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Abstract

We introduce a general format of numerical ODE-solvers which include many of the
recently proposed exponential integrators. We derive a general order theory for these
schemes in terms of B-series and bicoloured rooted trees. To ease the construction of
specific schemes we generalise an idea of Zennaro and define Natural Continuous Exten-
sions in the context of exponential integrators. This leads to a relatively easy derivation
of some of the most popular recently proposed schemes. The general format of schemes
considered here makes use of coefficient functions which will usually be selected from some
finite dimensional function spaces. We will derive lower bounds for the dimension of these
spaces in terms of the order of the resulting schemes. Finally we illustrate the presented
ideas by giving examples of new exponential integrators of orders 4 and 5.

1 Introduction

Numerical integration schemes which use the matrix exponential go back all the way to
Certaine [3], but there are also early papers by Lawson [10], Nørsett [15] and many others.
Recently there has been a revived interest in these schemes, in particular for the solution of
nonlinear partial differential equations, see for instance [7, 12, 4, 2, 9, 8, 11] and the references
therein. The integrators found in these papers are derived in rather different ways, and they
are formulated for different types of systems of differential equations. In this note, we consider
the autonomous nonlinear system of ordinary differential equations

u̇ = Lu+N(u), u(0) = u0. (1)

Here L is a matrix and N(u) a nonlinear mapping. The order theory we consider is valid for
a large class of exponential integrators, including the Runge–Kutta–Munthe-Kaas (RKMK)
schemes [12], the commutator-free Lie group integrators [2], and those schemes of Cox and
Matthews [4] as well as Krogstad [9] which reduce to classical Runge–Kutta schemes when
L = 0.

We present the general format for integrators of (1) as

Nr = N
(
exp(crhL)u0 + h

s∑

j=1

aj
r(hL)Nj

)
, r = 1, . . . , s (2)

u1 = exp(hL)u0 + h

s∑

r=1

br(hL)Nr. (3)

Here we assume that the functions aj
r(z), br(z) are at least p times continuously differentiable

at z = 0 for integration schemes of order p.
Table 1 gives the coefficient functions aj

r(z) and br(z) for the fourth order RKMK scheme
introduced in [13] in this general format when applied to the problem (1) with an affine Lie
group action, and the commutator-free scheme of order 4 from [2]. In both tables φ0(z) =
(ez − 1)/z.

For deriving order conditions, we expand the coefficient functions in powers of z,

aj
r(z) =

∑

k≥0

αj,k
r zk and br(z) =

∑

k≥0

βr,kzk

where the sum may terminate with a remainder term. For the schemes we consider here,
these functions are in fact all entire. If N(u) = 0 in (1), then any scheme in the above
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Table 1: Examples of schemes in general format for exponential integrators

class will reproduce the exact solution in every step. Whereas if L = 0, the scheme (2)–
(3) reduces to a classical Runge–Kutta method with coefficients aj

r = αj,0
r , br = βr,0. This

scheme is henceforth called the underlying Runge–Kutta scheme. We will always assume that
cr =

∑

j α
j,0
r , 1 ≤ r ≤ s.

In this note, we will derive conditions on the coefficients αj,k
r and βr,k under which the

scheme (2)–(3) has order of consistency p for problems of the type (1). We will use the well
known approach involving rooted trees, see for instance [6, 1]. The conditions we derive will

only depend on the first αj,k
r , k ≤ p−2 and on βj,k, k ≤ p−1, in this note we will not address

issues related to the behaviour of the coefficient functions aj
r(z), br(z) for large values of z.
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2 B-series and order conditions

Repeated differentiation of (1) with respect to time yields

d2u

dt2
= Lu̇+N ′(u̇)

= L2u+ LN +N ′(Lu) +N ′(N)

d3u

dt3
= L3u+ L2N + LN ′(Lu) + LN ′(N)

+N ′′(Lu,Lu) + 2N ′′(Lu,N) +N ′(L2u)

+N ′(LN) +N ′′(N,N) +N ′N ′(Lu) +N ′N ′(N)

etc. The exact solution of (1) has a formal expansion

u(h) =

∞∑

q=0

hq

q!

dq

dhq

∣
∣
∣
∣
h=0

u(h)

where each term in the qth derivative corresponds in an obvious way to a rooted bicoloured
tree. Let for instance • ∼ F (•) = N(u) and ◦ ∼ F (◦) = Lu be the two trees with one node.
Next define B+ as the operation which takes a finite set of trees {τ1, . . . , τµ} and connects
their roots to a new common black root. Similarly, τ = W+(τ ′) connects the root of τ ′ to a
new white root resulting in the tree τ associated to F (τ) = L ·F (τ ′). It suffices here to allow
W+ to act on a single tree and not on a set of trees. To each tree τ with q nodes formed
this way, there exists precisely one term, F (τ) called an elementary differential, in the qth
derivative of the solution of (1). For q > 1, it is defined recursively as

