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Abstract

We present the general incompressible Navier–Stokes equations. We discuss some of the

challenges encountered when developing simulation code for incompressible fluid flow. Finally

we compare two similar methods for solving the incompressible equations and present some

results for a thermally driven cavity flow using the Boussinesq approximation to incorporate

thermal source effects into the flow problem.

1 Introduction

We compare two basic methodologies for discretising the incompressible Navier–Stokes equations.
The operator based integrating factor method of Maday and co-workers in [1] is a framework
for generating splitting schemes for linear systems of ordinary differential equations whereas the
so-called “consistent splitting schemes” recently developed by Guermond and Shen in [2] employ
gradient testing of the momentum equation for evaluating the pressure at any given time step.
Increased accuracy for the consistent splitting schemes is sought by rewriting the momentum
equation in rotational form.

Scaling relevant physical quantities, the incompressible Navier–Stokes can be stated as

∂u

∂t
+ (u · ∇)u + ∇p = 1

Re
∆u + f (1)

divu = 0 (2)

in which the Reynolds number Re = UL/ν measures the relative influence of convection with
respect to diffusion present in the physical problem. The quantities U and L are a characteristic
speed and a characteristic length of the problem. Aggregate material properties of the fluid are
represented by the kinematic viscosity ν = µ/ρ. Furthermore, the source term f incorporates
any external forces such as gravity, heating, magnetic fields or other influencing phenomena.

Completing the system (1)–(2), a set of prescribed boundary conditions determines the interac-
tion of the fluid flow with the outside world. However, the above system is inconsistent with the
most general kind of boundary conditions. Adopting this model we are forced to consider only
Dirichlet type velocity boundary conditions, that is the value of the velocity is prescribed on any
external boundaries, and disregard any pressure forces or general surface tension effects which
may be affecting the flow externally. As such equations (1)–(2) cannot be used for modelling
free surface flows.

The mathematical model of incompressible fluid flows does not contain equations of state linking
the pressure variable to other thermodynamic quantities such as density and temperature. The
usual approach is to choose the pressure in such a way that the flow is divergence free at all times.
As such, the pressure may be viewed as Lagrangian multipliers associated with the continuity
equation (2).

Equations (1)–(2) are, when imposing homogeneous Dirichlet velocity boundary conditions,

equivalently represented in variational form as: Find u ∈ V =
(

H1
0 (Ω)

)d
and p ∈ Π = L2

0(Ω)
such that

∂

∂t
(u,v) + c(u;u,v) + b(v, p) = 1

Re
a(u,v) + (f ,v), ∀v ∈ V

b(u, q) = 0, ∀ q ∈ Π.
(3)

in which (·, ·) denotes the regular L2 inner product for scalar or vector valued functions. The
forms occuring in (3) are explicitly given by

a(v,w) = −(∇v,∇w), b(v, q) = −(div v, q), c(w; z,w) =

∫

Ω
[(w · ∇) z] · v dΩ.
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Choosing finite dimensional subspaces of V and Π, respectively VN and ΠN , based on spectral
elements, the fully discretised problem becomes: Find uN ∈ VN and pN ∈ ΠN such that

∂

∂t
(uN ,v)N + cN (uN ;uN ,v) + bN (v, pN ) = 1

Re
aN (uN ,v) + (f ,v)N , ∀v ∈ VN

bN (uN , q) = 0, ∀ q ∈ ΠN .
(4)

The forms (·, ·)N , aN (·, ·), bN (·, ·) and cN (·; ·, ·) denote the corresponding continuous forms of (3)
when replacing exact integrals by numerical quadrature. As the same discrete spaces are used
for both the test and trial functions, this a Galerkin approximation of the original problem (3).

Employing divergence free velocity basis functions at the outset, meaning b(v, q) = 0 for all v and
q thus eliminating the pressure variable from the system, existence of solutions to the continuous
system (3) was proven by Leray in 1934 and Hopf in 1951. We refer the interested reader to [3] for
additional detail. Furthermore, uniqueness has been established for two dimensional flows while
the question of uniqueness for three dimensional flows remains an open problem. In addition,
the exact conditions under which a unique pressure solution to the continuous problem exists
are not known.

