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Abstract

We describe the design and implementation of a spectral element code. We assume
familiarity with basic finite element methods and do not explain all terms encountered in
the text. Furthermore, a thorough introduction to the theory of these methods has been
related to the references. The emphasis of this report is on preliminary results gained from
the actual implementation and design decisions made so far.

The code is still a work in progress and additional features and capabilities will be forth-
coming.

1 Introduction

Discretisation of partial differential equations by high-order polynomial basis functions was con-
sistently developed and studied by Patera and coworkers at Massachusets Institute of Technology
in the second half of the 1980’s [1, 2]. Some of the main features of these methods are tractability
of geometrically realistic physical domains, locally structured and globally unstructured meshes,
a focus on tensor product forms, operator evaluation without explictly forming the discrete
operators and favorable convergence properties—especially for problems with smooth solutions.

The methods are based on a Galerkin type weak formulation of the differential equation. Dis-
crete problems are constructed by choosing finite dimensional subspaces of suitable test and trial
function spaces, and evaluating the various linear and bilinear forms using high-order numerical
quadrature. The finite dimensional subspaces are defined as follows

• Find N + 1 Gauss–Lobatto–Legendre (GLL) nodes {ξi}N
i=0, defined as the zeros of

(1 − x2)L′
N (x), x ∈ [−1, 1]

with LN denoting an N -th degree Legendre polynomial, not necessarily normalised.

• Construct N + 1 Lagrangian interpolating polynomials `j(x) : [−1, 1] → R. Expressing
`j(x) in terms of LN (x) and using fundamental properties of the latter, `j(x) is given by

`j(x) = −Cj
(1 − x2)L′

N (x)
x − ξj

, Cj =
1

N(N + 1)
· 1
LN (ξj)

.

We note that the numbers Dij = `′j(ξi) play a fundamental rôle in the approximation of
derivatives.

• Construct a reference element Ω̂ = ⊗d
j=1[−1, 1] = [−1, 1]d. Define the polynomial space

IPN (Ω̂) consisting of polynomials defined on [−1, 1]d having maximum polynomial degree
N in each space direction. A basis for IPN (Ω̂) is given by

{⊗d
j=1{`0, . . . , `N}}.

• Divide the computational domain Ω ⊂ R
d into K non-overlapping subdomains or elements,

Ωk, k = 1, . . . ,K, and for each subdomain define basis functions ϕk
i = ϕ̂i ◦ F−1

k . The
function Fk maps the reference element Ω̂ uniquely onto Ωk.

• Let IPN (Ωk) = {v : v ◦ Fk ∈ IPN (Ω̂)} denote the space of polynomials of maximum degree
N in each space direction defined on Ωk. Then the discrete space XN is defined by

XN = IPN (Ω) = {v ∈ X : v
∣∣
Ωk

∈ IPN (Ωk), k = 1, . . . ,K}

in which X is one of the test or trial function spaces alluded to above.
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Using these tools, an abstractly formulated discrete problem can be stated as: Find uN ∈ Xn

such that
aN (uN , vN ) = FN (vN ) (1)

for all vN ∈ YN . Here, YN is a discrete space of test functions constructed similarly to XN .
The subscript N on the bilinear form aN (·, ·) and linear form FN (·) signifies that all continuous
integrals are replaced by numerical quadrature. The Gaussian quadrature rules are derived from
GLL nodes {ξi}N

i=0 and will, in exact arithmetic, integrate all elements of IP2N−1(Ω) exactly.
We note that the discrete subspaces XN and YN embody all imposed essential boundary

conditions, whereas natural boundary conditions are absorbed into the linear form FN (·). This
practice is entirely equivalent to what is found in low-order finite element methods. Furthermore,
using Krylov subspace methods for the resulting linear systems, we do not need to explicitly form
the discrete operators. The action of an operator on a vector is effectuated through procedure
calls and, taking advantage of a local data representation, usually entails a sequence of matrix-
matrix multiplications followed by direct stiffness summation and masking of boundary nodes to
enforce continuity and essential boundary conditions.

A thorough overview of the theory of high-order element methods, their application to fluid
flow problems, and software development based on this technology can be found in [3].

