
NORGES TEKNISK-NATURVITENSKAPELIGE

UNIVERSITET

A finite element implementation of the level set
equation

by

Samuel R. Ransau, Bjarte Hægland and Jens Holmen

PREPRINT

NUMERICS NO. 4/2004

NORWEGIAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

TRONDHEIM, NORWAY

This report has URL
http://www.math.ntnu.no/preprint/numerics/2004/N4-2004.ps

Address: Department of Mathematical Sciences, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway.

A finite element implementation of the level set equation

Samuel R. Ransau1, Bjarte Hægland2 and Jens Holmen3

1 Department of Marine Technology

Norwegian University of Science and Technology

N-7491 Trondheim, Norway
2 Department of Mathematical Sciences

Norwegian University of Science and Technology

N-7491 Trondheim, Norway
3 Sintef Applied Mathematics

N-7465 Trondheim, Norway

Abstract

A finite element implementation of the level set method is presented. The
level set method is a capturing type of method, the interface is never found
explicitly. The interface is embedded in the zero level set of a continuous
function. A reinitialisation procedure is used to ensure that the level set field
remains a distance field. Some results for gravity driven two-phase flows,
where the density ratio is relatively small, are presented.

1 Introduction

Multiphase flows with moving interfaces are present in a large number of engineering
and industrial problems, and represent a great challenge from Computational Fluid
Dynamics (CFD) point of view. Development of efficient and robust numerical
methods for representing accurately such phenomenas is still a major problem in
CFD.
In the present report, we present an interface capturing method allowing to follow
the evolution of complex moving interfaces : the level set technique. This approach
was proved to be useful in a wide range of cases, and specially in extreme situations
like breaking waves, that other techniques might not be able to handle. In the
last years, scientists and engineers have shown an increasing interest for the level set
technique, see for instance [4], [7], [10, 11]. Most of the published papers use the finite
difference/volume method for spatial discretization. This might be explained by the
fact that the equations present in the level set technique are purely hyperbolic and
require robust and accurate upwinding strategies. Many of the existing upwinding
methods have been devised and tailored for finite difference/volume type of schemes.
In addition finite difference schemes are relatively computational efficient and easy to
implement. However, complex geometries and mesh movement are quite complicated
and cumbersome to deal with in the finite difference context. Here, we present a

2

finite element implementation of the level set method.
The present paper is organised as follows: first the mathematical model used is
reviewed. Then, in section 3 the numerical formulation is presented. Section 4
outlines some implementation aspects. And finally, in 5 the algorithm is tested on
different examples.

2 Mathematical formulation

In this section, the equations associated with the level set technique will be presented
as well as the flow governing equations. These two sets of equations are solved in a
uncoupled manner. The solution of the flow governing equations is first computed
using an incompressible Navier-Stokes solver and then the velocity field obtained is
used in order to solve the level set problem.

In the level set technique, the interface between two fluids is represented as the
zero level set of a smooth function φ, which is advected by the fluid velocity. The
level set technique [5], [8], [9] is usually used in an Eulerian reference frame, and
the governing equations are solved in both fluids. Assuming that both fluids are
governed by the incompressible Navier-Stokes equations, one has:

∇ · u1 = 0 and ∇ · u2 = 0 (1)

ρ1

(

∂u1

∂t
+ (u1 · ∇)u1

)

= ∇ · σ1 + f1 and ρ2

(

∂u2

∂t
+ (u2 · ∇)u2

)

= ∇ · σ2 + f2

(2)

where the subscripts 1 and 2 refer to fluid 1 and fluid 2 respectively, σ is the stress
tensor given by:

σij = −pδij + 2µSij (3)

p is the pressure, S the rate-of-strain tensor and µ the dynamic viscosity. Further, u

is the fluid velocity, ρ the fluid density, ν the kinematic viscosity, and f an external
force considered as known.
As mentioned above, the interface, that will be denoted Γ, is represented as the zero
level set of the function φ: Γ = {x|φ(x, t) = 0}.