On the other hand, the discrete system (4) is known to have a unique velocity solution uN .
This, however, does not hold for the pressure variable without imposing additional conditions
on the pressure approximation space. One common extra requirement is imposing the discrete
Ladyshenskaya–Babuška–Brezzi condition, also known as the discrete inf–sup condition. Math-
ematically, the discrete LBB condition reads

0 < β ≡ inf
q∈ΠN

sup
v∈VN

|bN (v, q)|

‖v‖VN
‖q‖ΠN

(5)

which, ideally, should hold for constant β independent of discretisation parameters such as the
polynomial degree N and number of elements in the computational domain. Realistically though,
the LBB constant does depend to some extent on these parameters.

Condition (5) limits the available choices for discrete subspaces when solving the Stokes or
Navier–Stokes problems. While its rôle in guaranteeing unique solutions to the linear Stokes
problems is well known, the situation is a little less clear with respect to the Navier–Stokes
equations. Auteri and co-workers in [4] experimentally studied the effect of using approximations
which did and did not satisfy the condition in the context of pure spectral approximations. The
empirical evidence gathered in this study strongly indicated that satisfying the discrete LBB
condition invariably lead to qualitatively better numerical solutions. The mixed spectral element
IPN–IPN−2 does satisfy the discrete LBB condition, and we have chosen to use this mixed element
as the basis for defining the numerical solutions.

2 Linear solvers

Irrespective of which specific space and time discretisation scheme is chosen, solving the Navier–
Stokes equations entails solving large, possibly non-symmetric, linear systems of the form

[

H + C DT

D 0

] [

u

p

]

=

[

F

0

]

(6)

in which H is the discrete Helmholtz operator, D is the discrete divergence operator and DT is
the discrete gradient operator. The matrix C represents the discrete convection operator, and
the vector F is the discrete realisation of the source term present in the continuous equations.
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In its complete generality, the inversion of the system matrix in (6) is prohibitively expensive.
Furthermore, as the convection operator in general depends on the velocity, equation (6) is
usually a non-linear system for which efficient solvers are hard to develop. To overcome these
problems, some kind of splitting of the algebraic system is often employed. Doing the system
splitting at the algebraic level rather than the continuous PDE system level makes the handling
of boundary conditions easier as prescribed boundary conditions have already been incorporated
into the discrete operators. However, algebraic splitting introduces other splitting errors which
may or may not vanish as the resolution increases [5].

Various schemes based on splitting at the algebraic level with or without subsequent projection
onto divergence free vector fields have been proposed. In [6] Quarteroni et al. list several of these
schemes. In particular, the inexact factorisation

[

H + C DT

D 0

]

≈

[

H + C 0
D −DH1D

T

] [

I H2D
T

0 I

]

in which H1 and H2 are approximations of (H + C)−1 leads to an algorithm which involves
simpler system solves than the complete non-linear system.

Further algorithmic and computational simplifications are possible if the convection term is
treated separately from the diffusive and pressure terms. The Lagrangian framework relying
on the substantial derivative Du

Dt led Maday and co-authors in [1] to the concept of operator
integrating factor splitting methods. This framework enables explicit treatment of the convective
terms which leads to algorithms generally involving resolution of discrete Helmholtz problems
and a costly pressure problem involving the consistent Poisson operator E = DM−1DT in which
M denotes the mass matrix.

The Helmholtz problems in this case can be efficiently resolved using the Preconditioned Con-
jugate Gradient algorithm with a diagonal preconditioner P = diag(H)−1. On the other hand,
the solution of linear systems of the form

Ep = b

is strongly dependent on good preconditioners when iterative strategies are employed.

3 Operator integrating factor splitting methods – OIFS

In their 1990 paper [1], Maday and co-workers proposed a framework for generating efficient and
accurate splitting schemes for the linear initial value problem

du

dt
= X1(t)u+X2(t)u+ f(t), u(t0) = u0. (7)

The operators X1 and X2 in general exhibit different characteristics. In the case of the Navier–
Stokes equation, X1 may be a suitably spatially discretised convection operator, possibly in-
volving interpolated velocity fields, whereas X2 is a similarly discretised diffusion operator. The
framework is based on integrating factors and evaluating the action of these operators on func-
tions rather than explicitly forming a matrix representation of the operator itself.