2 Implementation and software development

The current code base consists of approximately 10,000 lines of Fortran 95 code, divided into
nearly 40 source files. Fortran 95 is well suited to implementing compute intensive numeri-
cal algorithms. While upholding the FORTRAN 77 tradition of producing efficient machine code,
Fortran 95 added, among other features, dynamic memory allocation, array expressions remi-
niscent of MATLAB, derived types and generic subroutines. Together with the concept of modules,
these tools enable rapid development, maintainability and extensibility to the code base.

In addition to the Fortran 95 computational core is an input file parser, written in the C
programming language, for the coarse mesh input file. The input file is generated by a third-party
geometry preprocessor in the format used by the commercial product NektonTM.

The code is still in active development so little tuning and statement level optimisation has
been implemented. Furthermore, additional features not available at present will be needed in
the immediate future.

2.1 Overview of the code

As currently implemented, the code can be divided into five basic subsystems or functionality
classes. In summary these subsystems are

• Basic tools such as special purpose matrix-matrix multiply subroutines, determining GLL
nodes and quadrature weights in the associated quadrature rule QN [f ] =

∑N
j=0 ρjf(ξj),

generation of one-dimensional differentiation and interpolation operators, and nodal num-
bering.

Most of this functionality is provided by a library of FORTRAN 77 subroutines implemented
by Professor E.M. Rønquist for another spectral element code [4].

• Input and spectral element mesh generation.

• Derived datatypes, memory management, global data objects, additional routines for ini-
tialising and finalising these objects.

• Discrete differential operators, interpolation and restriction operators, preconditioning op-
erators.
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Figure 1: Overview of the spectral element code

• Solvers for linear systems, specialised solvers for the Poisson and Stokes problems.

Finally, a top-level driver takes care of starting the subsystems in correct order, outputting results
and shutting down the subsystems upon termination. Figure 1 depicts the idealised relationships
amongst the subsystems. Some layering violations do, however, occur in the actual code. We
note in particular that setting boundary conditions is done in conjunction with reading the input
mesh file as boundary values are specified in this file.

2.2 Generating the spectral element mesh

Discretising the computational domain with spectral elements is in principle equivalent to the
problem solved in low-order finite element methods. There are many finite element mesh genera-
tors available, both commercial and free, with varying capabilities and sophistication. However,
there are few mesh generators capable of producing a spectral element mesh.

A method due to Gordon and Hall [5] can be used in defining the spectral elements, but using
this method effectively requires detailed knowledge about the domain boundary. This knowledge,
commonly known as the geometric model of the physical domain, may not be readily available
in the output from most mesh generators.

To work around this problem we use a third-party finite element mesh generator capable
of producing second order quadrilateral based finite elements. Assuming all element edges are
represented by parabolas, the element nodes can be defined by polynomial interpolation of edges
and faces, and, in three space dimensions, in volumes. Figure 2 shows the result obtained when
interpolating a second order two-dimensional mesh with four elements up to polynomial degree
six. Within each spectral element we number the nodes locally with so-called natural numbering.
This numbering is essential in spectral element codes, as it enables efficient operator evaluation
based on tensor products.
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(a) Finite element mesh (b) Spectral element mesh

Figure 2: Constructing a high-order element mesh from initial low-order element descriptions.

2.3 Field variables

A scalar field u(x) =
∑N

i=1 uiϕi(x), where N is the total number of degrees of freedom, one
usually represents u by its nodal values ui, i = 1, . . . ,N , stored in a vector. There are at least
two different strategies of storing these values. A straightforward approach is to represent u as
the vector u =

[
u1, u2, . . . , uN

]T . This technique is usually employed in finite element codes.
Alternatively one may represent u using a so-called local representation. In a local data

representation, the nodal values for one element is stored as one contiguous region in a large vector
uL =

[
u1

1, u
1
2, . . . , u

1
N1

, u2
1, u

2
2, . . . , u

2
N2

, . . . , uK
1 , uK

2 , . . . , uK
NK

]T . K is the number of elements and
Nk is the number of nodes within element k. This way of representing u allows for easy access
to the data for one particular element, but on the other hand is slightly inefficient with respect
to memory consumption. Function values corresponding to element nodes on internal element
boundaries are stored redundantly in all elements sharing the nodes. This effect is, however,
ameliorated by the fact that the ratio of surface nodes to volume nodes is approximately 1/N in
IPN elements, irrespective of spatial dimension d.