F (B+(τ1, . . . , τµ))(u) = N (µ)(F (τ1), . . . , F (τµ))(u) (4)

F (W+(τ ′))(u) = LF (τ ′)(u) (5)

We may denote by T the set of all bicoloured trees such that each white node has at most
one child, and set T = Tb ∪ Tw the union of trees with black and white roots respectively.
Introducing the empty set ∅, and using the convention B+(∅) = •, W+(∅) = ◦, we may write

T ∪ ∅ =
⋃

m≥0

Wm
+ (Tb ∪ ∅), Tw =

⋃

m≥1

Wm
+ (Tb ∪ ∅) (6)

Following for instance the text by Hairer, Lubich and Wanner [5], we may work with formal
B-series. For an arbitrary map c : T ∪ ∅ → R, we let the formal series

B(c, u) = c(∅)u+
∑

τ∈T

h|τ |

σ(τ)
c(τ)F (τ)(u)

be a B-series, where σ(τ) is the symmetry coefficient defined as σ(•) = σ(◦) = 1, and for
τ = B+(τ1, . . . , τµ),

σ(τ) = σ(τ1) · · · σ(τµ)m1! ·m2! · · ·

where the mi’s count the number of equal trees among τ1, . . . , τµ.
We may present an analogue of Lemma 1.9 in [5] as follows
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Lemma 2.1. Let c : T ∪ ∅ → R satisfy c(∅) = 1. Then

hN(B(c, u)) = B(c′, u)

is again a B-series where c
′(∅) = 0, c

′(•) = 1, c
′(B+(τ1, . . . , τµ)) = c(τ1) · · · c(τµ) and for

τ ∈ Tw one has c
′(τ) = 0.

The proof is a straightforward generalisation of the one in [5] and is therefore omitted.
If we now assume that the exact solution has a formal B-series u(h) = B(e, u0), it follows

by termwise differentiation and use of Lemma 2.1 that

e(∅) = 1, e(•) = e(◦) = 1, e(τ) =
1

|τ |
e(τ1) · · · e(τµ).

The last formula holds in either of the cases τ = B+(τ1, . . . , τµ) or τ = W+(τ1). It is customary
to define the density γ(τ) of a tree τ recursively by setting γ(•) = γ(◦) = 1, and in terms
of subtrees, γ(τ) = |τ | γ(τ1) · · · γ(τµ) independently of the colouring of the nodes. We then
immediately see that e(τ) = 1/γ(τ) for all τ ∈ T .

The stages (2) of the numerical scheme can be written out as

Ur = ecrhL u0 +

s∑

j=1

aj
r(hL)hNj , (7)

Nr = N(Ur). (8)

We now assume that Ur and hNj both have B-series denoted B(Ur, u0) and B(Nj, u0) re-

spectively. From (7) we insert aj
r(hL) =

∑

m≥0 α
j,m
r (hL)m and calculate each side of the

expression

u0 +
∑

τ∈T

h|τ |

σ(τ)
Ur(τ)F (τ)(u0) = u0 +

∑

m≥1

cmr h
m

m!
F (Wm

+ (∅))(u0)

+
∑

m≥0

∑

τ∈Tb

s∑

j=1

αj,m
r

h|τ |+m

σ(τ)
Nj(τ)F (Wm

+ (τ))(u0) (9)

We note that the first sum on the right hand side consists precisely of the (tall) trees with

only white nodes, that we denote by T0. In view of (6), one can replace
∑

m≥0

∑

τ∈Tb

by
∑

τ∈T\T0

.

Next we notice

1. σ(τ) = σ(Wm
+ (τ)) for any positive integer m and for any τ ∈ T . σ(τ) = 1 for τ ∈ T0.

2. For any τ ∈ T there is a unique non-negative integer m such that τ = Wm
+ (τ ′) with

τ ′ ∈ Tb ∪ ∅.

Using these two facts and omitting u0, we can now rewrite (9) in the form

∑

τ∈T

h|τ |

σ(τ)
Ur(τ)F (τ) =

∑

τ∈T0

c
|τ |
r h|τ |

|τ |!
F (τ) +

∑

τ∈T\T0

s∑

j=1

αj,m(τ)
r

h|τ |

σ(τ)
Nj(W

−m
+ (τ))F (τ).
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We immediately conclude that

Ur(τ) =
c
|τ |
r

|τ |!
, τ ∈ T0

whereas

Ur(τ) =

s∑

j=1

αj,m
r Nj(W

−m
+ (τ)), τ ∈ T\T0

or equivalently: For any non-negative integer m and τ ∈ Tb

Ur(W
m
+ (τ)) =

s∑

j=1

αj,m
r Nj(τ).

