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Abstract

Recently, a great deal of attention has been focused on the construction of ex-

ponential integrators for semi-linear problems. In this paper we describe a matlab

package which aims to facilitate the quick deployment and testing of exponential

integrators, of Runge–Kutta, multistep and general linear type. A large number of

integrators are included in this package along with several well known examples.

The so-called ϕ-functions and their evaluation is crucial for stability and speed of

exponential integrators, and the approach taken here is through a modification of

the scaling and squaring technique; the most common approach used for computing

the matrix exponential.
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1 Introduction

expint is a matlab package designed as a tool for the numerical experimentalist to facil-
itate easy testing of various exponential integrators. Exponential integrators are a class
of numerical methods specifically designed for the numerical solution of semi-linear prob-
lems and have recently had a renewed interest in their development, generally tailored to
providing efficient time integration technology for semi-discretized PDEs. Exponential
integrators are essentially an alternative to implicit methods for the numerical solution
of stiff or highly oscillatory differential equations. They aim to solve exactly the linear
part of the problem, which is assumed to contain the substantial part of the dynamics of
the problem and then numerically solve the remaining part. The integrators are designed
to be explicit and the coefficients of the method are functions of the linear term. The
aim of the expint package is threefold: Create a uniform environment which enables
the comparison of various integrators; Provide tools for easy visualizing of numerical
behaviour; To be easily modified so that users can include problems and integrators of
their own. We set out to provide as an efficient implementation as possible given that
we do not compromise generality and ease of comparison and usability.

The outline of the paper is as follows. In the next section we outline the system
requirements for the expint package. Section 2 describes what exponential integrators
are and how they are formatted for our context. Exponential integrators of Runge–
Kutta type and multistep-type are generalized using general linear methods, and our
way of writing the integrators is tailored for this. In Section 3 we outline installation
of this package and describe the package structure. Equations and boundary conditions
are represented in a problem structure described in Section 4, where also some details
regarding some of the examples included in this package can be found. Formulae for
the diagonal Padé approximations and a generalization of the squaring process for the ϕ-
functions is outlined in Section 5. Functions essential to the package are briefly described
in a user-oriented way in Section 6. In the last two sections some numerical experiments
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are recorded and we address future work. Integrators included in this package are listed
for user reference in Appendix A, we also briefly comment on their origin.

1.1 System requirements for the expint package

In terms of computing power, the system requirements are quite modest. Any computer
capable of running a moderately up-to-date version of matlab is sufficient for experi-
menting with exponential integrators by means of the expint package. On the other
hand, faster central processing units and memory systems decrease actual runtime.

However, the package places more stringent demands on the actual matlab environ-
ment. In particular, some of the package’s fundamental routines use matlab language
features and core functions which were introduced relatively recently. As a consequence,
the package will not run without modification in matlab environments preceding the
release 13 series (ie. matlab 6.5). The following features, introduced in matlab 6.5,
are needed

• dynamic structure field-names

• short-circuiting logical operators

• regular expression support

• the mat2cell function which, although present in the neural networks toolbox prior
to matlab 6.5, was not introduced into the core language until version 6.5.

• multiple argument version of functions warning and error

We note that it is possible to work around most of these requirements, at least at the
expense of a slight reduction of the package’s functionality, but the authors have elected
to support only recent versions of matlab.

Unfortunately, a backwards incompatible change in the way dynamic function res-
olution is performed, introduced in the release 14 (ie. matlab 7) series, forces some
important changes to the package. Particularly, the integrator function described in
Section 6.1 of this manual, is heavily dependent upon dynamic function binding and res-
olution (ie. callbacks), by means of the core matlab function feval. The integrator

function must be rewritten in terms of calls through function handles to function properly
in matlab 7 and later. We note that callbacks through function handles are potentially
more efficient than using the feval function. This is due to function handles eliminating
the path search inherent in feval.