The global data representation uses the least amount of memory, but as the polynomial degree
increases, the redundancy of memory of the local representation becomes less severe compared
to the total memory consumption. We will be using the local data representation for the scalar
field u. Similarly a vector field is represented as a single long vector. The first part of the vector
is the local representation of the first component of the vector field, akin to a scalar field variable.
The second part is the local representation of the second component and so on.

Both scalar fields and vector fields are represented internally in the code as general field
variables. A field variable is a vector with some additional information. In addition to a pointer
to the data, a field variable also knows the the number of components of the field and the
polynomial degree of the mesh it is defined over.

In many programming tasks we need to access the same part of memory from within different
parts of the code. To accomplish this, we have created a global lists of field variables. The list will
grow or shrink as needed, using dynamic memory allocation. A field variable may be accessed
either by name or an identification number. Field variables are the main data objects in the
code, and consume the most memory resources.
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2.4 Operators

In every finite element code one needs to evaluate operators of the weak form. These could be
differential operators such as the Laplacian (∇2) or a convective operator of the form (U · ∇).

Ordinary finite element codes usually assemble these operators and store the resulting num-
bers in a suitable datastructure. Banded or sparse matrix storage are prevalent options. This
is driven by relatively low matrix bandwidth for low-order finite element. As the polynomial
degree increases, so does the bandwidth and the matrices will soon become too large and reduce
the computational efficiency and numerical accuarcy of the code.

For this reason, no operators, apart from coarse grid preconditioning operators, are assembled
into their matrix form. Operator evaluation is instead effectuated by subroutines computing the
action of the operator. Other operators could be related to interpolation and differentiation
among many. All operators accept a field variable as input and return a field variable.

3 The Poisson problem

In this section we will concentrate on the Poisson problem

−∇2u = f(x), x ∈ Ω
u = g(x), on ∂ΩE

∂u

∂n
= h(x), on ∂ΩN ,

(2)

where ∂ΩE ∩ ∂ΩN = ∅.

3.1 Variational form

The weak formulation of the Poisson problem reads: Find u ∈ X = H1
0 (Ω) such that

a(u, v) = F(v), ∀v ∈ X,

where H1
0 (Ω) = {v ∈ H1(Ω) : v

∣∣
∂ΩN

= 0} and

a(u, v) =
∫

Ω
∇u · ∇v dΩ, F(v) =

∫
Ω

fv dΩ +
∫

∂ΩN

gv dΓ.

The discrete problem reads: Find uN ∈ XN = IPN ∩ X such that

aN (u, v) = FN (v), ∀v ∈ XN .

The subscript N signifies that continuous integrals are replaced by quadrature rules.

3.2 Preconditioning

It is well known that the matrix representation of the Laplacian operator a(·, ·) is poorly con-
ditioned in a spectral element discretisation. Availability of good preconditioning schemes is
therefore essential when solving the resulting linear system using an iterative method.

We choose a simplified iterative substructuring method suggested by Rønquist in [6]. This
particular method avoids the computation of a Schur complement solution, or, more precisely,
uses an inexact solver for the interface values. The method decomposes the the discrete space
XN as:

XN = XN0 +
K∑

k=1

Xk + XΓ.
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Figure 3: Triangulation of a spectral element

Here, XN0 is the space associated with a coarse discretisation of the Poisson problem. N0, the
polynomial degree determining the resolution of the coarse grid discretisation, is constrained
to the interval [1,N) and is usually fixed at N0 = 2. The subspaces Xk are associated with
individual spectral elements Ωk and are defined as

Xk = {v ∈ IPN (Ωk) : v
∣∣
∂Ωk

= 0}

for all elements Ωk = 1, . . . ,K. The space XΓ is defined as

XΓ = {v ∈ XN : v = v
∣∣
Γ
},

where Γ is the collection of all internal element interfaces and any external boundaries with
prescribed natural boundary conditions.

