parallelism across the method.

Nothing prevent us from parallelizing the sequential G∆T using already known parallel methods.
[14] states that there, for every non-stiff and stiff IVP, exists a s-stage Runge-Kutta predictor-
corrector formula that yields a speedup of almost s. Note that predictor-corrector formula in this
context is not the same as our predictor-corrector scheme.

2.4 Computational complexity in a parallel implementation

The computational complexity for the iterative algorithm can be calculated as

(TG∆T + (TF∆T )max + Tcom) · (k + 1),
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where TG∆T is the time used on the coarse iterator G∆T per iteraton, (TF∆T )max is the time used
on the fine iterator F∆T from the “slowest” processor, Tcom is time used on communication per
iteration and k is the number of iterations required to reach a satisfactory low error. We have to
add one to the iteration-cout because the initialization of the algorithm is almost equal to a full
iteration. It’s easy to see that if the if the number of iterations required to achieve convergence is
halfed on the expense of doubling TG∆T , we will still have speedup. This is important to bear in
mind when high order schemes are considered for G∆T .
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3 Odesolvers

This section might not seem so essential in understanding the parareal algorithm. But it turns
out that properties presented here are indispensable for the analysis of the stability of the parareal
algorithm. Readers that are not familiar with the concepts of A- AN - B- strong A- and L-stability,
and which of these properties different implicit Runge-Kutta schemes posses, should study this
section carefully in order to understand Section 5 and the results in Section 6. This section is
written with support mostly from [8], [9], [22] and [10].

In order to deal with our different test problems, and to test the algorithm for different solvers,
we need an arsenal of odesolvers. Since the parareal algorithm in some sence favours single-step
methods (not impossible to use multi-step methods), we limit our analysis to only single-step. We
use the framework of the famous Runge-Kutta methods to generate our numerical schemes. But
first we will present a generel ODE.

y′(t) = f(t, y(t)) (5)
y(t0) = y0

We define a general single-step method as

yn+1 = yn + hΦ(tn, yn, f, h), (6)

where Φ(t, y, f, h) is a incremental function specified by the method. But how can we be sure
that our method gives us the correct solution? The answer lies in the concepts of convergence and
stability.

3.1 Stability and Convergence

For a method to be useful, it must be convergent. We must therefor study the convergence of the
general problem (5)

Definition 1 A method is said to be convergent if, for every ODE with a Lipschitz function f
and every t∗ > 0 it is true that

lim
h→0+

max
n=0,...,bt∗/hc

‖ yn,h − y(tn) ‖= 0,

where bαc ∈ Z is the integer part of α ∈ R.

y(tn) is the except solution, while yn,h is the discretized differential equation solved by the given
method, using step size h.

This means that if the timesteps are small enought, a convergent method will give us the correct
answer. But the next question that naturaly arise is; how fast can we expect it to converge. A
messure for this is the order of the method.

Definition 2 A singlestep method has order p if for sufficently smooth problems (5),

‖ yn − y(tn) ‖≤ Chp+1,

if the Taylor series for the exact solution y(tn) and for yn coincide up to and including the term
hp.

But in the parareal algorithm, F∆T (except F0∆T ) has a starting value that not necessarly is
accurate. The question is how this will effect the accuracy of the method.
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Theorem 1 A single-step method is used to approximate (5). If the method is of order p, and the
starting value y0 is accurate of order q, then the numerical solution {yj} is convergent of order
min (p, q).

As expected the initial value effects the accuracy of the method in a negative way, and the parareal
algorithm can’t be more accurate then the serial version with same method and stepsize as F∆T .
This is of course not necessarly true for an finite-desimal accurate computer-calculation, but the
effect of chop-off error in the parareal algorithm versus serial version is not discussed in this paper.

We now rewrite (6) for a autonomous system (not timedependent) y′ = λy, y(t = 0) = y0 and get

yn+1 = yn + Φ(yn, h, λ) = R(λh)yn = R(λh)n+1y0,

where the last step is solved by sucessivly inserting yn = R(λh)yn−1 into yn etc. It’s obvious
that if |R(λh)| > 1, the solution when n → ∞ will go through the roof. But the coarse operator
G∆T will have large stepsize. Let’s look at two known schemes to see how the stepsize effects the
property |R(λh)| > 1. First we’ll examine forward euler for our problem.

yn+1 = yn + hλyn = (1 + λh)yn = R(λh)yn.

Obviously we need |λh| ≤ 1, which indicates a serious constraint in the choice of h. So what about
implicit euler?

yn+1 = yn + hλyn+1 ⇒ yn+1 =
(

1
1− hλ

)
yn = R(λh)yn.

We notice that our restriction now is |1 − λh| ≥ 1. Considering λ < 0 (if not the solution is not
Lipschitz), we are free to choose the stepsize we want.

Specially for G∆T we are interested in methods that are stable for all stepsizes. It’s therefore
imperative that we investigate this futher, and defines A-, AN -, B-, L- and orbital stability.

3.1.1 Stability for autonomous systems, A-stability

We want to use a given ode-solver with a constant stepsize h > 0 to the scalar linear equation

y′ = λy, t ≥ 0, y(0) = 1 (7)

where λ ∈ C. For our general problem (7) we define the stability function R(z).

Stability function

Definition 3 The function R(z) is called the stability function of the method. It can be inter-
preted as the numerical solution after one step for (7) with z = hλ. The set

S = {z ∈ C; |R(z)| ≤ 1}

is called the stability domain of the method.

We use a Runge-Kutta method (defined in Section 3.2) on (7) and get

R(z) = 1 + zbT (I− zA)−11, (8)

where bT and A is defined in (17), and 1 = (1, . . . , 1)T .
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Proposition 6 The stability function of a given Runge-Kutta scheme satisfies

R(z) =
det(I− zA + z1bT )

det(I− zA)
(9)

Proof: We apply (24) on (7) and gets the linear system(
I − zA 0
−zbT 1

)(
ξ

yn+1

)
= yn

(
1
1

)
.

Applying Cramer’s rule (Section A.1.1) we get that the denominator of R(z) is det (I − zA), and
its numinator is

det
(

I − zA + z1bT 0
−zbT 1

)
= det

(
I − zA 1
−zbT 1

)
= det (I − zA + z1bT ).

Notice that the ERK schemes also can be described with (24), so this proof doesn’t apply just
for the IRK case. �

Definition 4 A method, whose stability domain satisfies

C− = {z ∈ C : Re z < 0} ⊂ S

is called A-stable.

But we need a more practical test for A-stability. From (9) we see that the stability-function can
be written as

R(z) =
P (z)
Q(z)

, deg P = k, deg Q = j

Using the maximum modulus theorem from Theorem 19 we see that R(z) = P (z)
Q(z) must be

analytic, which is true if all the poles from R(z) lies in C+. If this is true, it’s enough to check if
R(z) < 1 on the boundary of C−, which is the imaginary axis. We now rewrite the condition
|R(z)| ≤ 1 and introduse the E-polynom.

|P (iy)|2
|Q(iy)|2 ≤ 1 ⇒ E(y) = |Q(iy)|2 − |P (iy)|2 = Q(iy)Q(−iy)− P (iy)P (−iy) ≥ 0

We recapitulate this as

Proposition 7 Given a numerical scheme with the assosiated stability function R(z) = P (z)
Q(z) .

The scheme is A-stable if the following is true.

1. Re zi > 0, where zi is the roots of Q(z) = 0, i = 1, .., j

2. E(y) ≥ 0 ∀y ∈ R

3.1.2 Stability for non-autonomous systems, AN-stability

But what if our differential equation is non-autonom, like our general problem

y′ = λ(t)y, Re λ(t) ≤ 0 (10)
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where λ(t) is an arbitrary varying complex-valued function. For this problem our implicit
Runge-Kutta method (24), with ξ = (ξ1, . . . , ξs)T , 1 = (1, . . . , 1)T , can be written as

g = 1yn + AZξ, Z = diag (z1, . . . , zs), zj = hλ(tn + cjh).

We compute ξ and insert into the solution for the next timestep which gives us

yn+1 = K(Z)yn, K(Z) = 1 + bT Z(I−AZ)−11.

We are now ready to define AN-stability.

Definition 5 A Runge-Kutta method is called AN -stabil if

|K(Z)| ≤ 1
{ ∀Z = diag (z1, . . . , zs) satisfying Re zj ≤ 0

and zj = zk whenever cj = ck(j, k = 1, . . . , s)

We notice that K(diag (z, . . . , z)) = R(z) with R(z) defined in (9).

3.1.3 Stability for non-linear systems, B-stability

We consider the nonlinear differential equation

y′ = f(t, y) (11)

such that for the Euclidian norm the one-side Lipschitz condition

〈f(t, y)− f(t, z), y − z〉 ≤ ν ‖ y − z ‖2 (12)

holds. The number ν is the one-side Lipschitz constant of f . We use this to present the following
result

Lemma 1 Let f(t, y) be continous and satisfy (12). Then, for any two solutions y(t) and z(t) of
(11) we have

‖ y(t)− z(t) ‖≤‖ y(t0)− z(t0) ‖ eν(t−t0) for t ≥ t0.

Definition 6 A Runge-Kutta method is calles B-stable if the contractivity condition

〈f(t, y)− f(t, z), y − z〉 ≤ 0

implies ∀h ≥ 0

‖ yn+1 − ŷn+1 ‖≤‖ yn − ŷn ‖ .

Here, yn+1 and ŷn+1 are the numerical approximations after n + 1 steps starting with initial
values y0 and ŷ0,respectively.

Theorem 2 If the coefficients of a Runge-Kutta method satisfy

1. bi ≥ 0, i = 1, . . . , s

2. M = (mij) = (biaij + bjaji − bibj)s
i,j=1 is non-negative definite,

then the method is B-stable.

Theorem 3 For Runge-Kutta methods it holds

B-stable ⇒ AN -stable ⇒ A-stable

We have now defined stability for several types of equations that we might run into. But we are
sadly mistaken if we think that this is all we need. It turns out that for stiff problems we need to
define additional properties, the L-stability and strong A-stability.
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3.1.4 L-Stability and strong A-stability

A-stability is not the whole answer to the problems of stiff equations.

(R. Alexander 1977)

We have already established that the growth of a A-stable method will be be bounded. So what
is exactly the problem. Again we look at an example. First we consider the implicit
midtpoint-method presented in Table 3, with the the stability-function

R(z) =
1 + z

2

1− z
2

for the general problem (7). Undoubtedly this is an A-stable method. But remember that
z = λh. If both λ is big (stiff problem), and the stepsize h is large (which is the case for G∆T ), z
will also be large.

lim
z→−∞ R(z) = lim

z→∞R(z) = −1.