In view of Lemma 2.1 we have for trees τ = B+(τ1, . . . , τµ) ∈ Tb

Ur(W
m
+ (τ)) =

s∑

j=1

αj,m
r Uj(τ1) · · ·Uj(τµ).

We proceed to the quantity u1 with B-series B(u1, u0) to find that

u0 +
∑

τ∈T

h|τ |

σ(τ)
u1(τ)F (τ)(u0) =

u0 +
∑

τ∈T0

h|τ |

|τ |!
F (τ)(u0) +

∑

m≥0

∑

τ∈Tb

s∑

r=1

βr,mh
|τ |+m

σ(τ)
Nr(τ)F (Wm

+ (τ))(u0)

so as before, we conclude that

u1(τ) =
1

|τ |!
, τ ∈ T0.

Certainly, u1(∅) = 1 so for every τ = B+(τ1, . . . , τµ) ∈ Tb and non-negative integer m we have

u1(W
m
+ (τ)) =

s∑

r=1

βr,m
Ur(τ1) · · ·Ur(τµ).

The order conditions are obtained by matching the coefficients of the exact and numerical
solution, setting

u1(τ) = e(τ) = 1/γ(τ), for all τ ∈ T such that |τ | ≤ p.

Note that γ(Wm
+ (∅)) = γ(Bm

+ (∅)) = m! for any non-negative integer m so the order conditions
are automatically satisfied for all trees τ ∈ T0 of arbitrary order. In other words, it suffices
to consider trees in T\T0.

But there is more. Suppose that a tree in T\T0 has a white leaf. This leaf is attached to
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a subtree τ = Wm
+ B+(τ1, . . . , τµ, ω), ω ∈ T0, for some m ≥ 0. We compute

Ur(τ) =

s∑

j=1

αj,m
r Uj(τ1) · · ·Uj(τµ) · Uj(ω)

=

s∑

j=1

αj,m
r Uj(τ1) · · ·Uj(τµ) · c

|ω|
j /|ω|!

=
1

|ω|!

s∑

j=1

αj,m
r Uj(τ1) · · ·Uj(τµ) · Uj(•) · · ·Uj(•)

︸ ︷︷ ︸

|ω|

=
1

|ω|!
Ur(W

m
+ B+(τ1, . . . , τµ, •, . . . , •)) :=

1

|ω|!
Ur(τ̄)

A similar argument holds for u1(τ). Note also that γ(τ) = |ω|!γ(τ̄ ) which implies that the
the order condition for a tree τ containing a leaf or string ω ∈ T0 is equivalent to the order
condition for the tree τ̄ . By repeating this argument we may conclude that it suffices to
consider the order conditions of trees which have only black leaves, or equivalently, the set of
all bicoloured rooted trees where every white node has precisely one child. We have arrived
at the main result

Theorem 2.2. Let T ′ ⊂ T be the set of bicoloured rooted trees such that every white node has

precisely one child. An exponential integrator defined by (2)–(3) has order of consistency p if

u1(τ) =
1

γ(τ)
, for all τ ∈ T ′ such that |τ | ≤ p,

where

u1(∅) = Ur(∅) = 1, 1 ≤ r ≤ s,

u1(W
m
+ B+(τ1, . . . , τµ)) =

∑

r

βr,m
Ur(τ1) · · ·Ur(τµ)

Ur(W
m
+ B+(τ1, . . . , τµ)) =

∑

j

αj,m
r Uj(τ1) · · ·Uj(τµ)

There is an interesting connection between the set of trees T ′ and the trees used to develop
the order theory for composition methods in [14]. White nodes appear as connected strings
of nodes which, except from the root, have exactly one parent and one child, and always
terminating in a black node. Therefore one can remove all white nodes and assign to the
terminating black node the number of removed nodes plus one. Black nodes not connected
to a white node is assigned the number one. These multilabelled trees are precisely those
appearing in [14], they can also be identified as the set of rooted trees of nonempty sets. The
generating function for these trees is well-known,

M(x) =
x

1 − x
exp

(

M(x) +
M(x2)

2
+
M(x3)

3
+ · · ·

)

.

