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Abstract

The purpose of this paper is to construct methods for solving stiff
ODEs, in particular singular perturbation problems. We consider em-
bedded pairs of singly diagonally implicit Runge-Kutta methods with an
explicit first stage (ESDIRKs). Stiffly accurate pairs of order 3/2, 4/3 and
5/4 are constructed.
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1 Introduction

Singly diagonally implicit Runge-Kutta methods (SDIRKs) have been quite
popular for solving stiff ordinary differential equations (ODEs) since their in-
troduction in the beginning of the seventies, [3, 7, 16, 18], see also [2, 5, 6].
They can be efficient, and they can preserve the excellent stability properties of
implicit Runge-Kutta methods. SIMPLE by Nørsett and Thomsen [19, 20, 21]
as well as SDIRK4 by Hairer and Wanner [13] are nice examples of ODE-
solvers based on SDIRK methods. In addition, SDIRK-methods are reasonably
easy to implement, which makes them attractive as time-integrators for par-
tial differential equations. More recently, there is a renewed interest in SDIRK
methods as the implicit part of implicit-explicit (IMEX) RK-methods for solv-
ing convection-diffusion-reaction problems [4, 15, 26]. The main restriction of
SDIRK methods is their relatively low order. In addition they might suffer
from order reduction when applied to stiff ODEs. In particular, the order of
B-convergence can in general not exceed 1 [8]. But as we will see, this problem
can be avoided for large classes of stiff ODEs.
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The aim of this paper is to construct reliable and efficient Runge-Kutta
methods with error estimates. In Section 2 a set of design criteria for the
method are developed. Singular perturbation problems (SPP) serves as model
equations for stiff ODEs here. SDIRK methods with an explicit first stage
(ESDIRK) are constructed in Section 3. These methods are of order 3/2, 4/3
and 5/4. The methods have already been available in an unpublished note by
the author [17], and used in different contexts. Some relevant references are
given in Section 4.

2 Runge-Kutta methods for singular perturbation

problems.

As a model equation for stiff ODEs we consider the singular perturbation prob-
lem (SPP)

y′ = f(y, z), εz′ = g(y, z), 0 < ε << 1, (1)

where f and g are smooth functions. We assume µ(∂g/∂z) < −1 in some ε-
independent neighbourhood of the solution, where µ denotes the logarithmic
norm with respect to some inner product. The initial values y(0), z(0) are
assumed to admit a smooth solution of (1). The theory of RK-method applied
to (1) is developed by Hairer et al. [11], see also [13, Section VI.3].

The exact solution of (1) can be expressed as a power series of ε:

y(x) = y0(x) + εy1(x) + ε2y2(x) + · · ·
z(x) = z0(x) + εz1(x) + ε2z2(x) + · · · (2)

where yl(x), zl(x) are ε-independent functions. The dominating terms y0(x), z0(x)
is the solution of the index 1 differential algebraic equation (DAE),

y′0 = f(y0, z0), 0 = g(y0, z0), (3)

also called the reduced problem. Further, y1(x), z1(x) is the solution of an index
2 DAE and so on. For stepsizes h ≥ Const · ε the numerical solution can be
expressed in similar series. The consequence is illustrated in Figure 1, showing
plots of the local error and error estimate as functions of h, see Example 1 for
details. Similar plots can be found in [12, 13]. The stepsizes can roughly be
divided into three intervals:

• h < Const · ε, the index 0 or ODE interval. For such small stepsizes the
problem is nonstiff, and no extra caution is needed.

• h >> ε, the index 1 interval. The solutions are dominated by the index
1 solutions. This is the preferred situation, and the methods will be
designed to work well here.

• Between these two intervals, the errors are dominated by contributions
from the index 2 components y1(x), z1(x). Low order is not the worst
problem here, but propagation of errors from the last solution point.
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Figure 1: The exact local error (—) and the local error estimate (− −) as
functions of h.

These contributions do not decay with reduced stepsizes. They are al-
most constant, and might even increase. This situation should if possible
be avoided, by making the errors well below the error tolerance.