Fixing t∗ > t and introducing the flow map φX1
(t, t∗) of the X1 vector field from time t to time

t∗, we get
dφX1

dt
= −X1(t)φX1

(t, t∗), φX1
(t∗, t∗) = I,
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the sign due to the flow of X1 going into t∗. In the special case of X1(τ1)X1(τ2) = X1(τ2)X1(τ1)
for all τ1, τ2 ∈ [t, t∗] the flow map can be explicitly represented by the matrix exponential

exp(
∫ t∗

t X1(τ) dτ). Inserting this into the initial value problem we obtain

d

dt

(

φX1
(t, t∗)u

)

= φX1
(t, t∗)

(

X2(t)u+ f(t)
)

. (8)

Choosing t = tn = t0 +n∆t, t∗ = tn+1 and discretising (8) by a BDF scheme of order k and step
size ∆t, we get

1

∆t

(

α0u
n+1 +

k
∑

s=1

αsφX1
(tn+1−s, tn+1)un+1−s

)

= X2(t
n+1)un+1 + f(tn+1).

The quantities φX1
(tn+1−s, tn+1)un+1−s for s = 1, . . . , k are end-point results of integrating the

associated differential equation
dψ

dt
= X1(t)ψ (9)

from tn+1−s to tn+1 using the initial value ψ(tn+1−s) = un+1−s. Solving the associated system
requires a separate one-step method due to different initial conditions for each quantity at each
time step n. Additionally one usually wants to treat non-linear operators, such as the convection
operator, explicitly to avoid expensive non-linear system solves thus requiring an explicit scheme.
A common choice when the outer scheme is of high order is the well-known classic RK4 scheme
of Kutta, but other alternatives are possible as well.

Discretising the Navier–Stokes equations in space by means of spectral elements yields the fol-
lowing system of constrained ordinary differential equations

M
du

dt
+ C(u)u +DTp = −Au +M f(t)

Du = 0

(10)

with M , DT , A, and D respectively denoting the discrete mass matrix, the discrete gradient,
the discrete Laplacian, and the discrete divergence operators. Using the OIFS framework based
on an outer BDF scheme of order k and treating the convection term explicitly, equation (10) is
temporally discretised as

[

α0

∆tM +A DT

D 0

] [

un+1

pn+1

]

=

[

M(fn+1 − 1
∆t

∑k
s=1 αsũ

n+1−s)
0

]

. (11)

Here ũn+1−s = φ−C(U(t))(t
n+1−s, tn+1)un+1−s in which U(t) is the interpolated velocity field

based on (tn+1−k,un+1−k), . . . , (tn,un) and furthermore extrapolated to (tn, tn+1]. This partic-
ular choice of U(t) demands caution if using high order BDF schemes for the outer temporal
discretisation.

Equation (11) is an algebraic saddle-point problem which must be resolved at each time step. A
Uzawa type decoupling of the global discrete operator using the pressure variable for enforcing
divergence free velocity fields is possible, but the resulting algorithm is normally too expensive
in terms of computer resources. However, accepting an additional algebraic splitting error,
equation (11) may be resolved at the expense of one scalar and strongly diagonally dominant
Helmholtz problem for each velocity component and one system solve involving the consistent
Poisson operator at each time step.

This algorithm involves the following three stages at each time step
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1. Solve

(
α0

∆t
M +A)u∗

i = M(fn+1 − 1
∆t

k
∑

s=1

αsũ
n+1−s)i −DT

i p∗

for each velocity component i = 1, . . . , d. The pressure p∗ is an extrapolated estimate of
the pressure at the next time step. This too demands caution in the case of high-order
outer stepping schemes.

2. Solve
(DMDT ) δpn = α0

∆t Du∗

obtaining the pressure update δpn = pn+1 − p∗.

3. Update the velocity and pressure variables

pn+1 = p∗ + δpn

un+1 = u∗ − ∆t
α0
M−1DT δp∗,

the latter system being trivial as the mass matrix is diagonal.

The algebraic splitting error associated with this algorithm is explicitly represented by

A(un+1 − u∗)

at each time step.