The number of order conditions for each order 1 to 9 is 1, 2, 5, 13, 37, 108, 332, 1042, 3360.
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|τ | Tree F (τ) γ(τ) u1(τ) σ(τ)

1 1 • N 1
∑

r β
r,0 1

2 2 •
• N ′N 2

∑

r β
r,0cr 1

3 2 ◦
• LN 2

∑

r β
r,1 1

4 3 •
• • N ′′(N,N) 3

∑

r β
r,0c2r 2

5 3 •
•
•

N ′N ′N 6
∑

r,j β
r,0αj,0

r cj 1

6 3 •
◦
•

N ′(LN) 6
∑

r,j β
r,0αj,1

r 1

7 3 ◦
•
•

LN ′N 6
∑

r β
r,1cr 1

8 3 ◦
◦
•

L2N 6
∑

r β
r,2 1

9 4 •
• • • N ′′′(N,N,N) 4

∑

r β
r,0c3r 6

10 4 •
•
•
• N ′′(N ′N,N) 8

∑

r,j β
r,0αj,0

r cjcr 1

11 4 •
◦
•
• N ′′(LN,N) 8

∑

r,j β
r,0αj,1

r cr 1

12 4 •
•
• •

N ′N ′′(N,N) 12
∑

r,j β
r,0αj,0

r c2j 2

13 4 •
•
•
•

N ′N ′N ′N 24
∑

r,j,k β
r,0αj,0

r αk,0
j ck 1

14 4 •
•
◦
•

N ′N ′(LN) 24
∑

r,j,k β
r,0αj,0

r αk,1
j 1

15 4 •
◦
•
•

N ′(LN ′N) 24
∑

r,j β
r,0αj,1

r cj 1

16 4 •
◦
◦
•

N ′(L2N) 24
∑

r,j β
r,0αj,2

r 1

17 4 ◦
•
• •

LN ′′(N,N) 12
∑

r β
r,1c2r 2

18 4 ◦
•
•
•

LN ′N ′N 24
∑

r,j β
r,1αj,0

r cj 1

19 4 ◦
•
◦
•

LN ′(LN) 24
∑

r,j β
r,1αj,1

r 1

20 4 ◦
◦
•
•

L2N ′N 24
∑

r β
r,2cr 1

21 4 ◦
◦
◦
•

L3N 24
∑

r β
r,3 1

Table 2: Trees, elementary differentials and coefficients for τ ∈ T ′ with |τ | ≤ 4
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3 Construction of exponential integrators

The schemes of Lawson [10] are exponential integrators derived simply by introducing a
change of variable, w(t) = e−tL u(t) in (1), and by applying a standard Runge–Kutta scheme
to the resulting ODE. This approach results in a formula for w1 in terms of w0 By setting
un = etL wn one gets a scheme of the form (2)–(3) in which

aj
r(z) = αj,0

r e(cr−cj)z and br(z) = βr,0 e(1−cr)z .

This scheme has order p if the underlying scheme determined by αj,0
r and βr,0 is of order p.

This gives us a very useful tool for constructing exponential integrators with given underlying
Runge–Kutta schemes. We express this in a proposition

Proposition 3.1. Suppose that the coefficients αj,0
r and βr,0, 1 ≤ r, j ≤ s define a Runge–

Kutta scheme of order p. Then, any exponential integrator of the form (2)–(3) satisfying

αj,m
r =

1

m!
(aj

r)
(m)(0) =

1

m!
αj,0

r (cr − cj)
m, 0 ≤ m ≤ p− 2, (10)

βr,m =
1

m!
(bjr)

(m)(0) =
1

m!
βr,0(1 − cr)

m, 0 ≤ m ≤ p− 1, (11)

is of order p. In the above expression we use 00 := 1.

Proof. Order conditions for exponential integrators of order p involve αj,m
r , 0 ≤ m ≤ p − 2

and βr,m, 0 ≤ m ≤ p − 1. On the other hand, the Lawson schemes must satisfy the order
conditions for exponential integrators, and their values for these coefficients a precisely those
specified in the proposition.

It is convenient to introduce finite dimensional function spaces Va and Vb to which the
respective coefficient functions aj

r(z) and br(z) will belong. For the purpose of calculations,
it is also useful to work with basis functions ψk for these spaces,

aj
r(z) =

Ka−1∑

k=0

Aj,k
r ψk(z) and br(z) =

Kb−1
∑

k=0

Br,kψk(z) (12)

where Ka = dim(Va) and Kb = dim(Vb). There is a technical assumption that we will adopt
to the end of this note.