In the following, we review some theory for Runge-Kutta methods applied to
DAEs. This will give the basis for design criteria of our methods.

Runge-Kutta methods. An s-stage RK method is characterised by its Butcher
tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

or
c A

bT
.

The method is stiffly accurate if bj = asj, j = 1, 2, · · · , s. In this paper, the
following classes of implicit RK methods are considered:

M1: Methods for which the coefficient matrix A is nonsingular.

M2: Methods for which

• a1j = 0, j = 1, · · · , s,

• the submatrix Ã = (aij)si,j=2 is nonsingular,

• bj = asj, j = 1, · · · , s.

Order and convergence results for these methods applied to DAEs can be found
in [12, 27] (M1) and [14] (M2).
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An RK method applied to (1) is given by

Ẏi = f(Yi, Zi), εŻi = g(Yi, Zi),
i = 1, · · · , s

Yi = yn + h
s∑

j=1

aij Ẏj Zi = zn + h
s∑

j=1

aijŻj,

yn+1 = yn + h

s∑
i=1

biẎi zn+1 = zn + h

s∑
i=1

biŻi

where Yi, Zi are the stage values and Ẏi, Żi the stage derivatives. For stiffly
accurate methods, the new solution point is simply

yn+1 = Ys, zn+1 = Zs.

The method is of stage order q if the simplifying assumption

C(q) :
s∑

j=1

aijc
k−1
j =

1
k
ck
i , i = 1, 2, · · · , s, k = 1, 2, · · · , q

is satisfied. The stability function is given by

R(z) = 1 + zbT (I − zA)−1
1

where 1 = (1, 1, · · · , 1) ∈ R
s, and the stability constant R(∞) = limz→∞ R(z)

is

R(∞) =




1 − bT A−1
1 for methods in M1

0 for stiffly accurate methods in M1
−eT

s−1Ã
−1A1 for methods in M2,

where es−1 = (0, 0, · · · , 0, 1)T ∈ R
s−1 and A1 = (a21, a31, · · · , as1)T . When

RK-methods are applied to DAEs, it is well known that |R(∞)| ≤ 1 is required
for convergence. An A-stable method with R(∞) = 0 is called L-stable.

An estimate for the local error is given by

erry = h
s∑

i=1

(bi − b̂i)Ẏi, errz = h
s∑

i=1

(bi − b̂i)Żi, (4)

where b̂T together with A and c forms a method of order p̂ 6= p, so that

err = O(hmin(p,p̂)+1).

Error estimators of order p̂ = p − 1 are common, most SDIRK-methods are
equipped with such. But high order estimators are not available for fully implicit
methods like Gauss-Kuntzmann-Butcher (order p = 2s) and Radau methods
(order p = 2s − 1) without adding stages. This, together with their relatively
high implementation costs, are severe restrictions on fully implicit methods.

The endeavour to get high order error estimators may cause other impor-
tant properties to be lost. For instance the error estimators used by Hairer
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and Wanner in their codes SDIRK4 and RADAU5 are not A-stable. In the
latter case, |R(∞)| = ∞. To deal with this, the error estimate given by (4) is
multiplied by (I − hγ0J)−1 where γ0 is some constant and J is the jacobian of
the equation, see [13, Sec. IV.8].

In the following, all expressions referring to the error estimating method
is marked with a “hat”, thus R(z) is the stability function of the advancing
method, R̂(z) that of the error estimating method, and so on.

Index 1 DAEs. Theory for RK-methods applied to (3) is given by e.g. Deu-
flhard et al. [9], Griepentrog et al. [10] and Roche [27]. Several methods
suffer from a severe order reduction in the z0-component, while the error of
the y0-component behaves as expected. The order reduction do not occur for
stiffly accurate methods, since the use of such methods is equivalent to solve
the (nonstiff) problem y′0 = f(y0, G(y0)), where z0 = G(y0) is the solution of
g(y0, z0) = 0. So stiffly accurate methods are particularly suited for solving
index 1 DAEs, and thus also stiff SPPs.