In order to write the equation governing the evolution of φ, it can be assumed that,
at time t, the interface is parametrised by (x(s, t), y(s, t), z(s, t)). The evolution of

3

Figure 1: Sketch of the flow domain

(x, y, z) is then determined by:

dx(s, t)

dt
= u(x(s, t), y(s, t), z(s, t))

dy(s, t)

dt
= v(x(s, t), y(s, t), z(s, t)) (4)

dz(s, t)

dt
= w(x(s, t), y(s, t), z(s, t))

where u, v, w are the components of the velocity vector u defined as:

u =

ul = (u1, v1, w1)
T if φ ≥ 0

u2 = (u2, v2, w2)
T if φ < 0

(5)

Since Γ is defined by φ = 0, one must have
dφ

dt
= 0 on Γ:

dφ (x(s, t), y(s, t), z(s, t), t)

dt
=

dφ

dx

dx

dt
+

dφ

dy

dy

dt
+

dφ

dz

dz

dt
+

dφ

dt
= 0 (6)

ie:
∂φ

∂t
+ u · ∇φ = 0 (7)

Osher and Sethian [5] showed that equation (7) moves the zero level set with the
fluid velocity u. A common choice is to take the function φ initially as a distance
function such that (cf. figure 1):

4

φ > 0 → fluid 1
φ = 0 → Surface
φ < 0 → fluid 2

As a consequence, the flow properties (density and viscosity) are defined as functions
of φ:

ρ(φ) = ρ2 + (ρ1 − ρ2)H(φ) (8)

µ(φ) = µ2 + (µ1 − µ2)H(φ) (9)

where H is the Heavyside function defined by:

H(φ) =

{

0 if φ < 0
1 if φ > 0

(10)

3 Numerical formulation

In this section, the strategies chosen to solve the problem numerically will be briefly
presented.

3.1 Bulk flow solution

The projection method [1], [13] is used to solve equations (1) and (2) in the following
manner:

ũ − un

δt
+ (un · ∇) ũ = ν∆ũ + fn+1 (11)

un+1 − ũ

δt
= −∇pn+1 (12)

∇ · un+1 = 0 (13)

Equation (11) is solved and an intermediate velocity field ũ is obtained. Equations
(12) and (13) are then combined in order to get the following Poisson equation for
the pressure:

∇ · ũ = δt∆pn+1 (14)

Finally, the end-of-step velocity field is simply found simply:

un+1 = ũ − δt∇pn+1 (15)

5

Figure 2: Smooth interface

3.2 Solution of the level set equation

Even though the level set function φ is continuous over the whole domain (and
in particular across the interface), this is not the case for the quantities used by
the fluid solver, ie. the density ρ and the viscosity ν. Those quantities are indeed
discontinuous across the interface. When the ratio between the fluid properties is
very large, severe numerical instabilities appear in the solution of the bulk flow
equations due to the rapid change in fluid properties across the interface. Sussmann
et al. [10, 11] solved this problem by giving the interface a finite thickness where
the fluid properties change smoothly (cf. figure 2). This is realised by introducing
a smooth Heavyside function in equations (8) and (9):

ρ(φ) = ρ2 + (ρ1 − ρ2)Hε(φ) (16)

µ(φ) = µ2 + (µ1 − µ2)Hε(φ) (17)

where

Hε(φ) =

0 if φ < −ε
1

2
[1 +

φ

ε
−

1

π
sin(

πφ

ε
)] if |φ| < ε

1 if φ > ε

(18)

Other ways of defining this smooth Heavyside function are also possible.
The thickness of the interface can be tuned through the parameter ε. It is common
to choose ε proportional to the grid size. Typicallly, ε is taken to be 2-3 times larger
than the grid size close to the interface [12].

For problems where the velocity vector is such that large gradients appear in the level

6

set field, solving only equation (7) is not sufficient to ensure accurate results. Indeed,
φ will then not remain a distance function under its evolution by equation (7).
This results in an interface with varying thickness, a feature which is undesirable.
Therefore, a step where the function φ is reinitialised as a distance function is
necessary. Sussman et al. [11] proposed a technique in order to reinitialise the
function φ. They proposed to seek for the steady state solution of the following
problem:

∂d

∂τ
+ sign(φ) (|∇d| − 1) = 0 (19)

with initial conditions:
d(x, 0) = φ(x) (20)

where

sign(φ) =

−1 if φ < 0
0 if φ = 0
1 if φ > 0

(21)

and τ is an artificial time. When the steady state solution is achieved, one will have
∂d
∂τ

= 0 and consequently, |∇φ| = 1 will hold.
A nice feature of equation (19) is that its solutions d(x, τ) have the same zero level
set as φ(x) since sign(0) = 0. They also mention that it is not necessary to solve
problem (19)-(20) in the whole domain since equation (19) is an hyperbolic equation
with characteristic velocities pointing outward from the interface, and therefore only
few reinitialisation steps are necessary.