This means that for large z, R(z) will be close to −1. This results in an oscillating function, with
very weak damping properties for the large eigenvalues.

So what about our trusted friend, the implicit Euler. We have already established the fact that
the stability-function of EB is

R(z) =
1

1− z
.

It’s easy to verify that this scheme is A-stable. We do the same test as for implicit
midtpoint-method.

lim
z→−∞R(z) = lim

z→∞R(z) = 0.

Obviously large eigenvalues are quickly damped out. We demonstrate this with a small example.
We calculate y′ = −200(y − cos(t)), y(t0) = 0 using implicit euler and implicit midtpoint. The
result is shown in Figure 2. As predicted, implicit midtpoint produces oscillations, which is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time t

y

exact
eb
irk2

Figure 2: Solution of y′ = −200(y − cos(t)), y(t0) = 0, dt = 0.05

slowly decreasing, and implict Euler is oscillation-free.

This motivates us to define another property for stability, the L-stability.
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Definition 7 (Ehle 1969). A method is called L− stable if it is A-stable and if in addition

lim
z→∞R(z) = 0

We present an easier test, given in [9].

Proposition 8 If an implicit Runge-Kutta method with nonsingular A satisfies one of the
following conditions:

asj = bj j = 1, . . . , s, l (13)
ai1 = bj j = 1, . . . , s, (14)

then R(∞) = 0. This makes A-stable methods L-stable.

The proop is quite simple.

Proof: We insert z =∞ into R(z) given in (8) and get

R(∞) = 1− bT A−11. (15)

Writing (13) on matrix form we get AT es = b, where es = (0, . . . , 0, 1)T . This is substituted into
(15) and we get R(∞) = 1− eT

s 1 = 1− 1 = 0. On the other side, (14) is written on matricial
form as Ae1 = 1b1. Now inserting into (15) we get R(∞) = 1− 1 = 0. �
But L-stability is a very strong property. Does it exist something between L-stability and “just”
A-stability? We call it strong A-stable, and defines it like this.

Definition 8 If a method has a stability function R(z) with the property

lim
z→−∞R(z) = a, where 0 < |a| < 1,

then the method is strong A-stable.

3.1.5 Orbit-stability

So what is orbit-stability. Again we demonstrate it with an example. We use the differential
equation

y′ =
[

0 1
−1 0

]
y, y(t0) =

[
0
1

]
,

which has the solution y = sin t. We use explicit euler, implicit euler and implicit midpoint, and
plot the result in the phaseplane. The result can be seen in Figure 3. We notice the interesting
fact that Implicit euler loses energy, but Explicit euler increases energy. Implicit midpoint on the
other hand returns to the same state as it started, which it should. This is an interesting
observation which we will investigate futher.

We state the following theorem without proof. The interesting reader may refer to [8].

Theorem 4 If the s× s matrix M with elements

mij = biaij + bjaji − bibj, i, j = 1, . . . , s

satisfies M = 0, then the Runge-Kutta method (24) is symplectic.

We expand this to Runge-Kutta-Nyström, given in Section 3.2.2.

Theorem 5 The s-stage Runge-Kutta-Nyström given in (23) is symplectic if ∀i ≤ i, j ≤ s

b̄i = bi(1 − ci), bi(b̄j − aij) = bj(b̄i − aji)
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−1.5

−1

−0.5

0
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1
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Figure 3: Solution of y′′ = −y, y(t0) = 0, y′(t0) = 1, dt = 0.05, Implicit Euler: −−, Explicit Euler:−•−,
Implicit Midtpoint: —

3.1.6 Order-Stars

Finally, order-stars will be briefly mentioned. It provides us with a powerfull tool to determine
order, provided that we already have an expression of the stability-function R(z). So first we
need to define order-star.

Definition 9 The set

A = {z ∈ C; |R(z)| > |ez|} = {z ∈ C; |q(z)| > 1}
where

q(z) =
R(z)
ez

, (16)

is called the order star of R.

The following Lemma will be presented without proof, and the interested reader is refered to [8].

Lemma 2 If R(z) is an approximation to ez of order p, i.e., if

ez − R(z) = Czp+1 +O(zp+2)

with C 6= 0, then, for z → 0, A behaves like a “star” with p + 1 sectors of equal width π/(p + 1),
separated by p + 1 similar “white” sectors of the complementary set. The positive real axis is
inside a black sector iff C < 0 and inside a white sector iff C > 0.

3.2 Runge-Kutta methods

We are now done with presenting the mathematical tools for testing the usefulness of our
methods. It’s now time to present the methods we want to use. A large portion of all the
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single-step methods can be described within the framework of Runge-Kutta methods. This
presentation is therefore limited to various Runge-Kutta schemes. All the schemes are picked
from literature, mostly [8] and [9]. For each method we will generate the stability domain,
calculated from Proposition 6. We will also present the order star, calculated from (16), mostly
as a tool to prove the order of the scheme.

Runge-Kutta methods are based on a powerful procedure known as quadrature. We use
Butcher-tablau, defined as

c A

bT
(17)

to present the RK weights (b), nodes (c) and coefficients (A).

3.2.1 Explicit RK-methods

We define the famouse explisit Runge-Kutta (ERK) as

ξi = yn + h

i−1∑
j=1

ai,jf(tn + cih, ξi), j = 1, . . . , s (18)

yn+1 = yn + h

s∑
i=1

bif(tn + cih, ξi)

3.2.2 Runge-Kutta-Nyström methods

A considerable amount of the differential equations in the world are second order.

y′′ = f(t, y, y′) (19)

If we want to solve this using a Runge Kutta method (implicit or explicit) we transform the
equation into a system of first order equations(

y
y′

)
=
(

y′

f(t, y, y′)

)
y(t0) = y0

y′(t0) = y′
0

This yields

ξi = y′
n + h

s∑
j=1

aijξ
′
j

ξ′i = f

tn + cih, yn + h

s∑
j=1

aijξj , y′
n + h

s∑
j=1

aijξ
′
j


yn+1 = yn + h

s∑
i=1

biξi, y′
n+1 = y′

n + h

s∑
i=1

biξ
′
i

We now insert ξi into ξ′i and get

ξ′i = f

tn + cih, yn + cihy′
n + h2

s∑
j=1

āijξ
′
j , y′

n + h

s∑
j=1

aijξ
′
j


yn+1 = yn + hy′

n + h2
s∑

i=1

b̄iξ
′
i, y′

n+1 = y′
n + h

s∑
i=1

biξ
′
i (20)
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where

āij =
s∑

k=1

aikakj , b̄i =
s∑

j=1

bjaji (21)

A Nyström method satisfy (20), but not necessarily (21).

Definition 10 A Nyström method (20) has order p if for sufficiently smooth problems (19)

y(tn + h)− yn = O(hp+1), y′(tn + h)− y′
n = O(hp+1)

A real improvement can be achieved in the case when the right-hand side of (19) does not
depend on y′, i.e.,

y′′ = f(t, y)

It is obvious that (20) can be shortened to

ξ′i = f

tn + cih, y′
n + h

s∑
j=1

aijξ
′
j

 (22)

yn+1 = yn + h

s∑
i=1

biξi, y′
n+1 = y′

n + h

s∑
i=1

biξ
′
i (23)

Theorem 6 The Nyström scheme given in Table 2 is convergent of 5. order

Proof: This can be proven using tree-structures. But since we then have to introduce a new
theory, which will give us no additional knowledge of the parareal algorithm, we leave this out.
The interested reader is refeared to [8]. �

0 āij

1
5

1
50

2
3 − 1

27
7
27

1 3
10 − 2

35
9
35

b̄i
14
336

100
336

54
336 0

bi
14
336

125
336

162
336

35
336

Table 2: 5. order Nyström method methods for y′′ = f(t, y)

3.2.3 Implicit RK-methods

The implicit runge-Kutta (IRK) is given by

ξi = yn + h

s∑
j=1

ai,jf(tn + cjh, ξj), i = 1, . . . , s (24)

yn+1 = yn + h

s∑
i=1

bif(tn + cih, ξi)
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There exists a variety of different IRK schemes. We will focus on the schemes that are suitable
for solution of stiff differential equations.

For all the schemes we will present a plot of the stability-domain, and a plot of the order-star.
The stability domain gives a good indication on A-stability and strong A-stability properties of
the scheme. The order star is used to find the order of the scheme. All the poles of the stability
function are plotted as ∗. For the stability-domain plot, the areas covered with contours are the
domain for which values of z gives a stable scheme. For the order star, all the areas covered with
contours are “white” sectors, while areas without concours (some with poles) are “black” sectors.

We start with collocation methods based on Gaussian quadrature formulas, i.e., c1, . . . , cs are the
zeros of the shifted Legendre polynomial of degree s,

ds

dxs
(xs(x− 1)s) .

It can be proven that all IRK schemes based on this quadrature have order 2s. To give a clear
name to each scheme we will present, we name all the IRK schemes based on Gauss quadrature
GaussX, where the X is the order of the method

1 stage 2nd order IRK based on Gauss, Gauss2 We start lightly with s = 1

yn+1 = yn + hf(tn +
1
2
h,

1
2
(yn + yn+1)), n = 0, 1, . . . (25)

1
2

1
2

1

Table 3: IRK of order 2

Theorem 7 Implicit midpoint method is convergent of order 2, BN-stabil and symplectic.

Proof: We start with order. In Figure 4(b) we count 3 white sectors and 3 black sectors, which
gives us according to Lemma 2, order 2. We use Theorem 2 and verifies that b1 > 0 and
M = ba + ba− b2 = 0. This also satisfies Theorem 4. �
We now push on and construct higher order Implicit Runge-Kutta schemes using
Gauss-Legendre quadrature

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

Table 4: IRK of order 4

2 stage 4th order IRK based on Gauss, Gauss4

Theorem 8 The 2 stage IRK scheme Table 4 is convergent of order 4, BN-stabil and symplectic.

Proof: Again from Figure 5(b) we count 5 white and 5 black sectors, proving order 4. Also
bi > 0 and (M)ij = 0 for i, j = 1, 2, proving BN-stability and symplectic behavior. �
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Figure 4: Implicit midpoint scheme (IRK2) given in (25)
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Figure 5: 2 stage 4. order IRC given in Table 4
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1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

Table 5: IRK of order 6

3 stage 6th order IRK based on Gauss, Gauss6

Theorem 9 The 3 stage IRK scheme Table 5 is convergent of order 6, BN-stabil and symplectic.