Most RK-methods for stiff problems are stiffly accurate. But their error
estimators are not, causing the order reduction illustrated in Figure 1.

Index 2 DAEs. The main objective in the index 2 area is to keep the con-
tribution from the index 2 components to the total error well below the error
tolerance. To see how, we will quote some results from Hairer et al. [12, Section
8], treating index 2 DAEs solved by methods in the class M1.

Consider the index 2 DAE

y′ = f(y, z), 0 = g(y), gyfz nonsingular. (5)

Exact solutions of this equation have to satisfy the hidden constraint, (gyf)(y, z) =
0. However, numerical solutions will usually not, and this might cause trouble
in the next step.

Let y0, z0 be the starting values, and suppose they satisfy the assumptions
||((gyfz)−1g)(y0, z0)|| ≤ hδ and ||((gyfz)−1gyf)(y0, z0)|| ≤ θ with h, δ and θ
sufficiently small. Then the local errors are given by

y1 − y(x0 + h) = R(∞)(fz(gyfz)−1g)(y0, z0) + O(h2δ + hδ2) + O(hqy+1),
z1 − z(x0 + h) = R(∞)((gyfz)−1gyf)(y0, z0) + O(hδ + θ2)

− σ
1
h

((gyfz)−1g)(y0, z0) + O(hδ + δ2) + O(hqz).

Here σ = bT A−2
1 and qy, qz are usually equal to the stage order q. The drift

from the constraint 0 = g(y) can be restricted by using stiffly accurate methods
and by solving algebraic equations with sufficiently accuracy. The constraint
(gyf)(y, z) = 0 is in general not satisfied by the numerical solution, but its
contributions to the local error can be suppressed by choosing R(∞) = 0. If
R(∞) 6= 0 this term might dominate the error, at least for small stepsizes.
Results for methods of class M2, see [14], leads to similar conclusions.
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The index 2 system arising from the SPP is a special case of (5). Its contri-
butions are multiplied by a factor ε, thus we might expect a significant influence
from these terms only for mildly stiff problems.

The following classical example clearly illustrates the theoretical results:

Example 1 Consider Van der Pol equation

y′ = z y(0) = 2,

εz′ = (1 − y2)z − y z(0) = −2
3

+
10
81

ε +
292
2187

ε2
(6)

with ε = 10−6. The problem is solved with an L-stable, stiffly accurate SDIRK
method of order 4 with an error estimator of order 3, given by Hairer and
Wanner [13, Table 6.5]. The system is integrated to the first step exceeding
x = 0.3. At this point we measure the exact local error and the local error
estimate of the next step as functions of h. The results are given in Figure 1.
The plot shows the 2-norm of the errors, scaled with the tolerance. Thus the
next step will be accepted if the local error estimate is less than 1.

The method is a stiffly accurate SDIRK method, thus the stability constant
R(∞) = 0 and the stage order q = 1. The index 2 interval of h goes from
approximately 5 · 10−6 to 0.1. Here the exact local error is dominated by
contribution from the index 2 z1-component, first by the term O(1/h), then
by the local truncation error term O(h). This somewhat peculiar behaviour do
not cause any problems since the error is well below the error tolerance. For
h > 0.1, the index 1 interval, the error is dominated by contributions from the
index 1 terms, and no order reduction of the exact local error occur.

The error estimating method is not stiffly accurate, and R̂(∞) = 10/3. The
error estimate is dominated by contributions from the z-component. In the
index 2 interval, the numerical values from the last step do not satisfy the hidden
constraint, this error is multiplied by R̂(∞), causing the O(1) behaviour. Again,
the index 2 error causes no problem, since it is well below the error tolerance.
There are however situations where this contribution might exceed one, causing
a dramatically reduction of the operating stepsize. The behaviour of the error
estimate for larger stepsizes is more problematic. The local order of the z-
component of the error estimating method applied to index 1 problems is only
2. The low order causes the method to operate on smaller stepsizes than really
necessary. Also, stepsize selection algorithms designed on the assumption of
error estimates of classical order will fail to work properly unless some remedial
action is taken.