3.3 Discretisation of the level set equation

3.3.1 Temporal discretisation

The time discretisation is performed using both the θ-method and the mid-point
rule.
Applied to equation (7), the θ-method yields to:

φn+1 − φn

∆t
= θ

[

−un+1 · ∇φn+1
]

+ (1 − θ)
[

−un+1 · ∇φn
]

, 0 ≤ θ ≤ 1 (22)

This scheme is generally first order accurate except for θ = 1
2
, where it is second

order accurate. Note that for θ = 0, the forward Euler scheme is obtained, while for
θ = 1, one gets the backward Euler scheme.

As for the mid-point rule, its application to equation (7) yields:

φn+1 − φn

∆t
= −

1

2

[

un+ 1

2 · ∇φn+1
]

+
1

2

[

−un+ 1

2 · ∇φn
]

(23)

7

We take un+ 1

2 =
un+1 + un

2
.

3.3.2 Spatial discretisation

The space discretisation is performed by the standard Galerkin finite element method.
The numerical solution of equation (7) is seeked for on the form:

φ(x, t) =
∑

j

φjNj(x, t) (24)

where φj are the nodal values and Nj(x, t) are the shape functions.
The Galerkin formulation of equation (22) is:

∑

j

∫

Ω

φn+1
j NjNi dΩ −

∫

Ω

φnNi dΩ = −∆tθ
∑

j

∫

Ω

[

un+1 · ∇Nj Ni

]

φn+1
j dΩ

−∆t(1 − θ)

∫

Ω

[

un+1 · ∇φn Ni

]

dΩ (25)

Equation (25) can be reorganised as:

∑

j

∫

Ω

[

Nj + ∆tθun+1 · ∇Nj

]

Niφ
n+1
j dΩ =

∫

Ω

[

φn − ∆t(1 − θ)un+1 · ∇φn
]

Ni dΩ

(26)

Equation (26) can be put in the following matrix form:

∑

j

(Mij + Cij) φn+1
j = bn

i (27)

where the matrices M , C and the vector b are defined as:

Mij =

∫

Ω

NiNj dΩ (28)

Cij = ∆t θ

∫

Ω

un+1 · ∇NjNi dΩ (29)

bi =

∫

Ω

[

φn − ∆t(1 − θ)un+1 · ∇φn
]

Ni dΩ (30)

The spatial discretisation of equation (23) gives an equation very similar to equation
(26) and is not written here.

8

3.4 Numerical solution of the reinitialisation equation

Equation (19) is a nonlinear Hamilton-Jacobi type of equation. Special solution
techniques need to be used in order to solve equation (19) numerically. We use the
well-known Newton-Raphson method, as well as the successive substitution method
(also referred as Picard iteration), that we briefly recall in the present section.

3.4.1 Newton-Raphson method

Let us write equation (19) in the form F (d) = 0, with F (d) :=
∂d

∂τ
+sign(φ) (|∇d| − 1).

Assuming that an approximation dk to d is available, the objective is to approximate
F (d) in the vicinity of dk by a function M(d, dk), such that the equation M(d, dk) = 0
is easy to solve. The solution of the latter equation is taken as the approximation
dk+1 to the root of F (d) = 0. An easy expression can be found for M(d, dk) by
taking the first two terms of a Taylor-series approximation to F at point d = dk:

M(d, dk) = F (dk) +
dF (dk)

dd
(d − dk) (31)

dk+1 can be then computed by:

dk+1 = dk −
F (dk)
dF (dk)

dd

(32)

A inital value d0 is required.

3.4.2 Successive substitution method

It is now assumed that equation (19) has already been discretised, and that we are
left with the following algebraic system of equations to solve:

A(d)d = b (33)

This can be solved with the following iteration technique:

A(dk)dk+1 = b, k = 0, 1, 2, ... (34)

until ||dk+1 − dk|| is sufficiently small. As in the Newton-Raphson case, an initial
guess d0 is needed.