4 A consistent splitting scheme for the Navier–Stokes equations

Guermond and Shen in [2] develop two consistent time splitting schemes for the time dependent
Navier–Stokes equations or time dependent Stokes equations. We will not derive these methods,
but instead refer the reader to [2]. A method, in no need of mixed elements, given by Guermond
and Shen is the consistent splitting scheme:

{

1
∆t (

∑k
s=0 αsu

n+1−s) − 1
Re

∇2un+1 + ∇p?,n+1 = fn+1, un+1|Γ = 0

(∇pn+1,∇q) = (fn+1 − 1
Re

∇×∇× un+1,∇q), ∀q ∈ H1(Ω)
(12)

Here, {αs}
k
s=0 are the classical coefficients of the BDF scheme of order k, denoted BDF(k) and

p?,n+1 is some estimation of the pressure at time t = tn+1. As it stands, the method (12)
applies to the unsteady Stokes equations. It is suggested by the authors of [2] to treat the
extra convection term of the Navier–Stokes equations explicitly by including it in the right-hand
side f . As this is most likely to create an unstable scheme for high Reynolds numbers, we will
instead adopt the approach used for the OIFS method in section 3 and integrate the solutions
at previous time-steps forward in time to the current time. Let XN ⊂ (H1

0 (Ω))d be the discrete
velocity space and QN ⊂ H1(Ω) be the discrete pressure space. On variational form the method
then reads: Given {un+1−s}k

s=1 find un+1 ∈ XN such that











1
∆t(α0u

n+1 +
∑k

s=1 αsũn+1−s,v)+

+ 1
Re(∇un+1,∇v) − (p?,n+1,∇ · v) = (fn+1,v) ∀v ∈ XN

(∇pn+1 + 1
Re

∇×∇× un+1,∇q) = (fn+1 − (un+1 · ∇)un+1,∇q) ∀q ∈ QN .

(13)

where ũn+1−s = φX1
(tn+1−s, tn+1)un+1−s are the end results of integrating (9), where X1 is the

vector field associated with the convection operator, using an extrapolated convection velocity.
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The scheme (13) is not well suited to finite element implementations, as the term ∇ × ∇ × u

involves second order derivatives. Three terms in (13) require special discretisations. These are
∫

Ω pdivv dΩ,
∫

Ω f ·∇q dΩ, and
∫

Ω ∇×∇×u·∇q dΩ. In a single two-dimensional spectral element
of size Lx × Ly when tested against the test function corresponding to node (i, j), these special
discretisations become

∫

Ω
pdivvij dΩ = (

Ly

2
(I ⊗DT )F1 +

Lx

2
(DT ⊗ I)F1)ij

∫

Ω
f · ∇qij dΩ = (

Ly

2
(I ⊗DT )F2 +

Lx

2
(DT ⊗ I)F3)ij

∫

Ω
∇×∇× u · ∇qij dΩ =

2

Lx
((I ⊗DT )F4)ij −

2

Ly
((I ⊗DT )F5)ij

+
2

Ly
((DT ⊗ I)F6)ij −

2

Lx
((DT ⊗ I)F7)ij ,

where the matrices Fk, k = 1, . . . , 7 are given by

(F1)αβ = ραρβpαβ, (F2)αβ = ραρβg
αβ
1 , (F3)αβ = ραρβg

αβ
2 ,

(F4)αβ = ραρβ

(

(D ⊗D)U2

)

αβ
, (F5)αβ = ραρβ

(

(D ⊗ I)2U1

)

αβ
, (F6)αβ = ραρβ

(

(D ⊗D)U1

)

αβ
,

(F7)αβ = ραρβ

(

(I ⊗D)2U2

)

αβ
.

We note that {ρα}α are the quadrature weights associated to an N -th degree Gauss–Lobatto–
Legendre quadrature formula on [−1, 1]. Furthermore, U1 and U2 are matricial representations
of the first and second velocity components respectively.

5 Numerical results

The methods of sections 3 and 4, specialised for the simplified model problem (1)–(2), were
implemented in the spectral element code described in prior technical report [7].