The methods of the next section are constructed according to the following
list of requirements:

1. Stiffly accuracy in both the advancing and the error estimating methods.
In this case there is no order reduction in the index 1 interval.

2. R(∞) = 0, and |R̂(∞)| as small as possible, at least less than one.
This to reduce the influence of inconsistent numerical values from the last
step.
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3. A-stability, or at least A(α)-stability for both methods.

4. As high stage order as possible.

Remark 1 Methods satisfying requirements 1 and 2 can be directly adapted
to index 1 DAEs of the form

My′ = f(y)

where M is a constant, singular matrix.

Remark 2 A-stability and high stage order are strictly speaking not required
for solving very stiff SPPs. By adding these requirements, the methods are
capable to solve more general classes of stiff problems.

Remark 3 The list could have included other properties like B-stability, high
order of B-convergence, etc. And if the method is adapted to problems with
discontinuities, we would require ci ≤ 1, i = 1, · · · , s and high order inter-
polants. Special problems requires special methods. We do however believe
that methods satisfying requirements 1-4 are capable to solve a large class of
stiff ODEs satisfactorily.

3 Singly diagonally implicit Runge-Kutta methods

with an explicit first stage

This section is devoted to the construction of methods of SDIRK type, according
to the specifications given in Section 2. For simplicity, we consider ODEs of the
generic form

y′ = f(y)

here. Requirement 1, stiffly accuracy for both the advancing and the error
estimating method is fulfilled by using the last two stage values. Thus, if the
complete method is stiffly accurate and of order p, we want the first s−1 stages
to form a stiffly accurate method of order p− 1. The error estimate (4) is then
simply given by

err = Ys − Ys−1.

Both Ys and Ys−1 can be used to advance the solution. But, if requirement 2 is
to be fulfilled, then these two options leads to slightly different methods. Both
possibilities will be considered.

The highest attainable stage order of SDIRK methods is 1. Although this
may not be a serious objections to the methods, the stage order can be increased
to 2 by using an explicit first stage.

Such methods will in the following be denoted as ESDIRK p/p−1, followed
by a for methods using local extrapolation (yn+1 = Ys), b otherwise.
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Order conditions. The Butcher tableau of ESDIRK p/p − 1 is given by

0 0
c2 a21 γ
c3 a31 a32 γ
...

...
. . .

...
...

. . .
cs−2 as−2,1 as−2,2 as−2,3 · · · · · · γ

1 as−1,1 as−1,2 as−1,3 · · · · · · as−1,s−2 γ
1 as1 as2 as3 · · · · · · as,s−2 as,s−1 γ .

(7)

Stage order 2 is given by the condition

C(2) :
s∑

j=1

aijc
k−1
j =

1
k
ck
i i = 1, · · · , s, k = 1, 2.

This is used to find the first two columns of the coefficient matrix A, thus

ai1 = ci −
i−1∑
j=2

aij − γ, i = 2, · · · , s,

ai2 =
1
c2

(
1
2
c2
i −

i−1∑
j=3

aijcj − γci), i = 2, · · · , s.

In particular, for i = 2 we get

c2 = 2γ, a21 = γ.

With C(2) satisfied, the remaining conditions for ESDIRK methods of order
p ≤ 5 are

B(p) :
s∑

i=1

bic
k−1
i = 1

k , k = 3, · · · , p,

in addition to

Order 4:
s∑

i,j=1

biaijc
2
j =

1
12

.

Order 5:
s∑

i,j=1

biciaijc
2
j =

1
15

,

s∑
i,j=1

biaijc
3
j =

1
20

,

s∑
i,j,k=1

biaijajkc
2
k =

1
60

,

where bi is either asi or as−1,i.
Based on these order conditions, methods of order 3/2, 4/3 and 5/4 are con-

structed. When the order conditions are satisfied, the remaining free parameter
is tuned to satisfy the stability requirements.
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s A-stability L-stability
3 1/4 ≤ γ < ∞ γ = 2±√

2
2

4 1/3 ≤ γ ≤ 1.06860 γ = 0.4358665215
5 0.39434 ≤ γ ≤ 1.28060 γ = 0.5728160625

Table 1: Stability of stiffly accurate ESDIRK methods of order p ≥ s − 1.