Proof: Again from Figure 6(b) we count 7 white and 7 black sectors, proving order 6. Also
bi > 0 and (M)ij = 0 for i, j = 1 : 3, proving BN-stability and symplectic behavior. �
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Figure 6: 3 stage 6. order IRC given in irk6

4 stage 8th order IRK based on Gauss, Gauss8

Theorem 10 The 4 stage IRK scheme Table 6 is convergent or order 8, BN-stabil and
symplectic.

Proof: Again from Figure 7(b) we count 9 white and 9 black sectors, proving order 8. Also
bi > 0 and (M)ij = 0 for i, j = 1 : 4, proving BN-stability and symplectic behavior. �
It’s also possible to construct IRK schemes based on Radau quadrature formulas. We call them
type I or II according to whether c1, . . . , cs are zeros of

I :
ds−1

dxs−1

(
xs(x− 1)s−1

)
, Radau left (26)

II :
ds−1

dxs−1

(
xs−1(x− 1)s

)
, Radau right. (27)
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1
2 − ω2 ω1 ω′

1 − ω3 + ω′
4 ω′

1 − ω3 − ω′
4 ω1 − ω5

1
2 − ω′

2 ω1 − ω′
3 + ω4 ω′

1ω
′
1 −−ω′

5 ω1 − ω′
3 − ω4

1
2 + ω′

2 ω1 + ω′
3 + ω4 ω′

1 + ω′
5 ω′

1 ω1 + ω′
3 − ω4

1
2 + ω2 ω1 + ω5 ω′

1 + ω3 + ω′
4 ω′

1 + ω3 − ω′
4 ω1

2ω1 2ω′
1 2ω′

1 2ω1

ω1 = 1
8 −

√
30

144 , ω′
1 = 1

8 +
√

30
144 ,

ω2 = 1
8sqrt 15+2

√
30

35 , ω′
2 = 1

8sqrt 15−2
√

30
35 ,

ω3 = ω2

(
1
6 +

√
30

24

)
, ω′

3 = ω′
2

(
1
6 −

√
30

24

)
,

ω4 = ω2

(
1
21 + 5

√
30

168

)
, ω′

4 = ω′
2

(
1
21 − 5

√
30

168

)
,

ω5 = ω2 − 2ω3, ω′
5 = ω′

2 − 2ω′
3

Table 6: IRK of order 8

We will use (27), called RadauIIA methods. As a consequence cs = 1. It’s possible to show that
all IRK schemes based on Radau quadrature has order 2s− 1. This is lower then schemes based
on Gauss-Legendre. But Radau schemes has other properties, which will be usefull later. To give
a clear name to each scheme we will present, we name all the IRK schemes based on Radau
quadrature RadauX, where the X is the order of the method

1 stage 1st order IRK based on Radau (Implicit Euler), EB We start with s = 1 and
discover an old friend, the implicit euler. Instead of calling it Radau1, we use EB (Euler
Backward) since this is the name most people are used to.

yn+1 = yn + hf(tn+1, yn+1), n = 0, 1, . . . (28)

1 1
1

Table 7: IRK of order 1, Implicit Euler

Theorem 11 Implicit Euler is convergent of order 1, BN - and L-stable.

Proof: Again from Figure 8(b) we count 2 white and 2 black sectors, proving order 1. Also
b > 0 and M > 0, proving BN-stability. We know from Theorem 3 that a B-stable Runge-Kutta
method also is A-stable. From Proposition 8 we verify that a = b, and we have a L-stable
stiffly-accurate method. �
We push on for higher order

2 stage 3rd order IRK based on Radau, Radau3

Theorem 12 The IRK scheme based on Table 8 is convergent of order 3, B- and L-stable.
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Figure 7: 4 stage 8. order IRC given in Table 6
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Figure 8: Implicit Euler given in (28)
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Table 8: IRK of order 3

Proof: Again from Figure 9(b) we count 4 white and 4 black sectors, proving order 3. Also
bi > 0 and (M)ij ≥ 0 for i, j = 1, 2, proving BN-stability. From Proposition 8 we verify that
a2j = bj, for j = 1, 2, and we have a L-stable stiffly-accurate method. �

−4 −3 −2 −1 0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

(a) Stability domain with R(z) =
1+ 1

3 z

1− 2
3 z+ 1

6 z2

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(b) Order Star

Figure 9: 3 order IRK given in Table 8
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Table 9: IRK of order 5

3 stage 5th order IRK based on Radau, Radau5

Theorem 13 The IRK scheme based on Table 9 is convergent of order 5, B- and L-stable.

Proof: Again from Figure 10(b) we count 6 white and 6 black sectors, proving order 5. Also
bi > 0 and (M)ij ≥ 0 for i, j = 1 : 3, proving BN-stability. From Proposition 8 we verify that
a3j = bj, for j = 1, 2, 3, and we have a L-stable stiffly-accurate method. �
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Figure 10: 5 order IRK given in Table 9

Another well known class or IRK which is known as good “stiff”-solvers is the Single Diagonal
Implicit RK method (SDIRK). We will only present one scheme from this class.

γ γ 0

1− γ 1− 2γ γ

1
2

1
2

Table 10: SDIRK method of order s ≥ 2, which is the Crouzeix-Nørset scheme.

3rd order SDIRK, SDIRK3

Theorem 14 For γ = 3+
√

3
6 the Crouzeix-Nørset scheme is convergent of order 3 and BN-stabil.

It is also strong A-stable, with limz→−∞ R(z) = 1−√3.

Proof: Again from Figure 11(b) we count 4 white and 4 black sectors, proving order 3. Also
bi > 0 and (M)ij > 0 for i, j = 1, 2, proving BN-stability. By using (9) and Table 10, we find that

R(z) =
1−

√
3

3 z − 1
6

(
1 +
√

3
)
z2

1−
(
1 +

√
3

3

)
z + 1

6

(
2 +
√

3
)
z2

lim
z→−∞R(z) =

− 1
6

(
1 +
√

3
)

1
6

(
2 +
√

3
) = 1−√3 ≈ −0.73

�

The Theta-method It will become clear in Section 5 that we will need a method where we
can vary the strong A-stability propertie. We will therefore present such a method here – the



3.3 Solving nonlinear Equations 25

−6 −4 −2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

(a) Stability domain with

R(z) =
1−

√
3

3 z− 1
6 (1+

√
3)z2

1−
“
1+

√
3

3

”
z+ 1

6 (2+
√

3)z2

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Order Star

Figure 11: 3 order SDIRK given in Table 8

Theta method.

yn+1 = yn + h (θf(tn, yn) + (1− θ)f(tn+1, yn+1)) . (29)

The stability-function is, for the autonomous differential equation (7), found to be

R(z) =
1 + θz

1− (1− θ)z
, z = λh. (30)

The Theta methods properties can be systemized as

θ = 1: We recive the explicit Euler (the only explicit method in the Theta method).

1 < θ < 1/2: We recive an implicit, 1st order non A-stable method.

θ = 1/2: We recive the Trapezoid method, which is the only 2nd order method in the Theta method.

1/2 < θ < 0: We recive an implicit 1st order A-stable method with increasing strong A-stable property
as θ becomes smaller.

θ = 0: We recive the implicit Euler, which is the only L-stable method in the Theta method.

For a closer analysis of the Theta method, the interested reader i referred to [10].

3.3 Solving nonlinear Equations

When solving nonlinear equations using implicit methods, the ξ vector is not solvable using
linear algebra. We have to apply a nonlinear solver. The literature recommends Newton
iteration, and specialy modified Newton. We will here present ordinary Newton for system.

We start by writing our system of equations on the form

F =

f1(x1, . . . , xn) = 0
...

fn(x1, . . . , xn) = 0



26 3 ODESOLVERS

A commen notation of Newton’n method is then

J(xk)∆xk = −F (xk)
xk+1 = xk + ∆xk

where

J(xk) =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

...
∂fn

∂x1
. . . ∂fn

∂xn


But as for the ode-solvers, we are interested in convergence and order. We will present to
importent results, without proof. The interested reader is refered to [15].

Theorem 15 Let f ′′ be continous and let r be a simple zero of f . Then there is a neighborhood
of r and a constant C such that if Newton’s method is started in that neighborhood, the successive
points become steadily closer to r and satisfy

|xn+1 − r| ≤ C(xn − r)2, (n ≥ 0).

In some situations Newton’s iteration can be guaranteed to converge from an arbitrary starting
point.

Theorem 16 If f belongs to C2(R), is increasing, is convex, and has a zero, then the zero is
unique, and Newton iteration will converge to it from any starting point.

In multi-dimentional spaces this becomes more complicated. But the fact that Newton is not
guarranteed to converge for all equations and all startingpoints remains. This will later become a
problem in the implementation and caluclation of some nonlinear equations.
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4 Test problems

4.1 Periodic equation

We want to test our algorithm on a periodic solution to see what kind of limitations this imposes
on the coarse iteration. We choose the ODE for a simple sine function

y′′ + ω2y = 0 (31)
y(t0) = 0, y′(t0) = ω

(31) has the exact solution y(t) = sin(ωt). A plot with ω = 2π can be seen in Figure 12(a). Most
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Figure 12:

of our solvers handles just first-order differential equations. So we have to write (31) as a system
of first-order equations.

y′ =
[

0 ω
−ω 0

]
y, where y =

[
y1

y2

]
(32)

By derivating y′
1 once, and then substituting for the expression if y′

2 we regain (31). It’s easy to
verify that (31) is an Hamiltonian system (see Section A.3).

For further flexibility we introduce a second sine ODE, namely

y′′ + ω2
1y + (ω2

2 − ω2
1) sin (ω2t) = 0 (33)

y(t0) = 0, y′(t0) = ω1 + ω2

(33) has the exact solution y(t) = sin (ω1t) + sin (ω2t). A plot of (33) with ω1 = 2π and ω2 = 5ω2

can be seen in Figure 12(b). This is also converted to a system of first order equations

y′ =
[

0 ω1

−ω1 0

]
y −

[
0
1

]
(ω2

2 − ω2
1) sin ω2t (34)

Notice that we now have an ODE of the form
∂y

∂t
+ Ay = F (t)

where F (t) is a source term.
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4.1.1 Analysis of the algorithm on a differential equation

We consider the parareal algorithm for the simple ODE{
∂u
∂t + λu = 0
u(t0) = u0

(35)

In [2] this ODE is analysed. We will here only present the essence of that analysis. The
interested reader is refered to the article.