5.1 Validation of Navier–Stokes solvers

Choosing the body force term f in (1)–(2) to ensure an analytic solution given by

u(x, y) =

[

π sin(2πy) sin2(πx) sin(t)
−π sin(2πx) sin2(πy) sin(t)

]

, p(x, y) = cos(πx) sin(πy) sin(t)

on the unit square for t > 0, we study the error behaviour of the methods with respect to spatial
and temporal resolution.

Figure 1 shows the L2 global error at time t = 1.0 for various time step sizes using a single
spectral element of polynomial degree N = 40. The second order BDF scheme was employed in
both methods and we observe that both methods are second order with respect to time step size
for this model problem.

In figure 2 the error at time t = 0.125 for various polynomial degrees N is displayed. The time
step size ∆t = 2−12 was used for all simulations. Both methods appear to converge exponentially
with respect to the polynomial degree of the spatial resolution.
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Figure 1: Velocity and pressure global L2 error at t = 1.0
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5.2 Thermally driven cavity flow

The problem considered is the two-dimensional flow of a Boussinesq fluid of Prandtl number 1.0
in a square cavity with walls of length L, see figure 3. The vertical walls are kept at constant
temperatures Th and Tc < Th for the left and right hand sides respectively. The horizontal walls
are thermally insulated. Thus there is an overall heat flow across the domain in the x direction.
We assume non-slip velocity boundary conditions at all walls. Assume both the velocity and
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ghot wall cold wall

adiabatic wall

adiabatic wall

x

y

Figure 3: Domain of thermally driven cavity flow

the temperature inside the domain initial is set to zero. The hot wall heats up the nearby fluid
causing it to rise due to buoyancy. This produces convection driven heat transfer and the fluid
in the cavity is set in motion. We compute the steady state solution of this problem by means
of a pseudo time stepping procedure.

The governing equations for the heat driven cavity flow are the incompressible Navier–Stokes
equations coupled with the energy equation. Rescaling the equations, the physcial problem is
modelled as the coupled system

∂T

∂t
+ (u · ∇)T = ∇2T

∂u

∂t
+ (u · ∇)u + ∇p = Pr∆u + RaPrT e2

divu = 0

with e2 being the unit vector in the y direction. We have employed the following scalings

x = x̄/L, y = ȳ/L, u = ūL/κ, ν = ν̄L/κ,

p =
p̄L2

ρκ2
, T =

T̄ − Tc

Th − Tc
, Ra =

βgL3∆T

νκ
, Pr = ν/κ, t =

t̄κ

L2

in which terms with bars are dimensional, while their corresponding non-dimensional quantities
are unmarked. The length L of the square side is the characteristic length of the spatial domain
and g is acceleration due to gravity. The fluid specific material properties ρ, ν, and κ are,
respectively, the fluid’s volumetric mass (density), its kinematic viscosity and thermal diffusivity.
We denote by β the volumetric expansion coefficient from the Boussinesq approximation of the
density alteration ρ ≈ ρ0(1 − β(T − T0)).

Density differences in the fluid induces a buoyancy force into the system. Measuring the effect of
the buoyancy forces relative to viscous forces, the Grashof number (Gr = βgL3∆T/ν2) controls
natural convection. The ratio of momentum to thermal diffusivity, known as the Prandtl number
(Pr) controls the relationship between the temperature and the characteristics of the flow. The
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FEM DSC Present
Ra Ref. [8] Ref. [9] Ref. [10] Ref. [11] Ref. [11] study

103 3.634 3.68 3.6493 3.489 3.6434 3.6435
(0.813) (0.817) (0.8125) (0.813) (0.8167) (0.8050)

104 16.2 16.1 16.1798 16.122 15.967 15.0601
(0.823) (0.817) (0.8235) (0.815) (0.8167) (0.8330)

105 34.81 34.0 34.7741 33.39 33.51 33.3436
(0.855) (0.857) (0.8535) (0.835) (0.85) (0.8510)

106 65.33 65.4 64.6912 65.40 65.55 65.5281
(0.851) (0.875) (0.8460) (0.86) (0.86) (0.8505)

107 139.7 145.2666 143.56 143.06 143.8783
(0.919) (0.8845) (0.922) (0.92) (0.9170)

Table 1: Value and vertical position of maximum horizontal velocity at x = 0.5

Rayleigh number Ra compares the destabilising buoyancy forces to the stabilising viscous and
conductive mechanisms. Mathematically, Ra = GrPr.