9

CPM

FreeSurface

FS_LevelSet ReInit

FS_LevelSetThetaFS_LevelSetMidpoint

Figure 3: Flow chart for Level Set implementation

4 Implementation Issues

The code is implemented in the object-oriented programming language C++ with
the numerical library Diffpack [3]. The overall flow chart of the implementation is
shown i Figure 3.

CPM is a class for computing viscous incompressible fluid flow by using finite ele-
ments and the continuous projection method [2]. FreeSurface is a general top-class
for implementing tracking or capturing of interfaces between two fluids. The level-
set method is just one of many possible realisation, implemented as a sub-class
of FreeSurface. FS LevelSetMidpoint and FS LevelSetTheta are sub-classes of
FS LevelSet implementing the midpoint-method and the θ-method , respectively,
as temporal discretisations of the level-set equation.

The solution algorithm we use can be summarised as:

1. Solve for un+1 and pn+1 in the Navier-Stokes equations.

2. Solve for φn+1 in the level-set equation, taking u = un+1. Update density ρn+1

and viscosity µn+1.

10

4.1 Reinitialisation

The reinitialisation of the scalar field φ in the level-set problem (7) is implemented
in the separate class ReInit. The user may choose to use reinitialisation or not.
If one chooses to include reinitialisation this problem is solved directly after the
level-set equation is solved for each time-step.

The temporal discretisation chosen for equation (19) is the θ-method. As equation
(19) is non-linear, we have implemented both a Picard-iteration technique and the
a Newton-Raphson method for this problem.

5 Numerical examples

In this section, some numerical examples are presented. The first three examples
are based on analytical velocity fields. They are realised in order to insure that the
transport equation (7) is properly solved, and are chosen such that the evaluation
of the solution of this pure advection equation is possible without the need of reini-
tialisation. In those three examples, the densities and viscosities of the two fluids
are set equal. Even though, there is no difference in the fluid properties, a level set
field is initialised and the level set equation is solved. The level set field is then used
as a tracer for following the deformation of the fluid.
Then two-phase flow examples with physical velocity fields and differences in the
fluid properties will be presented.

5.1 Translation of a circle

The level set method is used to follow a circle which is advected by a uniform velocity.
This velocity field is given by:

u = i (35)

The flow domain is assumed to be infinite and uniform velocity is also prescribed on
the top and bottom boundaries. The mesh is regular with element length equal to
0.016 in both x- and y-directions. The time step is set to 0.005, and θ = 1

2
is used

in equation (22). In this example, the reinitialisation is turned off.
We look at the conservation of the circle. The volume evolution is defined as follows:

∆V =
V (t) − V0

V0

(36)

where the volume at time t is defined by:

V (t) =

∫

Ω

H(φ) dΩ , (37)

11

(a) Solution at time t=1.995s

0 1 2 3 4 5
−2

−1

0

1

Time in s

d
vo

lu
m

e
 in

 %

Evolution of the volume with time, translation flow, free slip

(b) Evolution of the volume with
time

Figure 4: u = i. Computed solution at time t=1.995s and evolution of the volume
of the circle for ∆x = ∆y = 0.016 and ∆t = 0.005.

V0 is the initial volume, Ω the total fluid domain and H is the Heavyside function:

H(φ) =

{

1 if φ < 0
0 if φ > 0

(38)

Figures 4(a) and 4(b) show the circle after 1.995 seconds (ie 400 time steps) and the
evolution of the volume. The accuracy is satisfactory, but at the cost of a relatively
fine grid and small time step. In addition the velocity field used in this example is
the simplest one possible.

5.2 Cavity flow

The next example is the classical cavity flow in a square domain. No-slip condition
is prescribed at all boundaries. The left, right and bottom boundaries are fixed,
while the top one is moving with a velocity given by:

u = 2i (39)

The Reynolds number based on this velocity, the length of one side of the square
and the kinematic viscosity is equal to 100.
The deformation of the circular region (figure 5) follows the expected pattern. One
problem seems however present: the mass conservation principle is not respected (see

12

(a) Time = 0.0 (b) Time = 2.0 (c) Time = 4.0

(d) Time = 6.0 (e) Time = 8.0 (f) Time = 10.0

Figure 5: Time series of driven cavity test problem. Both fluids have same density
and viscosity.