Proposition 9 Let u(t) be the solution of (35) and Un
k the solution of the iterative scheme

parareal, where G∆T is a coarse scheme of order m ≥ 1. Then the error terms εn
k satisfy the

following estimate

|εn
k | ≤ Cknk+1δ(m+1)(k+1).

In particular, we have UN
k = u(T ) +O(δm(k+1)) and yn

k (t) = u(t) +O(nkδ(m+1)k), where yn
k is

from the fine solver.

4.2 Parabolic PDE

We want to test the algorithm on a PDE, and we choose the parabolic PDE

∂u

∂t
=

∂2u

∂x2
(36)

u(0, t) = u(1, t) = 0 ∀t, u(x, 0) = sin(πx), x ∈ (0, 1)

(36) can easily be solved exact using separation of variables.

u(x, t) = sin (πx) e−π2t

A plot of the solution of (36) can be seen in Figure 13(a).

Also here we introduce a second PDE with a source term.

∂u

∂t
=

∂2u

∂x2
+ ω2

xu + ωt sin ωxx cosωtt = P (u) + F (x, t), (37)

u(0, t) = u(1, t) = 0 ∀t, u(x, 0) = 0, x ∈ (0, 1),

where P is the operator P = ∂2

∂x2 + ω2
x, and F (x, t) = ωt sinωxx cosωtt. It can be shown, however

not as easy as for (36), that the solution of (37) is u(x, t) = sin ωxx sin ωtt. A plot of the solution
of (37) can be seen in Figure 13(b).

4.2.1 FEM solution of the heat equation

The semi-discrete formulation is achieved using finite element method. First we define the
function spaces

X = H1
0 (Ω) = {v ∈ H1(Ω)|v(0) = v(1) = 0}

Y (X) = {v|∀t ∈ [0, T ], v(x, t) ∈ X,

∫ T

0

‖ v ‖2H1(Ω) dt <∞}.

The weak form can then be expressed as: Find u ∈ Y (X) such that

d

dt
(u, v) = −a(u, v) ∀v ∈ X,
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Figure 13:

where

∀w, v ∈ X, a(w, v) =
∫ 1

0

wxvxdx

∀w, v ∈ X, (w, v) =
∫ 1

0

wvdx

Here are a(w, v) and (w, v) both symmetric, positive-definite bilinear forms.

We now obtain the semi-discrete formulation: Find uh ∈ Y (Xh) such that

d

dt
(uh, v) = −a(uh, v) ∀v ∈ Xh,

with Xh ⊂ X and dim(Xh) = N <∞. We base our discretization on linear elements, and
express Xh as

Xh = {v ∈ X = H1
0 (Ω)|v|

T k
h

∈ P1(T k
h ), k = 1, . . . , K}

= span{φ1, . . . , φN}.
From this we find our nodal basis for Xh, that is

∀v ∈ Xh, v(x) =
N∑

i=1

viφi(x), uh(xh, t) =
N∑

j=1

uhjφj(x). (38)

We end up writing the semidiscrete form of (36) as

Mh
duh

dt
= −Ahuh

(Mh)ij =
∫ 1

0

φiφjdx,

(Ah)ij =
∫ 1

0

dφi

dx

dφj

dx
dx

uh = [uh1, . . . , uhN ]
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Mh is called mass matrix, while Ah is the stiffness matix. We notice that both Mh and Ah are
symmetric positive definite.

For (37), the solution is found in a similar way. The weak form can then be expressed as: Find
u ∈ Y (X) such that

d

dt
(u, v) = a(u, v) + l(v) ∀v ∈ X,

where

∀w, v ∈ X, a(w, v) = −
∫ 1

0

wxvxdx +
∫ 1

0

wvdx

∀w, v ∈ X, (w, v) =
∫ 1

0

wvdx

∀v ∈ X, l(v) =
∫ 1

0

vf(x, t)dx

We now define the semidiscrete form of (37), using the nodal basis, as

Mh
duh

dt
= −Ahuh + ω2

xMhuh + Fh

(Fh)i =
∫ 1

0

φif(x, t)dx,

(Mh)ij =
∫ 1

0

φiφjdx,

(Ah)ij =
∫ 1

0

dφi

dx

dφj

dx
dx

uh = [uh1, . . . , uhN ]

4.2.2 Estimate of error between serial and parallel calculation

We now have a PDE, and needs to calculate the error both in time and space. We do this by
developing an expression for the H1(Ω) norm for our problem (36). Since the H1(Ω) space is
defined as

H1(Ω) ≡
{

v|
∫

Ω

v2dA <∞,

∫
Ω

v2
xdA <∞

}
the assosiated norm is defined as

‖ v ‖H1(Ω)=
(∫

Ω

|∇v|2 + v2dA

) 1
2

(39)

We use (38) and, ∀v ∈ Xh, write (39) as

‖ v ‖2H1(Ω) =
∫

Ω

( N∑
i=1

(vh)i(t)φ′
i(x)

) N∑
j=1

(vh)j(t)φ′
j(x)

+

(
N∑

i=1

(vh)i(t)φi(x)

) N∑
j=1

(vh)j(t)φj(x)

 dx


=

N∑
i=1

N∑
j=1

[
(vh)i

(∫
Ω

φ′
iφ

′
jdx

)
(vh)j + (vh)i

(∫
Ω

φiφjdx

)
(vh)j

]

=
N∑

i=1

N∑
j=1

[(vh)i(Ah)ij(vh)j + (vh)i(Mh)ij(vh)j ]

= vT
h Ahvh + vT

h Mhvh (40)
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Since we operate in R1, we use exact quadrature and the norm is exact.

We have now an expression for the error in space. In time we would like to use the L2(Ω) norm,
as we will do for all the other test problems. It is defined as

‖ v ‖L2(Ω)=
(∫

Ω

|v|2dA

) 1
2

(41)

We combine (40) and (41) for our problem (36). The error vector is defined as

ek
n = ys

n − (yp
n)k,

where n indicates the timestep, k the iteration in the algorithm and s and p stands for serial
versus parallel. We then estimate the error of our algorithm in iteration k to be

errk =

(∫ T

0

‖ ek
n ‖2H1(Ω) dt

) 1
2

≈
(

Nδt∑
k=0

(
(ek

n)T Ahek
n + (ek

n)T Mhek
n

)
δt

) 1
2

Notice that we no longer have an exact expression for the error since the time discretization isn’t
exact.

4.2.3 Analysis of the Heat-equation

We write (36) on the form {
∂u
∂t + P (u) = 0
u(t0, x) = u0(x),

(42)

where P (u) is a pseudo-differential operator

P (u) = ̂P (ξ)û(ξ),

with symbol P (ξ) ≥ 0. In our case P (u) = −∂2u
∂x2 and P (ξ) = ξ2 .

In [2] this PDE is analysed. We will here only present the essence of that analysis.

Proposition 10 Let u(t, x) be the solution of (42) and Un
k (x) the solution of the parareal

scheme with implicit Euler coarse discretization. Then we have the following estimate

‖ u(T, x)− Un
k (x) ‖L2(R)≤

(
C(k + 1)

n

)k+1

‖ u0 ‖L2(R) .

This proved that the iterative scheme transforms the implicit Euler time discretization of order 1
into a time discretization of order k + 1 for any linear parabolic problem, especially for our
problem (36).

In the actual implementation of the method, a scheme with fine time step δt is used in parallel
over each (T n, T n+1). The gain in computation time obtained by using the iterative scheme is
estimated as follows. The cost of the direct scheme, based on the sole use of the fine solver, is
proportional to T/δt. The cost of the iterative scheme is proportional (with the same constant of
proportionality) to (k + 1)(T/∆T + ∆T/δt), with n = (∆T )−1. For k + 1 fixed, the iterative
scheme cost is optimized provided T/∆T = ∆T/δt since the product T/δt is fixed. This implies
∆T =

√
Tδt. The accuracy of the iterative scheme will therefore be comparable to the direct
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simulation provided k + 1 = 2 since δt = T−1(∆T )2. The maximal gain in time is then found to
be

G =
1
4

(
T

δt

) 1
2

,

provided we have at our disposal (T/δt)1/2 processors. This theoretical calculation doesn’t take
into account the communication cost in a real parallel implementation.

4.3 Stiff nonlinear equations

I have a theory that whenever you want to get in trouble with a

method, look for the Van der Pol equation.

(P.E.Zadunaisky 1982)

One of the simplest nonlinear equations describing a vacuum-tube circuit is van der Pol’s
equation

y′′ + µ(y2 − 1)y′ + y = 0, (43)
y(t0) = 2, y′(t0) = 0.

A plot of (43) with µ = 10 can be seen in Figure 14.
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Figure 14: Solution of van der Pol with µ = 10

Again we write it as a system of first order differential equations[
y1

y2

]′
=
[

y2

µ(1− y2
1)y2 − y1

]
(44)

Van der Pol has several attractive properties.

• nonlinear

• stiff, with a controllable “stiffness-factor”

4.3.1 Analysis of van der Pol

We can write (43) as a Lienard system

ẍ + f(x)ẋ + g(x) = 0, F (x) =
∫ x

0

f(s)ds, G(x) =
∫ x

0

g(s)ds
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with the energy function

u(x, y) =
y2

2
+ G(x),

where y comes from the system of (45)

ẋ = y − F (x)
ẏ = −g(x)

To analyse (43) we need Lienard’s theorem, which we present without proof. The interested
reader may refere to [19].

Theorem 17 Under the assumption that F, g ∈ C1(R), F and g are odd functions of x,
xg(x) > 0 for x 6= 0, F (0) = 0, F ′(0) < 0, F has single positive zero at x = a, and F increases
monotonically to infinity for x ≥ a as x→∞, it follows that the Lienard system (45) has exactly
one limit cycle and it is stable.

We use this theorem and state the following corrolary

Corrolar 1 For µ > 0, van der Pol’s equation (43) has a unique limit cycle and it is stable.

Proof: g(x) = x and we calculating F (x).