Stability. The stability function of a RK-method can be written as

R(z) =
det(I − zA + z1bT )

det(I − zA)
=

P (z)
Q(z)

.

For a stiffly accurate ESDIRK method the polynomial P (z) is at most of degree
s − 1, and Q(z) = (1 − γz)s−1. As a consequence, ESDIRK methods of order
p ≥ s − 1 have the same stability functions as s − 1 stage SDIRK-methods of
order p ≥ s − 1. Such functions was first studied by Nørsett [18], see [13, Sec.
IV.6] for a more available reference. The numerator is

P (z) = (−1)s−1
s−1∑
j=0

L
(s−j)
s−1

(
1
γ

)
(γz)j ,

where

Ls−1(x) =
s−1∑
j=0

(−1)j
(

s − 1
j

)
xj

j!

are the Laguerre-polynomials, and L
(k)
s (x) denotes their k-th derivative. The

requirement R(∞) = 0 is then satisfied when

γs−1Ls−1

(
1
γ

)
= 0

The regions of γ for A- and L-stability are given in Table 1.

ESDIRK 3/2 in 4 stages. Such methods are given by the Butcher-tableau

0 0 0 0 0
2γ γ γ 0 0
1 −4 γ2+6 γ−1

4 γ
−2 γ+1

4 γ γ 0

1 6 γ−1
12 γ

−1
(24 γ−12)γ

−6 γ2+6 γ−1
6 γ−3 γ .

The free parameter γ is chosen according to the stability properties given in
Table 1. Thus:

a) If yn+1 = Y4 then γ = 0.4358665215 with |R̂(∞)| = 0.9569.
b) If yn+1 = Y3 then γ = 0.2928932188 with |R̂(∞)| = 1.609.

The first of these choices satisfies all the requirements. But the error estimator
of the second method fails to satisfy |R(∞)| < 1. If this method is used, the
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error estimate could be handled by some trick similar to the one used by Hairer
and Wanner.

These methods were first presented by Alexander and Coyle [1] for solving
index 2 DAEs. Their choice of γ differs from ours, since their concern is to
satisfy order conditions rather than stability requirements.

ESDIRK 4/3 in 5 stages. The coefficients of these methods are given by

a21 = γ,

a31 = 144 γ5−180 γ4+81 γ3−15 γ2+γ

(12 γ2−6 γ+1)2
,

a32 = −36 γ4+39 γ3−15 γ2+2 γ

(12 γ2−6 γ+1)2
,

a41 = −144 γ5+396 γ4−330 γ3+117 γ2−18 γ+1
12 γ2(12 γ2−9 γ+2)

,

a42 = 72 γ4−126 γ3+69 γ2−15 γ+1
12 γ2(3 γ−1)

,

a43 = (−6 γ2+6 γ−1)(12 γ2−6 γ+1)2

12 γ2(12 γ2−9 γ+2)(3 γ−1)
,

a51 = 288 γ4−312 γ3+120 γ2−18 γ+1
48 γ2(12 γ2−9 γ+2)

,

a52 = 24 γ2−12 γ+1
48 γ2(3 γ−1)

,

a53 =
−(12 γ2−6 γ+1)3

48 γ2 (3 γ−1)(12 γ2−9γ+2)(6 γ2−6 γ+1)

a54 = −24 γ3+36 γ2−12 γ+1
24 γ2−24 γ+4

.

The parameter γ are chosen as:

a) If yn+1 = Y5 then γ = 0.5728160625 with |R̂(∞)| = 0.5525.
b) If yn+1 = Y4 then γ = 0.4358665215 with |R̂(∞)| = 0.7175.