For each of the subspaces we follow the approach of [6] and explicitly assemble a discrete
Laplacian operator. The coarse grid Laplacian operator is specified by the matrix A0. Similarly,
Ak is the Laplacian operator associated with the local problem over each element Ωk. This matrix
is constructed as a low-order finite element discretisation within the single spectral element.
Figure 3 shows the imposed finite element mesh on a single spectral element of polynomial
degree 5 in two space dimensions. The resulting discrete Laplacian is referred to as Ak,FE.
Finally, AΓ = diag A

∣∣
Γ

is the diagonal elements of the high-order Laplacian matrix A associated
with nodes on Γ.

The matrices for the coarse problem and the local element problems are all banded, symmet-
ric, and positive definite. Inverting such matrices can be done using special purpose Cholesky
factorisation subroutines from the LAPACK library. The interface matrix AΓ is diagonal and
thus easily inverted. The interface problem solved is a simple approximation to the Schur com-
plement on the subdomain interfaces as explained in [7].

The resulting preconditioner to the operator A is

B−1 = R0A
−1
0 RT

0 +
K∑

k=1

RkA
−1
k RT

k + RΓA−1
Γ RT

Γ

where R0, Rk, and RΓ are prolongation operators for the coarse problem, the local problems
and the interface problem respectively. The restriction operators RT

0 , RT
k , k = 1, . . . ,K, and RT

Γ

ensure that the subproblems are defined on the corresponding subdomains only.
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N Nit ‖r‖L2 N Nit ‖r‖L2

2 1 0.000 · 10−00 17 15 0.818 · 10−15

3 1 0.263 · 10−15 18 16 0.558 · 10−15

4 3 0.606 · 10−17 19 15 0.693 · 10−15

5 3 0.229 · 10−16 20 16 0.663 · 10−15

6 6 0.203 · 10−18 21 16 0.228 · 10−15

7 6 0.351 · 10−17 22 16 0.719 · 10−15

8 10 0.514 · 10−21 23 16 0.320 · 10−15

9 10 0.476 · 10−18 24 16 0.764 · 10−15

10 13 0.516 · 10−15 25 16 0.346 · 10−15

11 13 0.539 · 10−16 26 16 0.859 · 10−15

12 16 0.740 · 10−16 27 16 0.335 · 10−15

13 14 0.792 · 10−15 28 16 0.840 · 10−15

14 16 0.261 · 10−15 29 16 0.331 · 10−15

15 15 0.347 · 10−15 30 16 0.739 · 10−15

16 16 0.458 · 10−15

Table 1: Number of conjugate gradient iterations used in solving the Poisson problem for a single
spectral element. N is polynomial degree, Nit is iteration count in the PCG algorithm, and ‖r‖L2

is the experimentally obtained residual when specifying an absolute residual error tolerance of
‖r‖L2 < Atol = 10−15.

3.3 Numerical examples for the Poisson problem

In this section we investigate the effect of preconditioning on the convergence rate of our Poisson
solver.

3.3.1 Validation of preconditioner

In this section we will choose f ≡ 1 and g ≡ 0 and ∂ΩE = ∂Ω in (2).
To validate the local preconditioning we choose Ω = [0, 1]2, f ≡ 1, g ≡ 0 and ∂ΩE = ∂Ω

in (2). Table 1 shows the number of iterations used in the conjugated-gradient algorithm used
on the preconditioned system. Clearly the number of iterations is bounded from above and
independent of polynomial degree N .

To validate the coarse grid preconditioner we choose N = N0. In this case AN0 = A and the
conjugate-gradient algorithm should converge in only one iteration. Table 2 shows the number of
CG iterations for a varying number of elements and confirms the expected efficiency of the coarse
grid preconditioner. As a final test of the preconditioning we solve the Poisson problem of this
section using K = 16 elements. The number of CG iterations with and without preconditioning
is included in Table 3. Preconditioning clearly impacts the convergence rate of the conjugate
gradient algorithm. For the preconditioned case the number of iterations depend linearly on the
polynomial degree N . This is as expected.