F (x) = µx

(
x2

3
− 1
)

It’s obvious that g, F ∈ C1(R), and g(−x) = −x = g(x) and F (−x) = −µx( (−x)2

3 − 1) = −F (x)
both are odd functions of x. Further F (0) = 0 and F ′(0) = µ(x2 − 1)|x=0 = −µ < 0 for µ > 0.
F (x) has roots at x = 0,±√3, and is monotonically increasing for x =

√
3. limx→∞ F (x) =∞. �

This shows that our non-linear equation (43) is bounded, and therefore a stable numerical
scheme will also be stable on the problem.
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Figure 15: Phaseplot for van der Pol with µ = 10

A phaseplot for µ = 10 can be seen in Figure 15. Notice that all the initial-values end up in the
stable cycle, just as we stated in Corrolary 1. We also notice that the stable cycle lies on the
interval x ∈ [−2, 2]. From this we draw the conclusion that van der Pol has a periodic nature, for
µ > 0.
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4.3.2 What kind of ODE-solvers are normaly used on stiff problems?

... Around 1960, things became completly different and everyone

became aware that the world was full of stiff problems

(G. Dahlquist in Aiken 1985)

To be able to discuss this, we have to know what stiff is. It turns out that stiffness is not very
well defined.

A very “engineer-like”definition is the following. A ODE system is stiff if some methods requires
(not necessarly on the entire time-domain) a significant deprication of the step-size to avoid
instability. From Section 3.1 we remember that non A-stability needed a decrease in stepsize if
the eigenvalues increased (A-, AN- or BN-stabil dependent of the problem). It’s therefore
intuitive to define a stiffnes ratio as stiffness-ratio=λmax

λmin
.

Shampine points out in [22] that even if a ODE-system is stiff, it doesn’t meen a non-stiff solver
will get into problems because our time-domain not necessarly include the stiff portions of the
ODE-system.

Not to make it more confusing we will only point out that there is no optimal general procedure
for stiff problems, and every stiff problem (and engineer/scientist) has a “favorite” method.

But we will mention some numerical schemes that work well for general stiff problems.

• The Radau class of implicit Runge-Kutta methods (e.g Table 7,Table 8,Table 9)

• Some DIRK and SDIRK schemes (e.g Table 10, but this is not L-stable, and therefore not
very good for all kind of stiff problems)

• A class called Rosenbrock-Type methods (not handled here). Generally it’s IRK method
that avoids nonlinear systems by replacing them with a sequence of linear systems.

• Different types of multi-step method. This is the most used method for stiff problems,
probably because it was the first numerical method that was proposed for this kind of
problems [9].
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5 Stability analysis of the algorithm

We intend to analyse the stability of the predictor-corrector scheme

λk
n = G∆T (λk

n−1) + F∆T (λk−1
n−1)− G∆T (λk−1

n−1), n, k = 1, . . . , N. (45)

First a couple of facts has to be established.

y0 = λ0
0 = λ1

0 = . . . = λN
0 (46)

λ0
i+1 = G∆T (λ0

i ), i = 0, . . . , N − 1, (47)

which is just initialization of the algorithm. We now analyse (45) on the autonomous differential
equation

y′ = µy, y(t0) = y0.

The first important assumption is now made. F∆T (λk
n) is assumed to be exact (exact in our

context), and we may write it as

F∆T (λk
n) = eµ∆T λk

n

G∆T (λk
n) har, for the chosen scheme, the stability-function R(z), where z = µ∆T . We then

rewrite the expression of F∆T (λk
n), using z.

F∆T (λk
n) = ezλk

n

(45) is now rewritten as

λk
n = R(z)λk

n−1 + ezλk−1
n−1 −R(z)λk−1

n−1, n, k = 0, . . . , N

We now make our second assumption. We assume µ is large and negative, and that ∆T also is
large (this is not an unlikely assumption in the parareal algorithm). This makes |z| � 1, with
negative sign. As a consequence of this we assume that

eµ∆T ≈ 0

We now have our correction-scheme on a form that simplifies the analysis.

λk
n = R(z)λk

n−1 −R(z)λk−1
n−1 +O(ez) (48)

We now intend to write the correction scheme (48) on the form λk
n = H(n, k, z)y0, where

H(n, k, z) will be en expression of the stability function. To do this we will recursively substitute
λj

i in (48) until i = 0 or j = 0. When i = 0 we use (46), and when j = 0 we use (47). R will be
written as a short for R(z). To make the pattern more clear, we write out a few recursions.

λk
n = Rλk

n−1 −Rλk−1
n−1 = R(λk

n−1 − λk−1
n−1)

= R(Rλk
n−2 −Rλk−1

n−2 −Rλk−1
n−2 + Rλk−2

n−2) = R2(λk
n−2 − 2λk−1

n−2 + λk−2
n−2)

= R3(λk
n−3 − 3λk−1

n−3 + 3λk−2
n−3 − λk−3

n−3)

= R4(λk
n−4 − 4λk−1

n−4 + 6λk−2
n−4 − 4λk−3

n−4 + λk−4
n−4)
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This recursive development of λj
i can easily be expressed as a directed graph

0 1 2 3 4
0 λk

n

↓ ↘
1 λk

n−1 λk−1
n−1

↓ ↘ ↓ ↘
2 λk

n−2 λk−1
n−2 λk−2

n−2

↓ ↘ ↓ ↘ ↓ ↘
3 λk

n−3 λk−1
n−3 λk−2

n−3 λk−3
n−3

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
4 λk

n−4 λk−1
n−4 λk−2

n−4 λk−3
n−4 λk−4

n−4

where we se that alle the elements from one level is devided into 2 levels on the next step. This
pattern can also be seen directly from (48).

But of course it is the constants in front of each λj
i that interest us most. We systemize the

contributions from the recursions in the graph C, where Cj
i are the constants for the terms

Cj
i Riλj

n−i.

C =

i\j 0 1 2 3 4
1 1
↓ ↘ ↓ ↘

2 1 −1 + −
↓ ↘ ↓ ↘

3 1 −2 1
↓ ↘ ↓ ↘ ↓ ↘

4 1 −3 3 −1
↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘

5 1 −4 6 −4 1

The rules are derived from (48):

• every node is added down

• every node is subtracted down-right

No other paths exist.

It’s obvious from (48) that

λk
n = Ri

i∑
j=0

Cj
i λk−j

n−i +O(ez), i ≤ k

for our ith recursion.

We now apply (47). Assume j = k for some i ≤ n. Then

λ0
n−i = Rn−iλ0

0

⇒ λk
n = . . . + Ck

i RiRn−iλ0
0 . . . = . . . + Ck

i Rnλ0
0

This means that the propagator G∆T is applied n times to reach timestep n, which really is a
confirmation of the obvious. Then we apply (46). Assume i = n− 1 for some j > 0. Then

λj
1 = R(λj

0 − λj−1
0 ) = 0.
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This implies that only terms that reaches k = 0 for n ≥ 1 are contributing to the constant. But
this property is handled by our down-right graph. This is easier seen with an example, where
k = 2 and n = 5.

C =

i\j 0 1 2
1 1
↓ ↘

2 1 −1
↓ ↘ ↓ ↘

3 1 −2 1
↓ ↘ ↓ ↘ ↓

4 1 −3 3
↓ ↘ ↓ ↘ ↓

5 1 −4 6

i\j 0 1 2
1 λ2

5

↓ ↘
2 λ2

4 λ1
4

↓ ↘ ↓ ↘
3 λ2

3 λ1
3 λ0

3

↓ ↘ ↓ ↘ ↓
4 λ2

2 λ1
2 λ0

2

↓ ↘ ↓ ↘ ↓
5 λ2

1 λ1
1 λ0

1

The lower-left value is the summation of all the terms that reached j = k for i < n.

We now need an expression for C. |C| is recognized as the binomial coefficient, which is adjusted
with −1 for n since n starts at 1 in C.(

n− 1
k

)
=

(n− 1)!
(n− k − 1)!k!

The alternating sign is easily handled.

We are now ready to write an expression for the stability-function of our predictor-corrector
scheme.

λk
n = (−1)k

(
n− 1

k

)
R(z)ny0 +O(ez) (49)

But is our assumption that ez ≈ 0 correct? If we do not omit ez, (45) can be written as

λk
n = (−1)k

(
n− 1

k

)
R(z)ny0 +

k∑
i=1

(−1)k+ici (ez)i R(z)n−iy0, (50)

where ci are positive constants. Notice that ci are not necessarly equal for different values of n
and k. In order to find ci, we need to develop a 3-dimentional graph. This problem is not
handled here. For the time beeing we conclude that this is bounded for sufficient large z, and our
assumption holds.

Immediately we recognize one of the properties of the algorithm.

• For j ≥ i,
(
n−1

k

)
= 0, and λj

i only depend of F∆T , meaning the seriel and parallel verison
are equal to this point.

We notice that for n large, and k = bn/2c (worst case), the binomial coefficient grows
exponential.

Have we proven the failure of the parareal algorithm? Probably not. The answer lies in R(z). It
should now be clear to everyone why we need strong A-stable schemes, perhaps as strong as
L-stable schemes to bound the binomial coefficient.

We proceed with an analysis of the growth of the binomial coefficient. It is a fact that for a given
n,
(

n−1
k

)
is largest when k = b(n− 1)/2c. n is now increased, such that the coefficient is

(
n+1

k

)
,

where k = b(n + 1)/2c. We further calculate the ratio between them as a2 =
(
n+1

k

)
/
(
n−1

k

)
. The

power of two for a comes from the fact that we increased n by two. Since
(
n+1

k

)
now is the
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largest number for this value of n, the argument is that for any k and n,
(
n−1

k

) ≤ an. So what is
the value of a?

First we find , for n + 1 and k = bn/2c, where we assume (for simplicity) that k = n/2 is an
integer. (

n

n/2

)
=

n!(
n− n

2

)
!n
2 !

=
n!(
n
2 !
)2 .

Now, for n + 3 and k = b(n + 2)/2c, we have that(
n + 2

n/2 + 1

)
=

(n + 2)!(
n + 2− n

2 − 1
)
!
(

n
2 + 1

)
!

=
(n)!(
n
2 !
)2 · (n + 1)(n + 2)((

n
2 + 1

)
!
)2

=
(n)!(
n
2 !
)2 · 4(n + 1)

(n + 2)

This means that

a2 =
4(n + 1)
(n + 2)

,

and we find

lim
n→∞ a = 2.

From this we can say that (
n− 1

k

)
< 2n, ∀n, k

This proves that, under the assumptions made, it is sufficient to use a strong A-stable coarse
propagator with |R(z)| = 1

2 , where z = µ∆T , to make the predictor-corrector scheme stable!