Assumption 3.2. Any finite dimensional function space V of dimensionK used for coefficient
functions aj

r(z) or br(z) has the property that the map from V to RK defined by

f ∈ V 7→ (f(0), f ′(0), . . . , f (K−1)(0))T

is injective. Equivalently, any function in V is uniquely determined by its first K Taylor
coefficients.
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3.1 Deriving schemes with Natural Continuous Extensions

The approach of Krogstad in [9] is to approximate the nonlinear function N(u(t0 + θh)),
0 < θ < 1 with a polynomial in θ. Assuming that the functions aj

r(z) for the internal stages
are given, one lets N(u(tn + θh)) be approximated by

N̄(t0 + θh) =

s∑

r=1

w′
r(θ)Nr. (13)

where Nr = N(Ur) are the stage derivatives and wr(θ) are polynomials of degree d, with
w(0) = 0, such that N̄(t0 + θh) approximates N(u(t0 + θh)) uniformly for 0 < θ < 1 to a
given order. Replacing the exact problem with the approximate one, v̇ = Lv+N̄(t), v(t0) = u0

one finds

u1 := v(t0 + h) = ehLu0 +

s∑

r=1

br(hL)Nr, where br(z) =

∫ 1

0
e(1−θ)zw′

r(θ) dθ.

We define the functions

φk(z) =

∫ 1

0
e(1−θ)zθk dθ, k = 0, 1, . . . . (14)

Thus, here the function space Vb = span{φ0, . . . , φd−1}, so ψk = φk and Kb = d in (12). Cox
and Matthews [4] presented a fourth order scheme using these basis functions with Kb = 3.
Krogstad [9] also derived a variant of their method by using a continuous extension as just
explained. In [16] Zennaro developed a theory which generalises the collocation polynomial
idea to arbitrary Runge–Kutta schemes. The approach was called Natural Continuous Ex-
tensions (NCE). By making a slight modification to the approach of Zennaro, one can find
a useful way of deriving exponential integrators as well as providing them with a continuous
extension.

Suppose w1(θ), . . . , ws(θ) are given polynomials of degree d, and that the stage derivatives
N1, . . . , Ns of an exponential integrator are given from (2). We define the d − 1 degree
polynomial N̄(t) by (13)

Definition 3.3. We call N̄(t) of (13) a Natural Continuous N -Extension (NCNE) of degree
d of the exponential integrator (2)–(3) if

1.
wr(0) = 0, wr(1) = br(0), r = 1, . . . , s.

2.
max

t0≤t≤t1
|N(u(t)) − N̄(t)| = O(hd−1) (15)

where u(t) is the exact solution of (1) satisfying u(t0) = u0.

3. ∫ t1

t0

G(t)(N(u(t)) − N̄(t)) dt = O(hp+1) (16)

for every smooth matrix-valued function G(t).
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It is important to note that the polynomial N̄(t) only depends on the stages Nr and the
weights br(0) = βr,0 corresponding to the underlying Runge–Kutta scheme. We also observe
that since the wr(θ) do not depend on L, an NCNE as defined above is also an NCE in the
sense of Zennaro for the system u̇ = N(u). Before discussing the existence of NCNEs, we
motivate their usefulness in designing exponential integrators. Suppose an underlying Runge–
Kutta method has been chosen, and that an NCNE has been found. Then we can determine
the functions br(z) in order to obtain an exponential Runge–Kutta method of the same order
as the underlying scheme.

Theorem 3.4. If N̄(t) defined from (13) is an NCNE of degree d for a pth order scheme,

then the functions

br(z) =

∫ 1

0
e(1−θ)zw′(θ) dθ = βr,0 + z

∫ 1

0
e(1−θ)zw(θ) dθ,

define the weights of an exponential integrator of order p.

Proof. The exponential integrator we consider, is obtained by replacing (1) by

v̇ = Lv + N̄(t), v(t0) = u0 (17)

over the interval [t0, t1] and by solving (17) exactly. We subtract (17) from (1) to obtain

u̇− v̇ = L(u̇− v̇) +
(
N(u) − N̄(t)

)

We may solve this equation to obtain

u(t1) − v(t1) =

∫ t1

t0

e(t1−t)L
(
N(u(t)) − N̄(t)

)
dt = O(hp+1),

the last equality is thanks to (16).

A reinterpretation of a result by Zennaro [16] combined with Proposition 3.1 leads to the
following statement

Theorem 3.5. Suppose that an underlying Runge–Kutta scheme with coefficients αj,0
r and

βr,0 of order p is given. Then it is possible to find a set of coefficient functions aj
r(z) with

aj
r(0) = αj,0

r such that an NCNE of degree d = b p+1
2 c exists. Moreover, if N̄(t) is a NCNE of

degree d then ⌊
p+ 1

2

⌋

≤ d ≤ min(ν∗, p)

where ν∗ is the number of distinct elements among c1, . . . , cs.

Corollary 3.6. For every underlying Runge–Kutta scheme, there exists an exponential inte-
grator whose coefficient functions br(z) are in the linear span of the functions {φ0(z), . . . , φd−1(z)}
where d = bp+1

2 c.

Note in particular that one can derive fourth order exponential integrators using linear
combinations of just φ0(z) and φ1(z) for br(z), which is one less than what Cox and Matthews
use, we present a specific example in section 4.
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3.2 Lower bounds for Ka and Kb

We start establishing lower bounds for the number of necessary basis functions ψk by proving
an ancillary result.