Fortuitously such a rewrite allows a reduction in the number of files, though not
necessarily the number of statements, needed to implement a new semi-linear problem.
This is due to matlab 7’s increasing the capabilities of function handles and introduc-
ing anonymous functions. Currently, however, due to external limitations, the expint

package will only run without modification in matlab 6.5. A later release of the package
may choose to target the release 14 series.
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2 Exponential integrators

Exponential integrators are numerical schemes specifically designed for solving differential
equations where it is possible to split the problem into a linear and a nonlinear part

ẏ = Ly + N(y, t), y(tn−1) = yn−1, (1)

where y ∈ C
d, L ∈ C

d×d and N : C
d×R → C

d. An overview of the history of exponential
integrators is given in [22]. Typically in the applications of interest (discretizations of
PDEs) the matrix L is unbounded. Generally solving such problems requires an implicit
scheme; the aim of exponential integrators is to treat the linear term exactly and allow
the remaining part of the integration to integrated numerically using an explicit scheme.

An exponential integrator has two main features:

1. If L = 0, then the scheme reduces to a standard general linear scheme. This is
often called the underlying general linear scheme.

2. If N(y, t) = 0 for all y and t, then the scheme reproduces the exact solution of (1).

To ensure the second point the exponential function must be used within the numerical
scheme. Despite the fact that L is unbounded, typically the coefficients of the scheme
will be bounded. Generally it is not possible to obtain efficient schemes by just using
the exponential function within the scheme, functions closely related to the exponential,
known as ϕ-functions, are also needed.

The way exponential integrators are implemented in this matlab package allows for
a relaxation of feature 2, in which some approximation of the exponential can be used.
An example in this package is the Crank–Nicolson scheme. In the rest of this section we
will first describe how to implement exponential integrators of the Runge–Kutta type.
Then we will go directly to general linear schemes which generalises both Runge–Kutta
and multistep schemes.

2.1 The format of an exponential Runge–Kutta scheme

For an s-stage exponential integrator of Runge–Kutta-type, we define the internal stages
and output approximation as follows:

Yi = h

s∑

j=1

aij(hL)N(Yj , tn−1 + cjh) + ui1(hL)yn−1, i = 1, . . . , s,

yn = h

s∑

i=1

bi(hL)N(Yj , tn−1 + cjh) + v1(hL)yn−1.

(2)

It is worthwhile to point out the lack of the collocation points ci in the coefficient
functions arguments, as opposed to the formats presented in [10, 31]. This allows for
more generality within the schemes.
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In order to fulfill feature 1 above, we require ui1(0) = 1, aij(0) = aij, v1(0) = 1, and
bi(0) = bi, where the real numbers aij and bi are the coefficients of the underlying Runge–
Kutta scheme. The functions used in (2) are conveniently represented in an extended
Butcher tableau

c1 a11(z) · · · a1s(z) u11(z)
...

...
...

...

cs as1(z) · · · ass(z) us1(z)

b1(z) · · · bs(z) v1(z)

(3)

The matlab-functions defining an exponential integrator in the schemes-directory re-
turns exactly these functions given in this tableau.

The extension from a traditional integrator to an exponential integrator is not unique.
We give two well known examples of how the forward Euler scheme can be extended to
the exponential setting. The first scheme is most commonly known as Lawson–Euler

yn = exp(hL)yn−1 + exp(hL)N(yn−1, tn−1),
0 0 1

ez ez (4)

The second scheme is Nørsett–Euler

yn = exp(hL)yn−1 + ϕ1(hL)N(yn−1, tn−1),
0 0 1

ϕ1(z) ez (5)

The later scheme has been reinvented several times and is also known as the ETD Euler,
filtered Euler, Lie–Euler and exponentially fitted Euler. Source code for the Nørsett–
Euler is given in Listing 2. The function ϕ1 will be defined later.

2.2 Extension to general linear schemes

We explain the notation necessary for constructing exponential general linear schemes,
which were introduced in [22]. The notation follows very closely with that developed for
the standard schemes in [3].

To perform a step of length h in an exponential general linear scheme, we need to

import r approximations into the step, denoted as y
[n−1]
i , i = 1, . . . , r. These quantities

can be of a very general nature. The internal stages (as in the Runge–Kutta case) are
written as Yi, i = 1, . . . , s. After the step is completed, r updated approximations are
computed. These are then used in the next step.