We summerize all the discovered results in a theorem

Theorem 18 Assume y′ = µy, y(t0) = y0, t ∈ (t0, T ) is solved using the predictor-corrector
scheme

λk
n = G∆T (λk

n−1) + F∆T (λk−1
n−1)− G∆T (λk−1

n−1), (51)

where G∆T is the coarse propagator and F∆T is the fine propagator defined in Section 2. Assume
also that |z| = |µ∆T | � 1, where z < 0. Then the stability function for (51), for any values of
n, k ≤ N where N = T−t0

∆T is the number of partitions in time, is given by

λk
n = (−1)k

(
n− 1

k

)
R(z)ny0, z = µ∆T,

where R(z) is the stability-function of the coarse propagator G∆T . For the choice of coarse
propagator G∆T with the property

|R(z)| ≤ 1
2
,

the predictor-corrector scheme (51) is stable for all values of n, k.
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The theorem also applies for y′ = Ay, where y is a vector and A is a matrix. The only difference
is that µ will now be the largest eigenvalue in A.

So what about non-autonomous and non-linear problems? Theorem 18 does not apply for this
kinds of problem. The difference lies in the stability-function R(z), which is not the same for
non-autonomous and non-linear problems. An extention of the theory for those kind of problems
is left for future work.



40 5 STABILITY ANALYSIS OF THE ALGORITHM



41

6 Numerical Results

To be able to compare the different results we are about to present, some important quantities
will be defined, which will be explicitly given for each result.

• Timestep δt and ∆T for F∆T and G∆T .

• The systems natural time constant τs. As an example, for a solution u = sin 2πt, τs = 1.

• The ratio ∆τs = ∆T
τs

.

• The solvers for G∆T and F∆T .

As long as nothing else is specified, all the plots are on the form

-

6

Number of iterations k

log ‖ ys − yp ‖L2

The x-axis is the iteration-counter k (called outer iter k to seperate it from any internal
iteration, e.g. Newton), and the y-axis is the difference between the serial and the parareal
version measured in L2-norm.

The same numerical schemes will be applied to almost all the tests. So again, as long as nothing
else is spesified, the legend will be as in Table 11.

Legend

EB . . Radau3 Radau5 O SDIRK3
Gauss2 × Gauss4 ♦ Gauss6 M Gauss8

Table 11: Legend for the plots

Since the value of the stability function R(z) will be an important issue for all the schemes, for
different values of z, we first present their behaviour in Figure 16.

We will not discusse speedup. This is because it is generally difficult to compare computational
expence when we are using numerical schemes that are not optimal implemented (implemented
in Matlab). The implementation may change the computational expence radically. But as a rule
of thumb we state that to achieve any speedup at all, we need convergens to a satisfactory level
of error on less then half of the maximum number of iterations. This is based on the assumption
that the time used by G∆T and F∆T per iteration is approximate the same. This should be kept
in mind when considering the convergence-plots.

We start by presenting the results from the simulation of the simple heat equation (36).

6.1 Heat-equation

We start with (36) since it is, in many ways, an easy equation to solve. It is also a nice
test-equation for the stability-properties we discovered in Section 5.

Space is discretized using finite element method (FEM) as spesified in Section 4.2.1. In the
following plots we have discretized in space using 20 equal-size finite elements (FE). t ∈ (0, 1),
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Figure 16: R(z) for the schemes presented in Section 3. Legend found in Table 11

τs = 1, δt = 1 · 10−3, and we use the same solver for both G∆T and F∆T . This gives us the
largest eigenvalue λmax = −4.7124 · 103 from the system ∂u

∂t = −(Mh−1Ah)u. From Section 5 we
know that if |z| � 1 with z = λmax∆T , we will experience instability for schemes with
R|(z)| > 1

2 . From the analysis of the schemes, we know that all methods except the Radau
methods have limz→−∞ |R(z)| > 1

2 . In Figure 17 and Figure 18 the same scheme is used for both
G∆T and F∆T , with different values for ∆T .

In Figure 17(a), all the schemes converge without any sign of divergence. Notice also that the
convergence is exponential (except Gauss8 which is almost fully converged after one iteration),
and it increases with order, as expected. The reason why some of the plots have no point for the
last value of outer iter k is that the error is zero in the machine-precision. log(0) = 10−∞, and is
therefore not plotted. Already in Figure 17(b), a slight divergence can be seen for some value of
k in Gauss4, Gauss6 and Gauss8. In Figure 18(a), all the schemes except the Radau schemes
diverge for some values of the outer iteration k. This divergence increases for smaller value of
∆T , but the Radau-schemes are never effected.

But before we establish if this could be predicted, we want to verify that only the coarse
propagator G∆T effects the stability of the predictor-corrector scheme. In Figure 19 and
Figure 20, we have frozen either F∆T or G∆T as either Gauss6 or Radau5. In Figure 19(a) and
Figure 20(a), F∆T are Gauss6 versus Radau5 for alle the simulations. G∆T is altered according
to Table 11. It’s obvious that that the choice of F∆T has no effect on the stability of the
predictor-corrector scheme, as predicted in Theorem 18. In Figure 19(b) and Figure 20(b), G∆T

are Gauss6 versus Radau5 for alle the simulations. F∆T is altered according to Table 11. Clearly
Radau5 prevents instability, but Gauss6 fails to do so. This also predicted using Theorem 18 and
Figure 16, with the values z = λmax∆T ≈ 120.

But what happens that generates this instability? To try to answar this we look, in Figure 21
and Figure 22, closer at a special case with the following variables:

• G∆T is Gauss2

• F∆T is Gauss2 in Figure 21, and Radau3 in Figure 22
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(a) ∆T = 0.2, ∆τs = 0.2
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(b) ∆T = 0.1, ∆τs = 0.1

Figure 17: Solution of (36) with δt = 1 · 10−3, τs = 1. Legend found in Table 11
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(a) ∆T = 0.05, ∆τs = 0.05
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(b) ∆T = 0.025, ∆τs = 0.025

Figure 18: Solution of (36) with δt = 1 · 10−3, τs = 1. Legend found in Table 11
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(a) Gauss6 as F∆T . G∆T found in Table 11.
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(b) Gauss6 as G∆T . F∆T found in Table 11.

Figure 19: Solution of (36) with δt = 1 · 10−3, τs = 1, ∆T = 2.5 · 10−2, ∆τs = 2.5 · 10−2. Legend found
in Table 11
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(a) Radau5 as F∆T . G∆T found in Table 11.
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(b) Radau5 as G∆T . F∆T found in Table 11.

Figure 20: Solution of (36) with δt = 1 · 10−3, τs = 1, ∆T = 2.5 · 10−2, ∆τs = 2.5 · 10−2. Legend found
in Table 11
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• The iteration k= 20

• ∆T = 1 · 10−2

• Result plotted for x = 0.8

The rest is the same as the previous cases, namely δt = 1 · 10−3 and τs = 1. The reason why ∆T
is chosen so small is to have really large oscillations to study. The x-value is frozen, so we plot
the time-variations of the specified x-value. We then plot the following quantaties:

• F∆T (λk+1)

• G∆T (λk+1) and G∆T (λk)

• λk+1 and λk

We gather the results from all the parallel computed F∆T such that the first value from
processor i + 1 overwrites the last value from processor i.

In Figure 21(a) and Figure 22(a), the oscillations are significant. In Figure 21(b) and
Figure 22(b) only the last section of the time-domain is plotted. The first thing we notice is the
difference in damping-factor between Gauss2 and Radau3. This is because Radau3 is L-stable,
and Gauss2 is not even strong A-stable (discussed in Section 3.1.4).

But our attention should be focused on G∆T and λ. Remember that G∆T (λk+1) uses one
timestep, with λk+1 as initial-value. Notice that G∆T (λk+1) is a weakly damped oscillation from
the initial value λk+1. So when (4) is applied, G∆T (λk+1) and G∆T (λk) have opposite signs and
is therefor amplifying each other instead of equalizing each other. What Theorem 18 is saying, is
really how strong should the damping factor of G∆T be to prevent this amplifying.

In Figure 17(a), all the schemes look stable. But are they really stable? We investigate this by
extracting λ4

3 from the simulation with a guaranteed stable scheme (Radau5) as G∆T , and the
scheme we want to investigate (Gauss6) as G∆T . The difference is plotted in Figure 23. What is
plottet is really the difference of Radau5 and Gauss6 in the start-vector for the last time-section.
A stable scheme will preserve the smoth solution in space, given by the initial value from (36).
Because of difference in order it is expected to be a difference between Radau5 and Gauss6. But
the difference should also bo a smooth function. Figure 23 shows sign of oscillations. Remember
that the largest value of the exact solution for this time is 3.7 · 10−4, meaning that the oscillation
will appeare in the ninth digit. But the oscillations are so small that they do not have a
significant slowdown on the convergence. This is not a proof, but a good indication that there
may also excist small instability, even though convergence is achieved.

If we use Theorem 18, the results are that we should have instability for all the Gauss schemes
and the SDIRK3 scheme, while all the Radau schemes would be stable.

But we have to remember that Theorem 18 is a conservative estimate. The question is how sharp
is the property that limz→−∞ |R(z)| ≤ 1/2. This will be tested numerically.

6.1.1 Verification of Theorem 18

Theorem 18 claims that

lim
z→−∞ |R(z)| ≤ 1

2
,

where R(z) is the stability-function of G∆T , in order for the predictor-corrector scheme (4) to be
stable. The reader is refered to Theorem 18 if the assumptions for this is not clear.
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Figure 21: Solution of (36) with δt = 1 · 10−3, τs = 1, ∆T = 1.0 · 10−2, ∆τs = 1.0 · 10−2, k = 20 and
Gauss2 as F∆T and G∆T .
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Figure 22: Solution of (36) with δt = 1 · 10−3, τs = 1, ∆T = 1.0 · 10−2, ∆τs = 1.0 · 10−2, k = 20, Gauss2
as F∆T and Radau3 as G∆T .
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Figure 23: (λk
n)uGauss6 − (λk

n)uRadau5 where uGauss6 and uRadau5 are solution of (36) with δt = 1 · 10−3,
τs = 1, ∆T = 2.0 · 10−1, ∆τs = 2.0 · 10−1, k = 3, n = 4

In order to adjust limz→−∞ R(z), we use the Theta-method, presented in (29). From (30) we
easily find that θ = 1/3 gives limz→−∞ |R(z)| = 1/2, and θ > 1/3 gives limz→−∞ |R(z)| > 1/2

A simulation with δt = 1 · 10−3, ∆T = 2.5 · 10−2 and Gauss6 and F∆T gave the results found in
Figure 24 Already for θ = 0.345, a small divergence is visible. This test provides numerical
support for Theorem 18.