Lemma 3.7. Let q ≥ 0 be a finite integer. The matrix Tq ∈ Rd×d with elements

(Tq)m+1,k+1 =
m! k!

(m+ k + 1 + q)!
, 0 ≤ m, k ≤ d− 1

is invertible.

Proof. Consider the functions φ̂k,q(z) whose m’th derivative at z = 0 is (Tq)m+1,k+1. Repre-
senting these functions by their Taylor series we get

φ̂k,q(z) =

∞∑

m=0

φ̂
(m)
k,q (0)

m!
zm =

∞∑

m=0

k!

(m+ k + 1 + q)!
zm

from which we conclude that φ̂k,q−1 = kφ̂k−1,q(z). Solving this recurrence equation we then
obtain the representation

φ̂k,q =
k!

(k + q)!
φ̂k+q,0.

Note that φ̂k,0 are exactly the functions φk of equation (14). Consequently

φ̂k,q(z) =
k!

(k + q)!

∫ 1

0
ez(1−θ) θk wq(θ) dθ where wq(θ) = θq. (18)

Suppose there exists a non-zero x = (x0, . . . , xd−1)
T such that Tqx = 0. Then the function

fq(z) =
∑d−1

k=0 xk φ̂k,q(z) satisfies f
(m)
q (0) = 0 for 0 ≤ m ≤ d− 1. From (18) we have

fq(z) =

∫ 1

0
ez(1−θ) pq

x(θ)wq(θ) dθ where pq
x(θ) =

d−1∑

k=0

k!

(k + q)!
xk θ

k, (19)

so pq
x is a non-zero polynomial of degree at most d − 1. Differentiating (19) m times with

respect to z and setting z = 0, we find that Tqx = 0 if and only if

∫ 1

0
(1 − θ)m pq

x(θ)wq(θ) dθ = 0, 0 ≤ m ≤ d− 1.

In other words Tqx = 0 if and only if pq
x is orthogonal with respect to the weight function

wq to every polynomial of degree d − 1 on [0, 1]. This implies pq
x ≡ 0 which contradicts the

assumption that x is non-zero. Therefore Tq is non-singular.

We remark that as a part of the proof of this lemma we have also asserted that function
spaces V = span(φq, . . . , φq+K−1), q ≥ 0, with φk defined by (14), satisfy Assumption 3.2.

Theorem 3.8. For an exponential integrator of order p, the dimension of the function spaces

Va and Vb are bounded from below as follows

Ka = dimVa ≥

⌊
p

2

⌋

, Kb = dimVb ≥

⌊
p+ 1

2

⌋

. (20)
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Proof. We will show that using smaller values of Ka or Kb than dictated by (20) is incom-
patible with the order conditions for a scheme of order p. Let Va and Vb be arbitrary function
spaces, satisfying Assumption 3.2, let V denote either of them, and let d = dimV . If f ∈ V ,
then there are numbers s0, . . . , sd−1 such that

f (d)(0) =
d−1∑

m=0

sm f (m)(0) (21)

Suppose now that da := dimVa = bp/2c − 1 and db := dimVb = b(p+ 1)/2c − 1. Consider the

bicoloured trees τm,k
q defined by

τm,k
q = Bq

+

(
Wm

+ B+(
k

︷ ︸︸ ︷
•, . . . , •)

)

which consist of a string of q ≥ 0 black nodes followed by a string of m > 0 white nodes with
a bushy tree of k + 1 black nodes grafted onto the topmost leaf of the white nodes. We shall
use these trees with q = 0 for proving the bound on Kb and with q = 1 for Ka. The density
of τm,k

q is given by

γ(τm,k
q ) =

(m+ k + 1 + q)!

k!
.

The trees corresponding to order conditions for a scheme of order p have at most p nodes,
|τm,k

q | = q+m+ 1 + k ≤ p⇒ 0 ≤ k ≤ p−m− 1− q. The definition of da and db implies that
p−2 ≥ 2da and p−1 ≥ 2db. If we set q = 1,m = da we thus obtain conditions for 0 ≤ k ≤ da,
whereas q = 0,m = db results in 0 ≤ k ≤ db. The conditions corresponding to τ da,k

1 can be
expressed as

1

da!

s∑

r,j=1

βr,0(aj
r)

(da)(0)ckj =
k!

(da + k + 2)!
, 0 ≤ k ≤ da

which, upon insertion of (aj
r)(da)(0) =

∑
sm(aj

r)(m)(0) as in (21) yields

k! da!