Each step in an exponential general linear scheme can be written as

Yi =
s∑

j=1

aij(hL)hN(Yj , tn−1 + cjh) +
r∑

j=1

uij(hL)y
[n−1]
j , i = 1, . . . , s,

y
[n]
i =

s∑

j=1

bij(hL)hN(Yj , tn−1 + cjh) +

r∑

j=1

vij(hL)y
[n−1]
j , i = 1, . . . , r.

(6)
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The coefficient functions are grouped into matrices,

c1 a11(z) · · · a1s(z) u11(z) · · · u1r(z)
...

...
...

...
...

cs as1(z) · · · ass(z) us1(z) · · · usr(z)

b11(z) · · · b1s(z) v11(z) · · · v1r(z)
...

...
...

...

br1(z) · · · brs(z) vr1(z) · · · vrr(z)

. (7)

Exponential integrators of Runge–Kutta-type are easily seen to be a special case when
r = 1 with ui1(z) = ai0(z), v11(z) = b0(z) and b1j(z) = bj(z).

The way exponential general linear schemes are implemented in this package assumes
a special structure of the vector y[n−1], the quantities which are passed from step to step

y[n−1] =
[

yn−1 hNn−2 hNn−3 · · · hNn−r

]T

,

where Nn−i = N(yn−i, tn−i). This choice enables both the ETD Adams–Bashforth
[2, 8, 26] and generalized Lawson schemes [19, 28] to be conveniently represented in
a single framework. Restricting ourselves to schemes of this form removes the need for
complicated starting procedures. Rather an exponential Runge–Kutta scheme can be
used for the first r − 1 steps, recording the approximation to the nonlinear term. To
our knowledge no explicit exponential integrators exist which cannot be represented in
this framework. If integrators are developed with, for example, a Nordsieck vector being
passed from step to step it is not difficult to change the source code to allow for this
option. In the supplied matlab-code, the scheme hochost4 is used for the first r − 1
steps, but this is easily changed in the file integrator.m. In this paper we will use var-
ious terms of order. First the observed order is the order the numerical scheme achieves
in a certain numerical example. Secondly the non-stiff order refers to the case when the
operator L is bounded, such conditions were derived in [1, 22]. Finally, the stiff order
refers to the case when L is unbounded, see [5, 16, 28] for various schemes. We note here
that the stiff order convergence analysis is for parabolic problems only.

2.3 Construction of exponential integrators

This paper is not about how to construct new exponential integrators, but we will mention
here a few of the main pathways taken in constructing such schemes. The paper [1] has
some results and thoughts on how to construct exponential integrators of Runge–Kutta
type.

2.3.1 Lawson schemes

The first class of exponential integrators we will consider are known after there inventor
Lawson [20]. The aim of the Lawson schemes is to use a change of variables v(t) =
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e(t−tn−1)Ly(t). Then a modified differential equation is found in the v variable. This
modified differential equation is then integrated using a standard explicit solver. The
result is then back transformed to provide an approximation in the y variable. The overall
scheme in the original variables was pointed out in [20]. These schemes unfortunately
have stiff order one for all schemes.

2.3.2 ETD schemes

These are the most common class of exponential integrators and they date back to 1960
[7]. ETD schemes which are based on Adams–Bashforth schemes were first discovered by
Nørsett [26]. ETD schemes based on Runge–Kutta schemes were independently discov-
ered by several authors, we cite the papers [10, 30, 33]. The main idea behind the ETD
schemes is to approximate the nonlinear term in the variation of constants formula by
a suitable algebraic polynomial. The ETD Adams–Bashforth schemes obtain the same
stiff order as the classical order, whereas the ETD Runge–Kutta schemes are required to
satisfy complicated stiff order conditions. These were recently constructed up to order
four in [16].

2.3.3 Affine Lie group schemes

Munthe-Kaas [25] pointed out that the affine Lie group could be used to solve semi-linear
problems using Lie group schemes. Unfortunately the RKMK schemes were shown to
exhibit instabilities due to the use of commutators. The commutator free schemes [6]
overcome this problem but the overall stiff order achieved is limited to two.