The overall algorithm for solving the thermally driven cavity problem is based on time stepping
until steady state. At each time step n the updated temperature T n and updated velocity and
pressure un and pn solved alternately. All results reported for this problem are computed using
the Navier–Stokes solver of section 3.

5.2.1 Comparison with earlier benchmark solutions

The problem is solved for Rayleigh numbers Ra = 10p with p = 3, 4, 5, 6, 7. Contour plots for
the stream function, the velocity components u1 and u2 and the temperature field are shown in
figure 4. It is seen that the solution is symmetric with respect to the centre of the cavity. At
Rayleigh numbers in the range [103, 104] boundary layers do not form and a stratified core is
observed. For Rayleigh number 105 the flow changes as the we see the onset of two stratified
cores, and there is a noticable temperature gradient near the vertical walls. See figure 5. As
the Rayleigh number increaser further, the two cores close up at the upper left and the lower
right corners. Tables 1 and 2 show maximum horizontal and vertical velocities along the lines
x = 0.5 and y = 0.5 respectively. Next the maximum of both velocity components are displayed
in tables 3 and 4.

An essential number is the heat flux across vertical cross sections of the domain. Figure 6 shows
the Nusselt number at the hot vertical wall. As the fluid rises alongside the hot wall the fluid
gradually becomes warmer and thus reducing the heat flux from the wall to the fluid as the
y coordinate increases. The curves in figure 6 represent Rayleigh numbers 10k, k = 3, . . . , 7
with the dotted line being Ra = 103, the solid line being Ra = 104, the dash-dotted line being
Ra = 105, the dashed line being Ra = 106, and the bold solid line being Ra = 107.

In table 5 the average values of the Nusselt number at the hot wall, the line x = 0.5 and over
the entire domain are found in table 5.

6 Concluding remarks and future work

We have presented the naturally heat driven convection in a vertical cavity. Our results compare
well to those of previous studies. We experienced some difficulties computing the steady state
solution for Rayleigh numbers greater than 106. The reason for this is not clear, but likely
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Figure 4: Natural convection in a cavity. From the left: stream lines, u1 and u2 velocities and
temperature contour plots.
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FEM DSC Present
Ra Ref. [8] Ref. [12] Ref. [13] Ref. [9] Ref. [10] Ref. [11] Ref. [11] study

103 3.679 3.692 3.73 3.6962 3.686 3.686 3.6815
(0.179) (0.1827) (0.1790) (0.188) (0.183) (0.1670)

104 19.51 19.62 19.63 19.9 19.6177 19.79 19.98 19.3323
(0.12) (0.1246) (0.1195) (0.12) (0.117) (0.1380)

105 68.22 68.62 68.85 70.0 68.6920 70.63 70.81 69.6205
(0.066) (0.068) (0.0665) (0.072) (0.070) (0.0590)

106 216.75 232.97 221.6 228 220.8331 227.11 227.24 223.8965
(0.0387) (0.039) (0.0380) (0.040) (0.040) (0.0430)

107 717.04 702.3 698 703.2536 714.48 714.47 698.4685
(0.0235) (0.0215) (0.022) (0.021) (0.0180)

Table 2: Value and horizontal position of maximum vertical velocity at y = 0.5

FEM DSC Present
Ra Ref. [11] Ref. [11] study

103 3.657 3.648 3.6435
(0.512,0.812) (0.516,0.816) (0.5000, 0.8050)

104 16.14 15.968 15.9693
(0.489,0.812) (0.5, 0.816) (0.4720, 0.8330)

105 41.88 41.82 41.4583
(0.281, 0.881) (0.29, 0.88) (0.2750, 0.8920)

106 114.3 114.53 113.9703
(0.164, 0.927) (0.173, 0.93) (0.1730, 0.9300)

107 339.45 339.67 333.6303
(0.108,0.963) (0.1067,0.96) (0.1080, 0.9640)

Table 3: Value and position of maximum horizontal velocity over entire domain

FEM DSC Present
Ra Ref. [11] Ref. [11] study

103 3.692 3.69 3.6831
(0.188,0.488) (0.183,0.483) (0.1670, 0.4720)