(k + da + 2)!
=

da−1∑

m=0

sm

(
s∑

r=1

βr,0(aj
r)

(m)(0)ckj
)

=

da−1∑

m=0

sm
k! m!

(k +m+ 2)!
.

The conditions for τ db,k
0 similarly yield

k! db!

(k + db + 1)!
=

db−1
∑

m=0

sm

(
s∑

r=1

(br)(m)(0) ckr
)

=

db−1
∑

m=0

sm
k! m!

(k +m+ 1)!
.

In both cases (d = da or db) we end up with a (d + 1) × d linear system of equations for
determining sm,m = 0 . . . , d− 1. This system is of the form

d−1∑

m=0

k! m!

(k +m+ 1 + q)!
sm =

k! d!

(k + d+ 1 + q)!
, 0 ≤ k ≤ d

for q ∈ {0, 1} and is solvable only if the matrix with elements

(Tq)k+1,m+1 =
k! m!

(k +m+ 1 + q)!
, 0 ≤ k,m ≤ d

is singular. However, Lemma 3.7 implies that the matrix Tq is invertible so the linear system
is inconsistent. It is hence not possible to choose Ka = da or Kb = db.
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Some remarks regarding the implications of Theorem 3.8 are in order. First, note that
the bounds in the theorem are not proved to be sharp, however Theorem 3.5 ensures that
the lower bound is obtainable for the dimension of Vb if a basis is given by the functions
φk of (14). However, this result does not apply to the space Va of the functions aj

r(z). For
instance, in the case p = 5, one can prove that it is indeed possible to take Ka = 2, but
Va cannot be the span of φ0 and φ1. But an example of a feasible two-dimensional space is
that with basis ψ0(z) = φ1(z) and ψ1(z) = φ1(

3
5z). A particular scheme is given in Table 4.

But the usefulness of the bounds are questionable in this particular example. Using, say
Vb = span{φ0, φ1, φ2} combined with the above choice of Va requires the computation with a
total of 4 basis functions, whereas only 3 are necessary if one instead chooses Va = Vb.

We furthermore note that the minimum attainable value of the parameters Ka and Kb

depend only on the order p, of the underlying Runge–Kutta scheme and the choice of the
basis functions ψk. Specifically, the coefficients of the underlying Runge–Kutta scheme do
not influence the minimum values of Ka and Kb.

4 Examples of exponential integrators

The procedure we have used in constructing schemes may be summarised as follows

1. Choose an underlying Runge–Kutta scheme. This determines αj,0
r and βr,0.

2. Choose basis functions ψk(z) for the coefficient functions and determine Ka and Kb.

3. Use the order conditions for the trees of the form Wm
+ (τC) where τC is a tree with only

black nodes, and determine βr,m, for 1 ≤ m ≤ Kb − 1. See also (11).

4. Identify order conditions which are linear in c′r =
∑s

j=1 α
j,1
r and which otherwise depend

only on βj,m
r , 0 ≤ m ≤ Kb − 1 and αj,0

r , and solve for c′r.

5. Identify remaining conditions which depend linearly on αj,1
r . Solve for αj,1

r together with
c′r =

∑s
j=1 α

j,1
r . Repeat this procedure to solve for αj,m

r , 2 ≤ m ≤ Ka − 1.

6. βr,m are now uniquely determined for m ≥ Kb and αj,m
r for m ≥ Ka by (21). Verify all

remaining order conditions for βr,m, Kb ≤ m ≤ p− 1 and for αj,m
r , Ka ≤ m ≤ p− 2. If

inconsistencies appear, the basis functions are not feasible.

7. Verify all remaining order conditions.

In most cases we have considered, once αj,0
r and βr,0 have been chosen, one can find the

remaining αj,m
r independently of the βr,m. Most of the exponential integrators we find in the

literature are based on the classical fourth order scheme of Kutta, and it is typical that one
can combine aj

r(z) from one scheme with br(z) from another scheme and still get overall order
four.

In the class of ETD schemes, proposed by Cox and Matthews [4] and Krogstad [9], the
space Vb is spanned by the three functions φ0, φ1, φ2 of (14). However in the former reference,
dimVa = 2 with a basis {φ0(z/2), zφ0(z/2)

2}. This Va coincides with the one used in [2],
given in Table 1(b).