2.3.4 Generalized Lawson schemes

Krogstad [19] proposed a more detailed transformation than that of Lawson. The result-
ing schemes are exponential general linear schemes, which achieve stiff order r + 1 for
a transformation of order r. These schemes and modifications are discussed in detail in
[28].

3 Installation and quick-start

This section describes how you can install the expint package and be performing nu-
merical experiments as soon as possible.

3.1 Installation

Fetch the archived file

http://www.math.ntnu.no/num/expint/matlab/expint.tar.gz

and unpack the file somewhere on your computer. In a unix-shell you would typically
write
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Listing 1: An example script to do a local error computation with plotting.

% Define problem to be solved:
problem = nls(’ND’, 256, ’IC’, ’smooth’, ’Potential ’ , ’zero ’ , ’lambda’, 1);

% We should make a suitable vector of timesteps. The smallest timestep
% must divide all other timesteps ( if not, the computation would be
% unnecessarily slower, so it is not supported)
steplist = unique(round(10.^(3:−0.1:0)));
dt = 10^−3 .∗ steplist;

% Choose schemes to be used:
schemes = setupschemes(’etd4rk’, ’lawson4’, ’genlawson43’);

% Do computational test with lawson4 as a reference solver (with
% smaller timestep):
schemes = localorder(problem, dt, schemes, ’lawson4’);

% Make plot:
orderplot(schemes, ’Timestep␣h’, ’Local␣error’, problem.problemname);

Listing 2: matlab-code for the Nørsett Euler scheme

function [u, v, a, b, c] = norsetteuler(z, problem)
% NØRSETTEULER − The Nørsett Euler method in unified method format.

[one, ez2, ez, z] = oneez2(z); % oneez2 is a utility function in ’common’.

phi_1 = phipade(z, 1); % Compute phi_1 using a Pade−approximant.

v = { ez };
u = { one };
b = { phi_1 };
a = { [] };
c = [0];

$ tar zxvf expint.tar.gz

This will unpack the archive and will give you a directory named expint containing the
directories problems, schemes, common and tests and the file startup.m.

3.2 A quick test, local error plot

In the main directory of the package, that is in the directory where the mentioned
directories are present, launch matlab from the command line. This ensures that the
startup.m file is being read. The commands in Listing 1 may be typed directly in,
or run via some script (m-file). For the moment we regard this example code to be
self-explanatory, but details will be elaborated on later.
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3.3 Directory structure

problems Each equation or problem you wish to solve needs to be defined by a “problem”-
structure. Files in this directory are helper functions for generating this structure
(a matlab-structure). Each problem is really a system of ODEs, so typically the
semi-discretization is what is provided by the “problem” when solving PDEs. The
problem-structure is dealt with in Section 4.

schemes Files in this directory represents a specific scheme or integrator in the format
for exponential integrators which were introduced in Section 2.

common All kinds of utility functions are put in here. Important functions are described
in Section 6.

tests In here we have put example scripts to facilitate testing, you could also put your
own scripts here if you want to.

3.4 Choosing schemes to test

It is a typical situation to test many schemes at once in order to do comparisons. For
this, one defines an array of structures describing the schemes to be used. Let schemes

be the array, each element is a structure describing one scheme. The structure elements
are

coffunc A string naming a matlab-function which is able to return the coefficient
functions in the format of (3) or (7).

name A describing name for the scheme in question. If possible, it is advisable to have
this field and the coffunc-field equal. This field is used for legends in plots.

linestyle This is a string that will be used by the plotting routines to determine the
line style for the scheme in question, in accordance with the matlab plot function.

A function called setupschemes is added for convenience in order to easily build
up this structure, where you only list the names of the schemes, and the structure
will be returned. See Listing 1 for an example. In addition, the scripts localorder

and globalorder add computational results to this structure for use within the script
orderplot.