6.2 Periodic solutions 51

0 5 10 15 20 25 30 35 40
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

outer iter k

no
rm

(|
|y

s −
yp || L2 (H

1 ))

0
3.30e−01
3.35e−01
3.40e−01
3.45e−01
3.50e−01
3.55e−01
3.60e−01

Figure 24: Simulation of (36) using theta method (29). δt = 1 · 10−3, τs = 1, ∆T = 2.5 · 10−2,
∆τs = 2.5 · 10−2. Legend shows the different θ-values

6.2 Periodic solutions

We want to solve (31), using the iterative time-scheme. (31) is an example of an autonomous 2nd
order differential equation.

High oscillations, like we experience here, is also an example of a stiff system in the way that an
explicit solver requires an enormous stepsize-reduction in order to be stable. But an interesting
fact is that even though our implicit solvers are stable, they need approximately the same
number of steps in order to be accurate (with same order). A certain minimum stepsize is
required in order to resolve the systems “physics”. With “physics” it should be understood the
physical behaviour the solution tries to model. We should therefore expect G∆T to be stable, but
inaccurate. How will this effect the algorithm? Another aspect for this test-equation is whether
G∆T is symplectic or not has an impact on the convergence.

But what about Theorem 18. We remember that one of the assumptions was that |z| � 1. But
z = µ∆T where µ is pure imaginary for problem (32). It should be obvious that Theorem 18 do
not apply for this kind of problems.

We will here use an optimal solver for F∆T , the 5th order Nyström scheme in Table 2. It is
optimal in the sense that it only needs four explicit function evaluations to achieve fifth order. It
is not symplectic (is should be for large time-domains), but tests indicates that the error because
of non-symplectic behaviour is neglectiable for our test problem with the chosen values for δt.
We set our domain to t ∈ [0, 1]. G∆T is altered according to Table 11.

The interesting aspect with this test-equation is to see how well the algortihm calculates the
oscillations. We therefore choose ω = 10 · 2π, which gives us 10 complete periodes on the domain,
and therefore τs = 0.1. δt = 2.5 · 10−4.

In Figure 25(a), τs = ∆T . The only scheme that shows any sign of convergence is Gauss8. But
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(a) ∆T = 0.1 = τs. One sample-point per period (∆τs = 1)
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(b) ∆T = 0.05 = τs/2. Two sample-points per period (∆τs = 0.5)

Figure 25: Solution of (32). δt = 2.5 · 10−4, τs = 0.1, Legend found in Table 11
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(a) ∆T = 0.025 = τs/4. Four sample-point per period (∆τs = 0.25)
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(b) ∆T = 0.02 = τs/5. Five sample-points per period (∆τs = 0.2)

Figure 26: Solution of (32). δt = 2.5 · 10−4, τs = 0.1, Legend found in Table 11
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we have to remember that this is a 4-stage scheme. so in a way, Gauss8 has 4 sample-points per
periode. None of the other schemes shows any particular sign of convergence. But notice that
they are still correct in the maximum number of iterations (the last point is not plotted since it
is equal to zeros in the machine precision.

For smaller ∆T the convergence improves, also for the lower order schemes (Figure 25(b) and
Figure 26). This test indicates that the system limits the choice of ∆T , in order to achieve fast
convergence. The Gauss schemes doesn’t show any sign of being better then the Radau and
SDIRK schemes (if we consider the difference in order), so it seem that symplectic behaviour for
G∆T isn’t an inportent propertie.

6.3 Periodic solutions with two different frequences

We now want to solve (33), using the iterative time-scheme. In general, (33) differ from (31) by a
force-term. From Section 4.1 it is known that the solution of (33) is a sum of two sine terms with
different frequencies. An interesting observation is that if we switch values between ω1 and ω2,
(34) changes while the exact solution is the same. It would be interesting to see how this effects
the parareal algorithm.

As for the previous problem, we use the Nyström scheme from Table 2 as F∆T , with
δt = 1 · 10−4. G∆T is altered according to Table 11. In Figure 27-Figure 30, all the (a) figures
will be with ω1 = 10 · 2π,and ω2 = 2.1π · ω1, which gives ω1 < ω2. All the (b) figures will have
the same values for ω, but opposite: ω2 = 10 · 2π,and ω1 = 2.1π · ω2, which gives ω1 > ω2. The
systems time constants are τss = 0.1 and τsf ≈ 0.015, where τss is the slowly frequence and τsf

is the fast frequence. ∆τs is here given relative to the ω1.

The reason why the ratio between ω1 and ω2 is 2.1 · π is to be sure that we do not experience
som mysterious effects because of integer ratio.

Already in Figure 27 we notice a difference in convergence between the two systems. In
Figure 28 it is clear that the system with the slow frequence in the system matrix and the fast
frequence in the force term is considerable better the the opposite choice. Remember that the
solution of this two systems are the same!

Notice that Gauss6 (as the only scheme) converge in Figure 28, but diverge in Figure 29.
Actually, in Figure 27(b)-Figure 29(b) is seems that order has nothing to do with the
convergence. This is due to aliasing in the solution of G∆T . In Figure 31 we plot G∆T (λ0) for
Radau5, Gauss6 and Gauss8. We see that Gauss6 is “lucky”, due to the chosen parameters.

(34) with ω1 = ω and ω2 = 2.1πω1 has just a litle slower convergence then (32) with ω = ω1. But
(34) with ω2 = ω and ω1 = 2.1πω2 doesn’t converge, except for some cases with aliasing, before
the eigenvalues in the system matrix is sampled with at least one sample-point per periode (given
by the system matrix). This is seen in Figure 30(b). For smaller values of ∆T , all the schemes
will eventually converge. Beware that Figure 30 is not iterated to maximun number of iterations.

The different convergence is due to what kind of physics we try to approximate. In the case
where ω1 < ω2, we try to approximate the slowest oscillations, while the force-term with the high
frequences is undersampled. But the force-term doesn’t destroy the solution, even though it is
poorly estimated. This is because teh force term is independent of y, and consequensly
approximated using ordinary quadrature in Gauss-points. It is well known that smooth functions
are approximated wery vell using various Gauss quadratures. In the case where ω1 > ω2 we try
to estimate the fast oscillation. But since this is heavily undersampled, we experience grave
inaccuracies. The force-term is estimated with fair accuracy. But it’s contributions in the terms
of error is neglectiable.

It is quite clear that we have to bear in mind what we are capable of estimating with large
time-steps, when we construct our system. A natural expantion of this is to say that we could
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(a) ∆T = 0.1, ω1 = 10 · 2π, ω2 = 2.1π · 10 · 2π, ∆τs = 1
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(b) ∆T = 0.1, ω2 = 2.1π · 10 · 2π, ω2 = 10 · 2π, ∆τs = 6.6

Figure 27: Solution of (34) with δt = 1 · 10−4, τss = 0.1 and τsf ≈ 0.015. Legend found in Table 11
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(a) ∆T = 0.05, ω1 = 10 · 2π, ω2 = 2.1π · 10 · 2π, ∆τs = 0.5
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(b) ∆T = 0.05, ω2 = 2.1π · 10 · 2π, ω2 = 10 · 2π, ∆τs = 3.3

Figure 28: Solution of (34) with δt = 1 · 10−4, τss = 0.1 and τsf ≈ 0.015. Legend found in Table 11
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(a) ∆T = 0.02, ω1 = 10 · 2π, ω2 = 2.1π · 10 · 2π, ∆τs = 0.2
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(b) ∆T = 0.02, ω2 = 2.1π · 10 · 2π, ω2 = 10 · 2π, ∆τs = 1.3

Figure 29: Solution of (34) with δt = 1 · 10−4, τss = 0.1 and τsf ≈ 0.015. Legend found in Table 11
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(a) ∆T = 0.01, ω1 = 10 · 2π, ω2 = 2.1π · 10 · 2π, ∆τs = 0.1
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(b) ∆T = 0.01, ω2 = 2.1π · 10 · 2π, ω2 = 10 · 2π, ∆τs = 0.66

Figure 30: Solution of (34) with δt = 1 · 10−4, τss = 0.1 and τsf ≈ 0.015. Legend found in Table 11



6.4 Heat-equation with periodic behaviour in time 59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time t

so
lu

tio
n 

y

Exact
Radau5
Gauss6
Gauss8

Figure 31: Solution of (34). δt = 0.05 for Radau5, Gauss6 and Gauss8 τss = 0.1 and τsf ≈ 0.015.

have used G∆T on a “coarce physic”, meaning we could have omitted the fource-term. If the
amplitude of the fast oscillations had been smaller then the amplitude of the slow oscillations,
this would have been an even safer simplification of the system.

6.4 Heat-equation with periodic behaviour in time

An interesting extension of the Heat-equation is (37), which has periodic behaviour in time. The
question is whether we can apply our knowledge from Section 6.3 or not.

Theorem 18 do apply here since the eigenvalues are real, and large (λmax = −4.102 · 103). We
can then expect all the Gauss schemes, and the SDIRK3 scheme to diverge for large n and k.
From Section 6.3 we learned that the force-term doesn’t effect the convergence to any extent.
Actually, since the force-term is a product of sine in time and space, we expect an extreamly fast
convergence since the calculation of the force-term is simply an interpolation using different
Gauss-quadrature. This, we know, is very accurate on a smooth function like sine.

The simulaton is done using 20 equal size FE. δt = 2.4 · 10−4, τs = 0.1. G∆T and F∆T are the
same during all the tests. The results can be seen in Figure 32 and Figure 33.

From Figure 32 and Figure 33 we notice that for all schemes (maybe except EB), we have
convergence after only one iteration of the predictor-corrector scheme. Notice in Figure 33(b)
that we, for Gauss8, have an error of about 10−7 after only the initial run. This is with only two
sample-points per periode (∆T = 0.05) in time. But we have to remeber that Gauss8 uses four
quadrature-points per time-step, leaving it with eight quadrature-points per periode. So the
results are not that unexpected.

In Figure 33(a) (∆T = 0.1) the algorithm starts to diverge for all schemes but the Radau
schemes. This is consistent with Theorem 18, and with the result from Section 6.1.
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(a) ∆T = 0.25, ∆τs = 2.5
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Figure 32: Solution of (37) with δt = 2.5 · 10−4 and τss = 0.1. Legend found in Table 11
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(a) ∆T = 0.1, ∆τs = 1
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(b) ∆T = 0.05, ∆τs = 0.5

Figure 33: Solution of (37) with δt = 2.5 · 10−4 and τss = 0.1. Legend found in Table 11
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6.5 van der Pol

So how will the parareal algorithm handle a stiff nonlinear differential equation. It is obvious
that we can not use Theorem 18, since van der Pol (vdP) is a nonlinear. But vdP har periodic
nature. We may expect some similarity to the periodic solutions, that is G∆T have to
approximate the general physics in the system to a certain extence to achieve convergence.