Another choice is to use φk(z) of (14) both for Va and Vb. In Table 3 we characterise
all resulting schemes with Ka = 2 and Kb = 3. It is interesting to note that Theorem 3.8
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predicts Ka ≥ 2 and Kb ≥ 2, and indeed, by choosing γ1 = 1
3 and γ2 = −1

3 , we see that φ2

disappears from the br(z)-functions. Choosing γ1 = γ2 = 0, we recover the br(z)-functions
obtained in [4]. Letting Vb, be spanned by ψ0(z) = φ0(z) and ψ1(z) = φ0(z/2), one obtains

a
1

2(z) = −( 1

2
+ ρ1)φ0(z) + (2ρ1 + 2)φ1(z)

a
1

3(z) = (1 + ρ1 −
1

4
(ρ2 + ρ3))φ0(z) + (−2 − 2ρ1 + 1

2
(ρ2 + ρ3))φ1(z)

a
2

3(z) = (−1 + 1

4
(ρ2 + ρ3))φ0(z) + (3 −

1

2
(ρ2 + ρ3)φ1(z)

a
1

4(z) = 1

2
(ρ2 + ρ3)φ0(z) − (ρ2 + ρ3)φ1(z)

a
2

4(z) = −

ρ2

2
φ0(z) + ρ2φ1(z)

a
3

4(z) = (1 −

1

2
ρ3)φ0(z) + ρ3φ1(z)

b
1(z) = (1 + γ2)φ0(z) + (−3 − 6γ2)φ1(z) + (6γ2 + 2) φ2(z)

b
2(z) = (−γ1 − 2γ2) φ0(z) + (6γ1 + 12γ2 + 2)φ1(z) + (−6γ1 − 12γ2 − 2) φ2(z)

b
3(z) = γ1 φ0(z) + (−6γ1 + 2) φ1(z) + (6γ1 − 2) φ2(z)

b
4(z) = γ2 φ0(z) + (−6γ2 − 1) φ1(z) + (6γ2 + 2) φ2(z)

Table 3: Coefficient function for a fourth order ETD scheme with classical RK4 as underlying
scheme. Basis functions given by (14).

the unique solution

b1(z) = 1
2φ0(z) −

1
3φ0(z/2)

b2(z) = b3(z) = 1
3φ0(z)

b4(z) = −1
6φ0(z) + 1

3φ0(z/2).

(22)

These weights coincide with the ones derived in the fourth order scheme in [2], given in
Table 1(b). Yet another choice is to let Vb consist of functions of the form p(z)φ0(z) where
p(z) is a polynomial of degree 1, and we recover br(z) as in Table 1(a).

Finally, we give an example of a fifth order exponential integrator based on a scheme
of Fehlberg. As indicated in Section 3.2 we take dimVa = 2 with basis ψ0(z) = φ1(z),
ψ1(z) = φ1(

3
5z). For Vb we use the basis ψk(z) = φk(z). The resulting coefficient functions

are given in Table 4.
In summary, this paper presents a complete order theory for exponential integrators of

the form (2)–(3). From deriving order conditions by means of bicoloured trees to proving
bounds for the lowest possible number of basis functions, the results presented herein provide
a general framework for constructing schemes of this type. A number of issues are, however,
not addressed in the present paper. These include systematically choosing basis functions ψk,
and how to construct schemes with low error constants.

Exponential integrators are interesting from the point of view of handling unbounded or
stiff operators, yet the order theory does not say anything about what happens for large
eigenmodes of L in (1). Determining conditions for favorable behaviour in light of such
operators should be an arena for future work.
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0

2

9
− 2

3
φ1 + 10

9
φ̂1

1

3

569

11544
φ1 + 1355

11544
φ̂1 − 831

3848
φ1 + 2755

3848
φ̂1

3

4
− 77157

61568
φ1 + 143535

61568
φ̂1

587979

61568
φ1 − 821745

61568
φ̂1 − 405

64
φ1 + 675

64
φ̂1

1 655263

7696
φ1 − 2031205

23088
φ̂1 − 1148769

7696
φ1 + 1252665

7696
φ̂1

1593

40
φ1 − 405

8
φ̂1

144

5
φ1 − 80

3
φ̂1

5

6
− 2212835

277056
φ1 + 6888625

831168
φ̂1

477285

30784
φ1 − 496525

30784
φ̂1 − 39

16
φ1 + 65

16
φ̂1 − 4

9
φ1 + 20

27
φ̂1 − 185

96
φ1 + 575

288
φ̂1

b1(z) b2(z) b3(z) b4(z) b5(z) b6(z)

b1(z) = 47

150
φ0 −

188

75
φ1 + 47

15
φ2

b2(z) = 0

b3(z) = − 43

25
φ0 + 132

5
φ1 − 33φ2

b4(z) = 4124

75
φ0 −

6152

15
φ1 + 1352

3
φ2

b5(z) = 189

10
φ0 −

662

5
φ1 + 142φ2

b6(z) = − 1787

25
φ0 + 12966

25
φ1 −

2814

5
φ2

Table 4: Coefficient functions for a fifth order exponential integrator with Fehlbergs fifth
order RK as the underlying scheme. Here φ̂1(z) = φ1(

3
5z).
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