3.3.2 Convergence results

Choosing the forcing term f , and the essential boundary conditions g in (2), such that the exact
solution is

u(x, y) = x(1 − e10(x−1))y(1 − e10(y−1)), (3)

we study the convergence with respect to the polynomial degree N on a fixed number of spectral
elements.
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K Nit ‖r‖L2

1 1 0.000 · 10−00

4 1 0.145 · 10−15

9 1 0.247 · 10−15

16 1 0.175 · 10−15

25 1 0.352 · 10−15

36 1 0.453 · 10−15

49 1 0.532 · 10−15

64 1 0.545 · 10−15

81 1 0.672 · 10−15

100 1 0.839 · 10−15

Table 2: Coarse grid preconditioning when N = N0. K is number of elements in the mesh, Nit is
number of iterations used in the conjugate-gradient algorithm and the third column is obtained
residual.

N Nit,CG Nit,PCG N Nit,CG Nit,PCG

2 10 11 17 313 125
3 22 26 18 341 133
4 39 36 19 370 138
5 58 42 20 399 144
6 75 49 21 429 152
7 93 57 22 458 158
8 110 64 23 488 162
9 130 70 24 519 168

10 150 77 25 552 172
11 171 84 26 586 178
12 192 91 27 620 183
13 215 98 28 655 189
14 239 105 29 690 193
15 263 112 30 727 201
16 287 118

Table 3: Number of conjugate gradient iterations with (Nit,PCG) and without (Nit,CG) precon-
ditioning. N is polynomial degree. K = 16 elements was used in all tests and error residual
tolerance set to ‖r‖L2 < Atol < 10−5.
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Figure 4: Convergence of Poisson problem

As pointed out in [6], the function (3) represents a boundary layer solution to the Poisson
equation as x, y → 1. The function cannot be represented exactly by tensor product polynomial
basis functions, and is thus a good test case for the convergence of the numerical method.

Table 4 shows the absolute error and relative error in the solution to this problem as a
function of the polynomial degree N . This test case was perfomed on K = 4 elements. Figure 4
depicts the same convergence history data visually. We note that both the absolute and relative
errors decrease exponentially fast as the polynomial degree increases.

4 Steady Stokes

In a domain Ω ⊂ R
d, the steady Stokes problem of incompressible fluid flow is given by the

following set of differential equations.

−∆u + ∇p = f , (4)
divu = 0, (5)

Here, u is the velocity and p is the pressure. We assume prescribed velocity boundary conditions,
u = g, on the entire boundary ∂Ω.

Following [3], equations (4)–(5) are rewritten in a weak formulation as: Find u in H1
0 (Ω)d

and p in L2
0(Ω) such that

a(u,v) + b(v, p) = (f ,v), ∀v ∈ H1
0 (Ω)d, (6)

b(u, q) = 0, ∀ q ∈ L2
0(Ω), (7)

where the bilinear forms a(·, ·) and b(·, ·) are given by

a(v,w) = (∇v,∇w),
b(v, q) = −(divv, q).

The inner product (·, ·) used above is the standard L2 inner product.
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Figure 5: Staggered grid for N = 5

4.1 Discrete problem

We propose to use finite dimensional function spaces based on the IPN–IPN−2 spectral elements
(see figure 5), with the pressure p interpolated at the internal Gauss–Legendre points and the
velocity u interpolated at the standard Gauss–Lobatto–Legendre points to ensure a continuous
velocity field. As noted in [3], the resulting pressure field is not necessarily continuous using this
element. Using discrete spaces

XN = {v ∈ H1
0 (Ω)d : v|Ωk

∈ IP d
N (Ωk), k = 1, . . . ,K}

ZN = {q ∈ L2
0(Ω) : q|Ωk

∈ IPN−2(Ωk), k = 1, . . . ,K},
the discrete problem is given by: Find (uN , pN ) ∈ (XN , ZN ) such that

aN (uN ,vN ) + bN (vN , pN ) = (f ,v)N , ∀vN ∈ XN , (8)
bN (uN , qN ) = 0, ∀qN ∈ ZN . (9)

The discrete inner product and bilinear forms are given by

aN (v,w) = (∇v,∇w)N,GLL,

bN (v, q) = −(divv, q)N,GL,
(10)

with subscripts GLL and GL representing evaluation at Gauss–Lobatto–Legendre and Gauss–
Legendre nodes respectively. We note that this discrete problem is positive definite with respect
to the velocity variables and negative definite with respect to the pressure variable. As such, the
problem is an instance of a saddle point problem for which many algorithms have been proposed.