As described in Section 3.3, we apply Newton’s method to solve the nonlinear system we recive
using our implicit ode-solvers. But newton is not guarantied fast convergence unless the initial
guess is fairly close to the solution. Since our nonlinear system is of order higher then one, it
may also converge to the wrong solution. It is therefore necessary to allow the solver to decrease
stepsize in order to assure convergence. The consequence is that we loose the control of the
time-use for G∆T (also for F∆T , but it is not so determining since the step-size is small already,
and the convergence is usually fast). Tests have also shown that in some cases, the iteration
converges to the wrong solution.

As a result, Table 12 displays the number of iterations used by G∆T for Figure 34 and Figure 35.
The number displayed is the number used to calculate G∆T (Λ0). Since Λk vary for different k,
the number of iterations will also vary. But The difference is not significant.

Van der Pol’s equation (43) is solved with µ = 10 and t ∈ (0, 100). This includes about five
periodes (remember that vdp has periodic nature). δt = 1 · 10−3 and τs ≈ 20.

∆T Gauss2 Gauss4 Gauss6 Gauss8 EB Radau3 Radau5 SDIRK3 Suggested
10 124 39 468 324 45 59 631 146 10
5 453 47 715 321 74 69 688 125 20
2 710 65 451 320 210 89 668 165 50
1 694 122 442 317 243 134 692 195 100

Table 12: Number of timesteps used by G∆T (Λ0) for different values of ∆T . Plot seen in Figure 34 and
Figure 35

The first we notice in Table 12 is that most of the solvers use considerably more steps then
suggested (suggested equals n, the number of partitions of the time-domain). Notice also that
some actually use fever timesteps for smaller ∆T . This indicates that the nonlinear solver is not
very good. This prevents us from drawing any final conclusions, especially on comparison
between different solvers and convergence-rate depending on ∆T . But the results will still
indicate whether the algorithm seems to work or not.

In Figure 34 and Figure 35 we notice that the high order schemes Radau5, Gauss6 and Gauss8
shows good sign of convergence. But they do also use a large number of steps, especially Radau5.
Some of the solvers perform really bad, e.g Gauss4 and SDIRK3. But we also notice that they
use few timesteps relative to e.g Gauss6. Tests have shown that both Gauss4 and SDIRK3 have
a tendency of converging to the wrong solution in the region where vdp changes rapidly.

Another important propertie is the loss of order due to newton-iteration. According to [13], this
order-reduction is quite severe.

Idealy F∆T is a adaptiv step-size solver. But this will result in a grave difference in
computational expence for the partitions of F∆T since some may compute on a stiff intevall,
while others may compute on a non-stiff intervall.

For comparison it can be tested that Matlab’s own stiff-solver, ode15s, uses less then 2.5 · 105

steps for the same problem with approximate half the error as Radau5 using 1 · 106 timesteps.
Clearly variable timestep is advantageous for this problem, something that will decrease the
speedup when computational expence is compared to an optimal seriel method with adaptive
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(a) ∆T = 10, ∆τs ≈ 0.5. Iteration count found in Table 12.
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(b) ∆T = 5, ∆τs ≈ 0.25. Iteration count found in Table 12.

Figure 34: Solution of (44) with δt = 1 · 10−3 and τs = 20. Legend found in Table 11
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(a) ∆T = 2, ∆τs ≈ 0.1. Iteration count found in Table 12.
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(b) ∆T = 1, ∆τs ≈ 0.05. Iteration count found in Table 12.

Figure 35: Solution of (44) with δt = 1 · 10−3 and τs = 20. Legend found in Table 11
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step-size.

6.6 Implementation

About 7000 code-lines are produced in order to calculate the various test-equations with the
different schemes, and produce all the plots in this report. The source-code will not be included;
both because its volume and since it is of no interest in itself. The implementation is done on
basis of Section 3 and Section 4, so it should be clear how everything is done (except small
programming details).

The only procedure that need special explanation is the Newton-iteration. From Section 3.3 it
was clear that the iteration not necessarly converge for all starting-values. A normal solution to
this is to decrease (half) the step-size when slow convergence are detected. Assume we want to
solve the differential equation from tn ot tn+1. The algorithm for the newton-iteration is in
general implemented like Algorithm 2.

Algorithm 2 The newton iteration
tstart ← tn
tend ← tn+1

iter← 0
while true do

iter← iter + 1
Perform one newton-iteration
if convergence then

tstart ← tend

if tstart == tn+1 then
store solution
break

end if
store temporary solution
tend ← tn+1

end if
if iter==10 then

tend = (tstart + tend)/2
break

end if
end while

The algorithm allways tries to take maximun step-size.

All the code-lines have been produced by the author, execpt some procedures in the
element-solution, providing rutines for gridgeneration, local-to-global mapping, assembling
stiffness- and mass-matrixes. These have been taken from the course SIF5050, Numerical
Solution of Partial Differential Equations using Element Methods, held by the advisor of this
project. Matlab-rutines have of course been used in a great extent.
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7 Conclutions

A theorem stating a restriction in the strong A-stability propertie of G∆T in order for the
predictor-corrector scheme to be stable for aotunomous differential equations, has been proposed.
During several tests, Theorem 18 has been substantiated. A special test, the Theta-test, has also
been applied for the ordinary one-dimentional heat equation. This test also confirms
Theorem 18, and indicates that the property limz→−z R(z) for G∆T is quite accurate.

It seems clear that the systems physic sets a limitation in the minimun choice of ∆T in order to
achieve convergence. The testproblems, especially (34), indicates that the choice of system for
the G∆T is importent in order to estimate the physics in an optimal way. The two different
formulation of the same system gave a dramatic difference in convergence.

Tests on the nonlinear stiff problem van der Pol pointed out new problems. How should the
nonlinear system be solved when unnatural large stepsize is applied? We were unable to solve
this properly in this report. But nothing in the tests suggest that this problem is nonsolvable
using the parareal algorithm.

For all problems, we have experienced increase in convergence by the use of high order schemes
for G∆T . This is particular interesting when we know that it is possible to parallelize G∆T using
other parallel schemes. After all, there is one processor that has to calculate the
predictor-corrector scheme. Why not put the other processors to work. Parallelizing G∆T may
prevent increase in computational cost for high order schemes, while the number of iterations
required for convergence will decrease.

We have also demostrated that the choice of F∆T can be a highly optimal solver (not the same
as G∆T ) – your favorite solver.

7.1 Future work

During the work of this projekt, several other interesting aspects of the parareal algorithm was
discovered. We will here recommend that the following is investigated futher:

In the stability expression for the predictor-corrector scheme applied on an autonomous
differential equation, an expression for the constants attached to ez should be evolved. A
possible approach is to expand the graph structure from Section 5 to a graph dimentional tree.
This should be done in order to find how small ez should be in order for the assumptions of
Theorem 18 to hold.

The theorem should be extended to include both non-autonomous and nonlinear differential
equations. For the non-autonomous differential equation, a possible approach is to exchange
R(z) with K(Z), where K(Z) is defined in Section 3.1.2. From this it should be possible to find
a test property involving the Runge-Kutta weights (b) and coefficients (A). It is possible to show
that for non-confluent Runge-Kutta methods (i.e methods with all nodes ci distinct), the
concepts of B-, AN - and algebraicly-stability are equivalent. It should therefore be investigated
to verify if this also applies under the new test propertie for non-autonomous stability of the
predictor-corrector scheme. If so, we also have nonlinear stability when non-autonomous stability
is established.

The consequences of applying G on another system (i.e. coarse in space, and highly oscillating
terms removed) should be fully explored. If a coarse space discretization is used, a way of
transfering Λ over to the space F∆T works on, should be developed.

Solving stiff nonlinear differential equations should be futher investigated. The problem with
nonlinear solver is especially intereting. Simplified Newton should be tested. Also schemes that
avoide nonlinear solvers (e.g Rosenbrock-type schemes) should be explored in this context.
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The effect of parallelizing G∆T , using e.g. parallel implicit Runge-Kutta schemes, should be
explored to identify possible additional speedup.
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A.1 Linear Algebra

A.1.1 Cramer’s rule

The jth component of x = A−1b is

xj =
detBj

det A
, where Bj =

 a11 . . . a1(j−1) b1 . . . a1n

...
...

...
...

...
...

an1 . . . an(j−1) bn . . . ann

 .

In Bj , the vector b replaces the jth coloumn of A.

A.2 Complex Analysis

Theorem 19 (Maximum modulus theorem for analytic functions) Let F (z) be analytic
and nonconstant in a domain containing a bounded region D and its boundary. Then the
absolute value |F (z)| cannot have a maximum at an interior point of D. Consequently, the
maximum of |F (z)| is taken on the boundary of D. If F (z) 6= 0 in D, the same is true with
respect to the minimum of |F (z)|.

A.3 Hamiltonian Systems

We have a system on the general form

ẋ = X(x, y), ẏ = Y (x, y). (52)

This system is called a Hamiltonian system if there exist a function H(x, y) such that

X =
∂H

∂y
, Y = −∂H

∂x
,

and the condition

∂X

∂x
+

∂Y

∂y
= 0

is fulfilled. The function H(x, y) is called the Hamiltonian fynction for the system. It can easily
be showed that H(x, y) = constant along any phase path. It’s also possible to prove that the
corresponding flow is symplectic, i.e., preserves the differential 2-form

ω2 =
n∑

i=1

dxi ∧ dyi,

where dxi ∧ dyi (called the exterior product) is a bilinear map acting on a pair of vectors

(dxi ∧ dyi)(ξ1, ξ2) = det
(

dxi(ξ1) dxi(ξ2)
dyi(ξ1) dyi(ξ2)

)
= dxi(ξ1)dyi(ξ2)− dxi(ξ2)dyi(ξ1)

satisfying Grassmann’s rules for exterior multiplication

dxi ∧ dxj = −dxj ∧ dxi, dxi ∧ dxi = 0.

Symplectic is defines as
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Theorem 20 The flow of a canonical system (52) is symplectic, i.e.,

(ϕt)∗ω2 = ω2 ∀t.