104 19.91 20.1 19.3323
(0.119,0.465) (0.1167, 0.467) (0.1380, 0.5000)

105 70.81 70.83 69.9157
(0.07, 0.488) (0.07, 0.49) (0.0590, 0.4640)

106 228.05 227.88 224.0141
(0.037, 0.441) (0.04, 0.47) (0.0430, 0.4770)

107 720.54 720.43 707.4802
(0.021,0.439) (0.02, 0.044) (0.0180, 0.4170)

Table 4: Value and position of maximum vertical velocity over entire domain
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FEM DSC Present
Ra Nu Ref. [8] Ref. [13] Ref. [9] Ref. [11] Ref. [11] study

103 Nu0 1.117 1.1186

Nu1/2 1.118 1.1133

Nu 1.12 1.117 1.074 1.117 1.073 1.1175

104 Nu0 2.238 2.2460

Nu1/2 2.243 2.1729

Nu 2.243 2.243 2.084 2.254 2.155 2.2200

105 Nu0 4.509 4.6009

Nu1/2 4.519 4.5768

Nu 4.52 4.521 4.3 4.598 4.352 4.5894

106 Nu0 8.817 8.9940

Nu1/2 8.799 8.9627

Nu 8.8 8.806 8.743 8.976 8.632 8.9868

107 Nu0 16.4780

Nu1/2 16.7031

Nu 16.8034

Table 5: Average Nusselt number at hot wall x = 0 (Nu0), horizontal center x = 0.5 (Nu1/2) and

over entire domain (Nu) for varying Rayleigh numbers.

related to large temperature gradients at the vertical wall at high Rayleigh numbers. Although
all numerical experiments for comparison were run on a mesh based on uniform elemental sub-
division, a subsequent run of the Ra = 107 case using a manually solution adapted mesh produced
the same results as the original experiment. However, the computational cost in obtaining
this solution was less than required for the uniform discretisation, thus proving that adapative
methods perfom better. Hence some method for automatic mesh adaptation is desirable.

The Helmholtz operator H = α0

∆tM +A is diagonally dominant, particularly for small step sizes,
and the Helmholtz problem for predicting the velocity field in the Navier–Stokes solver is hence
effectively preconditioned by the inverse of the diagonal of H. However, at the time of this
report no preconditioning strategy is employed when resolving the pressure problem. As this
is a relatively costly component in the overall algorithm, there is undoubtedly some efficiency
gain in adopting some preconditioning procedure for this problem. Fischer [14] describes a finite
element based preconditioning technique, and implementing this method is a prioritised task in
future development.

Although the code is capable of describing different boundary conditions (constant or non-
constant) for any number of unknowns, the Navier–Stokes solvers are only capable of handling
homogeneous Dirichlet conditions. Some change is needed to remedy this restriction.

The code is largely agnostic with respect of the physical dimension of the actual problem being
solved. However, some tuning and additional benchmarking of two-dimensional problems is
likely needed before three-dimensional problems are successfully handled. Moreover, effective
turbulence modelling for both two and three dimensional cases is needed in order to handle eg.
convection dominated flows around immersed bodies.

Many important problems include a free surface or a fluid/structure interface, and hence in-
troduce a time-dependent fluid domain. Such problems need a solver for the mesh motion and
arbitrary Lagrangian–Eulerian (ALE) formulation of the fluid solver.

The Fortran 95 programming language is very expressive in the numerical method problem do-
main, giving code which is highly maintainable if written according to sound practices. As such,
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the language is an excellent tool for implementing code solving a variety of simulation problems.
However, data input and output is not as flexible as in other programming languages, and, in
addition, Fortran’s features for advanced data structures is still somewhat limited with respect
to languages designed to directly support the object oriented paradigm. Consequently, a mixed
language implementation exploiting Fortran’s excellent performance for the computationally in-
tensive parts while expressing I/O and high level abstracting data structures in another language
may be beneficial.

Furthermore, the performance of the code may be greatly improved by a parallel implementation.
All data structures are represented in a local, element-by-element fashion. The discrete operators
may then be naturally represented as a series of independent, parallell components coupled by
efficient interprocessor communication, such as the facilities offered by the MPI standard. The
authors will investigate parallel implementation in the future.
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