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

4

5
Evolution of dvolume, cavity case, Re=100

time in s

dv
ol

um
e

in
 %

Figure 6: Evolution of ∆V for the cavity problem

13

(a) Initial condition (b) Time = 1.0

(c) Time = 2.0 (d) Time = 3.0

Figure 7: Time series of the cusping test problem. Both fluids have same density
and viscosity.

figure 6). (The change in volume is defined as in the previous example, see equation
(36)). This confirms the well-known weakness of the level set method: poor mass
conservation properties. In cases where the two fluids have different properties, the
mass loss will be increased.

5.3 Cusping interface

Our next example simulates the development of a sharp cusp in the interface. The
initial condition is given by the following expression:

φ(x, y, 0) = 0.6 exp(−50x4) (40)

The velocity is chosen as:
u = y3i (41)

This example is relevant in, for instance, run-up problems on beaches, where an
incoming wave will cusp, steepen and eventually break. Here also, the results (figure
7) follow the expected pattern (see for example [4]).

14

(a) Time = 0.0 (b) Time = 0.5 (c) Time = 1.0

(d) Time = 1.5 (e) Time = 2.7 (f) Time = 2.9

Figure 8: Oil bubble rising in water with reinitialisation.

0 0.5 1 1.5 2 2.5 3
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Time (s)

dV
ol

um
e

in
 %

Evoluton of the volume of the oil bubble

Figure 9: Evolution of the volume of the oil bubble with reinitialisation.

5.4 Oil bubble rising in water

The previous three examples were used to insure that the level set equation was
properly solved. The next example is a physical flow: we let a circular bubble of

15

(a) Time = 0.5 (b) Time = 1.0 (c) Time = 1.5

(d) Time = 1.7 (e) Time = 2.0 (f) Time = 2.5

Figure 10: Oil bubble rising in water without reinitialisation.

0 0.5 1 1.5 2 2.5 3
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

time (s)

dV
ol

um
e

in
 %

Evolution of the volume of an oil bubble with reinitialisation

Figure 11: Evolution of the volume of the oil bubble without reinitialisation.

gasoline be in water under the influence of gravity. All quantities (ie water and oil
properties and gravity) have been given physical correct values. The gasoline density

16

(a) Time = 0.5 (b) Time = 1.0 (c) Time = 1.5

(d) Time = 2.0 (e) Time = 2.5 (f) Time = 2.8

Figure 12: Oil bubble rising in water in a closed tank (with reinitialisation).

and viscosity are set to 680kg/m3 and 2.9 · 10−4kg/(m·s) respectively. The water
density and viscosity are 998kg/m3 and 1 · 10−3 kg/(m·s) respectively. A free-slip
boundary condition is applied on all the boundaries.
Figure 8 shows how the bubble shape and position evolve. The bubble shape and
position compare relatively well with results presented in [6]. However, figure 9 un-
derlines the important drawback (already observed and mentioned in section 5.2 for
the cavity problem) of the level set method: the poor mass conservation properties
(and in particular when the reinitialisation is used, see figure 11). Figure 10 shows
that without reinitialisation, the algorithm breaks down relatively fast.

Figure 12 shows a rising bubble of gasoline in water in a closed tank. Here, the
no-slip condition is prescribed on the top boundary. We can observe the correct
behaviour of the bubble when it gravitates against the roof of the tank and forms a
horizontal layer on top of the water. We can also observe the pinch-off of oil. The
pinch-off time which is approximatively 2.6 seconds is lower than the real time (see
[10]). This is explained by the omission of surface tension in our simulations. Clearly,

17

(a) Time = 0.5 (b) Time = 1.0

(c) Time = 1.5 (d) Time = 2.0

Figure 13: Rayleigh instability.

the pinch-off would have been delayed if surface tension had been incorporated.