The pressure variable pN is not really the same as the thermodynamic pressure, but rather
corresponds to Lagrangian multipliers used in enforcing the incompressibility constraint (9) of
the velocity. Without any restriction, pN is known up to an additive constant only. However,
choosing pN ∈ ZN guarantees a unique pressure as the mean pressure level is zero.

The Uzawa pressure decoupling is a method for solving the resulting linear systems. In this
method, we first compute pN by solving the linear system

Sp = b (11)
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where the Uzawa operator S and right hand side b are given by

S =
d∑

i=1

DiA
−1DT

i , and b = −
d∑

i=1

Di[A−1(M fi − Ãui
b) + ui

b],

respectively. Here, A is the discrete scalar Laplacian operator associated with the internal
degrees of freedom. In other words, nodal values corresponding to nodes associated with essential
boundaries conditions are excluded. The matrix Ã is the discrete scalar Laplacian operator
associated with all nodal point in the domain including nodes associated with essential boundary
conditions. Furthermore, the diagonal matrix M is the mass matrix associated with the GLL
velocity nodes.

The local derivative operators Di, i = 1, . . . , d correspond to the action of the divergence
operator on component i of a velocity field. Additionally, DT

i is component i of the pressure
gradient operator. These operators incorporate the effect of the geometry mappings Fk.

The vector ui
b is a vector containing Dirichlet boundary values of velocity component i for

all i = 1, . . . , d. We remark that all internal degrees of freedom have been masked out in this
vector. The term Ãui

b is then the restriction to the internal nodes of the vector resulting from
an application of the global, unrestricted Laplacian operator. In other words, it is the effect of
the inhomogeneous essential boundary conditions acting on the internal degrees of freedom in
the domain.

The Uzawa operator S is symmtric and positive definite. Thus, the linear system (11) can be
solved using the preconditioned conjugate gradient algorithm. Furthermore, S is spectrally close
to M̃ , the diagonal mass matrix associated with the GL quadrature nodes and weights. Hence
M̃−1 is a suitable preconditioner for the conjugate gradient process. The application of S to a
field variable w can be effected as shown in equations (5.3.13)–(5.3.15) of [3].

We note that each application of A−1 corresponds to solving a linear system of the form

Az = y

which is the same system as the one arising from discretising the scalar Poisson equation. We
will solve this using homogeneous Dirichlet type boundary conditions on all boundaries. We
remark that we use the same preconditioning for the Laplacian problem as used for the Poisson
equation.

Having computed the pressure from (11), the velocity u is determined by solving d additional
elliptic problems given by

Aui = DT
i p + M fi − Ãui

b, i = 1, . . . , d

4.2 Numerical examples for the Stokes problem

In this section we will look at some test cases for the Stokes solver. These cases all have known
analytic solutions. As an initial validation, we verified that the code will correctly reproduce the
trivial solution u = 0, p = 0 to the problem given by (4)–(5) with f = 0 and g = 0.

We remark that the test case with inhomogenous boundary conditions is artificial as we need
to impose inhomogenous Dirichlet type boundary conditions on the whole external boundary to
obtain a well-defined linear system. Specifying physically realistic boundary conditions in the
general case requires reformulating the basic fluid flow problem (4)–(5) in the more general stress
formulation of fluid flow. At present, the code does not support this feature.
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Figure 6: Convergence results for homogeneous test case for Stokes.

4.2.1 A homogeneous test problem

Let Ω = [0, 1]2 and choose the forcing term f such that the exact solution of (4)–(5) is

u(x, y) =
[

π sin(2πx) sin2(πy)
−π sin(2πy) sin2(πx)

]

p(x, y) = cos(πx) sin(πy),

corresponding to homogeneous Dirichlet boundary conditions g = 0. We solve the system (10) on
a grid with K = 4 elements and report the error in figure 6. The solution converges exponetially
fast as the polynomial degree N increases. Figures 7 and 8 show, respectively, the velocity
and pressure solutions obtained for polynomial degree N = 9 in this case. We remark that
the pressure is plotted over the Gauss–Legendre grid, which means that no continuity can be
enforced across element boundaries and that pressure values are undefined on element boundary
nodes.