The first of these methods has the drawback that γ > 1/2, giving c2 > 1, which
makes it less suitable for some problems.

ESDIRK 5/4 in 6 stages do not exist. This can be proved by using C(2)
to find the first two columns of the coefficient matrix. The coefficients a53 and
a54 are found by B(4) with bi = a5i, and a63, a64 and a65 by B(5) with bi = a6i.
The coefficient a43 is solved by the order 4 condition, using bi = a5i. The same
order condition, but now with bi = a6i is used to solve for c4. The first of the
order 5 conditions is used to solve for c3. The last two equations now become

−
(
6 γ3 − 12 γ2 + 6 γ − 1

)
γ

3
=

1
60

−
(
1440 γ6 − 4128 γ5 + 4224 γ4 − 2080 γ3 + 526 γ2 − 65 γ + 3

)
γ

360 γ3 − 228 γ2 + 48 γ − 3
=

1
20

which have no common solutions.

ESDIRK 5/4 in 7 stages. By adding one more stage, there are several
possibilities of choosing methods. Two methods satisfying the four requirements
are presented in Table 2.
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2
666666666666664

0 0 0 0 0 0 0

0.26000000000000000 0.26000000000000000 0 0 0 0 0

0.13000000000000000 0.84033320996790809 0.26000000000000000 0 0

0.22371961478320505 0.47675532319799699 −0.06470895363112615 0.26000000000000000 0 0 0

0.16648564323248321 0.10450018841591720 0.03631482272098715 −0.13090704451073998 0.26000000000000000 0 0

0.13855640231268224 0 −0.04245337201752043 0.02446657898003141 0.61943039072480676 0.26000000000000000 0

0.13659751177640291 0 −0.05496908796538376 −0.04118626728321046 0.62993304899016403 0.06962479448202728 0.26

3
777777777777775

ESDIRK 5/4a using yn+1 = Y7, with |R̂(∞)| = 0.7483.

2
666666666666664

0 0 0 0 0 0 0

0.27000000000000000 0.27000000000000000 0 0 0 0 0

0.13500000000000000 0.87265371804359686 0.27000000000000000 0 0 0 0

0.24814211234447322 0.13282088522859322 −0.03886686658917771 0.27000000000000000 0 0 0

0.25494479822150471 0.13106196422347200 −0.04522093930235708 0.03389121682051642 0.27000000000000000 0 0

0.17549975523182941 0 −0.01641725931492383 3.59357175290010625 −3.02265424881701182 0.27000000000000000 0

0.15847612643670410 0 −0.07384703732094983 5.26056776397634893 −4.83946947758407500 0.22427262449197180 0.27

3
777777777777775

ESDIRK 5/4b using yn+1 = Y6, with |R̂(∞)| = 0.8732.

Table 2: ESDIRK methods of order 5/4 .
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Figure 2: Local error and error estimates for the ESDIRK-methods.

At the conclusion of this section, the experiments described in Example 1 is
carried out again, this time by using the ESDIRK methods. The results are
given in Figure 2. We observe that the operating stepsize is in the index 1
interval for all the methods, and neither the local error nor the error estimate
suffer from order reduction in this area. As expected, the methods using local
extrapolation (yn+1 = Ys) overestimate the local error. For the remaining
methods, the correspondence between the error estimate and the error is quite
good.

The error estimate in the index 2 area is a factor of about 10−5 of the
tolerance, and will usually not cause any problems.

4 Further reading

In this paper we focus on the theoretical background for the choice of methods
through the study of SPPs. The ESDIRK methods were originally developed
as a part of a now terminated ODE software project, and have been available
in an unpublished note by the author [17]. For experience with the methods, as
well as implementation issues, see [22, 23, 24, 25]. The ESDIRK methods have
been used as the implicit part of IMEX-methods [15]. The methods can work
well also in real-life simulations. This has been demonstrated in [28], where
the low order pair ESDIRK 3/2a has been successfully used for solving ODEs
modelling electrical activity in cardiac cells.
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