5.5 Rayleigh instability

The next example is the so-called Rayleigh instability where a heavier fluid rests
over a lighter one. Any disturbance in the horizontal configuration of the interface
will initiate a movement of the fluid where the lighter fluid will go up while the
heavier one will go down, to achieve a equilibrium where the lighter fluid is above.
Figure 13 shows a time series of the simulation. The expected mushroom shape,
formed by the lighter fluid as it goes up and penetrate the heavier one, can be seen.
For this simulation, water and the SAE 30 oil were used. The density and viscosity
of the oil are set to 891kg/m3 and 0.29kg/(m·s), respectively, while the properties

18

of the water are the same as in section 5.4. Free-slip condition were prescribed on
all walls.

6 Concluding remarks

In summary, we presented our work on developing a numerical tool for simulation of
two-phase flows with sharp interfaces based on the finite element method combined
with the level set technique. As the latter is an Eulerian method, no re-meshing is
necessary. Very promising results were obtained for gravity driven oil-water flows
where the density ratio is of order of unity. The reinitialisation procedure proved to
be efficient, and useful in order to obtain more accurate and correct results, even if
it has a negative effect on the mass conservation properties.

Remarks on further work :

• A volume conservation procedure needs to be introduced in the algorithm.
This is mostly needed to control the mass loss happening during the reinitial-
isation step.

• The solution of the Navier-Stokes equations needs to be stabilise in order to
be able to compute flows where the density ratio between the two fluids is very
large (1000:1 for example in the case of water/air). Indeed, when there is a
density jump across the interface, a slip line is generated at the interface. This
means that there is contact discontinuity where the tangential velocity jumps
over a thickness which corresponds to the thickness of the interface. The slip
line will cause instabilities (the larger will be the density ratio, the stronger
will be the instabilities) unless some kind of ”robust” upwind/stabilisation
procedure for the discretization of the nonlinear terms in the Navier-Stokes
equations.

• Surface tension needs to be incorporated.

• Generalisation of the code such that its application to multiphase flows (where
the number of different fluids is > 2) is possible.

References

[1] A. J. Chorin. Numerical Solution of the Navier-Stokes Equations. Math. Com-
put., vol. 22, pp. 742-762, 1968

[2] Jens Holmen. Some Numerical Methods for the Simulation of Laminar and
Turbulent Incompressible Flows. Ph.D. thesis no. 2002:6, Norwegian University
of Science and Technology, Trondheim, Norway, 2002

19

[3] Hans Petter Langtangen. Computational Partial Differential Equations Numer-
ical Methods and Diffpack Programming. Lecture Notes in Computational Sci-
ence and Engineering, Springer, 1991

[4] Otto Munthe. A Critical Evaluation of some Finite Element Level Set Schemes
for Two-Phase Fluid Flow. In Finite element algorithms and object-oriented
simulator design in viscous fluid dynamics, Dr. Scient. thesis no. 22, University
of Oslo, Department of Mathematics, Mechanics Division, 1999

[5] S. Osher and J.A. Sethian. Fronts Propagating with Curvature-Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational
Physics, vol. 79, pp. 12-49, 1988

[6] Peter L. O’Sullivan. Numerical simulation of two dimensional two-phase flows
with sharp interfaces. Research Report SINTEF no. STF42 A02016

[7] Il-Ryong Park and Ho-Hwan Chun. Analysis of Viscous Free Surface Flow
around a Ship by a Level-Set Method. Journal of Ship & Ocean Technology,
vol. 6, no. 2, pp.37-50, 2002

[8] Samuel R. Ransau. Solution Methods for Incompressible Viscous Free Sur-
face Flows: A Litreature Review. Preprint Numerics no. 3/2002, Department
of Mathematical Sciences, Norwegian University of Science and Technology,
Trondheim, Norway, 2002

[9] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Uni-
versity Press, 1999

[10] M. Sussman, P. Smereka and S. Osher. A Level Set Approach for Computing So-
lutions to Incompressible Two-Phase Flow. Journal of Computational Physics,
vol. 114, pp. 146-159, 1994

[11] M. Sussman, E. Fatemi, P. Smereka and S. Osher. An Improved Level Set
Method for Incompressible Two-Phase Flows. Computers and Fluid, vol. 27,
no. 5, pp. 663-680, 1998

[12] M. Sussman Private communications. 2002, 2003

[13] R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes
par la méthode des pas fractionnaires (I). Arch. Ration. Mech. Anal., vol. 32,
pp. 135-153, 1969

20