4.2.2 An inhomogeneous test problem

The example in this section is taken from [8], chapter 4. Let Ω = [0, 1]2 and choose the forcing
term f and the essential boundary conditions g such that the exact solution of (4)–(5) is

u(x, y) =
[− sin(xy)x

sin(xy) y

]

p(x, y) = cos(xy) − a

where a = 1
|Ω|

∫
Ω cos(xy) dΩ and |Ω| =

∫
Ω 1 dΩ. We solve the system (10) on a grid with K = 4

elements and report the error in figure 9. The solution converges exponentially fast as the
polynomial degree increases. Figures 10 and 11 show, respectively, the velocity and pressure
solutions obtained for polynomial degree N = 9 in this case. We remark that the pressure is
plotted over the Gauss–Legendre grid.
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N ‖u − uN‖L2
‖u−uN‖L2

‖u‖L2
N ‖u − uN‖L2

‖u−uN‖L2

‖u‖L2

2 0.943 · 10−01 0.440 · 10+00 17 0.317 · 10−14 0.148 · 10−13

3 0.166 · 10−01 0.773 · 10−01 18 0.223 · 10−14 0.104 · 10−13

4 0.326 · 10−02 0.152 · 10−01 19 0.728 · 10−15 0.339 · 10−14

5 0.672 · 10−03 0.314 · 10−02 20 0.194 · 10−14 0.906 · 10−14

6 0.123 · 10−03 0.573 · 10−03 21 0.156 · 10−14 0.725 · 10−14

7 0.198 · 10−04 0.924 · 10−04 22 0.234 · 10−14 0.109 · 10−13

8 0.285 · 10−05 0.133 · 10−04 23 0.337 · 10−14 0.157 · 10−13

9 0.370 · 10−06 0.172 · 10−05 24 0.401 · 10−14 0.187 · 10−13

10 0.436 · 10−07 0.203 · 10−06 25 0.376 · 10−14 0.175 · 10−13

11 0.472 · 10−08 0.220 · 10−07 26 0.178 · 10−14 0.831 · 10−14

12 0.471 · 10−09 0.219 · 10−08 27 0.450 · 10−14 0.210 · 10−13

13 0.436 · 10−10 0.203 · 10−09 28 0.379 · 10−14 0.177 · 10−13

14 0.376 · 10−11 0.176 · 10−10 29 0.312 · 10−14 0.145 · 10−13

15 0.304 · 10−12 0.142 · 10−11 30 0.342 · 10−14 0.159 · 10−13

16 0.242 · 10−13 0.113 · 10−12

Table 4: Convergence results for Poisson problem. N is the polynomial degree, ‖u − uN‖L2 is
the absolute error in L2 norm, and ‖u − uN‖L2/‖u‖L2 is the relative error in L2 norm.
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Figure 7: Velocity field for homogeneous Stokes test problem.
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Figure 8: Pressure field for homogeneous Stokes test problem.
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Figure 9: Convergence results for inhomogeneous Stokes model problem.
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Figure 10: Velocity field for inhomogeneous Stokes model problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Figure 11: Pressure field for inhomogeneous Stokes model problem.
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5 Future work

As stated previously, the code is a work in progress and is currently under heavy development.
The following is a short list of features planned and research projects enabled by the addition of
these features.

At present, the code is only able to solve Poisson and steady Stokes problems. However,
much of the necessary groundwork has been put in and solving time dependent incompressible
fluid flow problems governed by the Navier–Stokes equations is the focus of the coming work.
Extending this to allow the general stress formulated model of incompressible fluid flow will cater
to more realistic and general boundary conditions.

Adding the ability to solve mild heat conduction problems requires the Boussinesq variable
density approximation and, possibly, tensor diffusivities.

As problem sizes increases there is also a need to add parallelism in order to get access to
massively parallell processing systems. Communication needs are mostly limited to enforcing
continuous solutions across element boundaries which means that adding some degree of paral-
lelism should be reasonably straightforward.

Finally, we intend to study the effects of employing various advanced time stepping schemes
in conjunction with high-order spatial discretisation.
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