An optional field in the scheme structure is

relstages A positive integer which can be used as a weight. If relstages = 4 for
a scheme, the actual timestep used by integrator will be one fourth of your
supplied timestep. This could be useful in some circumstances for producing fairer
comparisons.
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4 Defining equations to solve

The approach taken to tell matlab about the current differential equation to solve is done
using a data structure, which must be defined first in every computation. Assembling
this structure is best done in its own function-file, and it will also contain references to
other functions representing the problem or equation in question.

4.1 The problem structure

The following fields are mandatory for defining a problem representing a differential
equation.

ND A discretization parameter. It is up to the problem to interpret this parameter in
a suitable way. It could be the number of Fourier modes or the number of inner
points in a finite difference discretization.

y0 The initial condition for the corresponding system of ODEs. A standing vector.

L The matrix L in (1).

N A string naming a matlab-function implementing the function N(y, t) in (1). The
calling syntax is assumed to be N(y, t, problem) where y is the phase value, t is
the time point, and problem is the entire problem structure.

problemname A textual description of the problem.

In addition, we have found it useful to include these fields as well, but these should
be treated as optional by all code:

postprocessing Function to be used for post-processing the data, for example inverse
fourier transform if the problem is spectrally discretized. If the problem is of
multidimensional nature, it is appropriate to do a conversion from vector to matrix
form of the data more suited for plotting.

LplusN A string naming a matlab-function implementing Ly + N(y, t). This is needed
in order to be able to use matlab’s ode15s as a reference solver.

4.2 Included problems

In the problems-directory a bundle of example problems is included. The included prob-
lems serve mainly as examples on how to implement flexible problem structures. Beyond
returning a structure fulfilling the requirements of Section 4.1, the actual implementa-
tion is entirely up to the user. The name of the problem-file in the directory problems

is included in the title in a typed font.
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4.2.1 The 1D nonlinear Schrödinger equation — nls.m

This problem was introduced in Listing 1 and takes the form

iyt = −yxx + (V (x) + λ|y|2)y, x ∈ [−π, π].

with some initial condition and with periodic boundary conditions. The problem file in-
cludes the (spectral) semi-discretization of the problem. Upon initialising of the problem
in matlab, different choices of the potential, the initial condition and λ may be chosen.
A typical example of a calling sequence is the one in Listing 1,
problem = nls(’ND’, 64, ’IC’, ’smooth’, ’Potential ’ , ’zero ’ , ’lambda’, 1);

The way arguments are supplied to the problem functions is by no means mandatory
for this package, it is merely for convenience of the user. What exactly is meant by a
“smooth” initial condition as in this example is easily found in the source code, the user
is encouraged to make changes for him/herself.

4.2.2 The 1D KdV–equation — kdv.m

The Korteweg–de Vries equation with periodic boundary conditions in 1D is

yt = −yxxx − yyx, x ∈ [−π, π].

This is semi-discretized spectrally and integrated from t = 0 to t = 2π/625 by default,
the linear part is the diagonal matrix with entries Lkk = ik3, k = −ND/2 + 1, . . . , ND/2
and the nonlinear function is

N(y(k), t) = − i

2
kF(F−1(y)2).

The default value of ND is 128. The eigenvalues of L are complex and therefore, the prob-
lem exhibits rapid oscillations for high wave number modes. Various initial conditions
are supported, a well known choice, taken from [19] is

y(x, 0) = 3λ sech2
(√

λx/2
)

.

4.2.3 The Kuramoto–Sivashinsky equation — kursiv.m

The Kuramoto–Sivashinsky equation has been used to study many reaction-diffusion
systems, in 1D it is written as

yt = −yxx − yxxxx − yyx, x ∈ [0, 32π].

We use a spectral discretization with periodic boundary conditions and ND equal to 128.
The problem is integrated from t = 0 to t = 65 by default. The linear term is diagonal
with elements Lkk = k2 − k4, k = −ND/2 + 1, . . . , ND/2, which results in rapid decay for
high wave numbers. The nonlinear function is

N(y(k), t) = − i

2
kF(F−1(y)2).

11



Various choices of initial condition are supported, the choice of smooth initial condition
is taken from [18]

y(x, 0) = cos(x/16) (1 + sin(x/16)) .

4.2.4 Burgers’ equation — burgers.m

This equation, dating back to 1915, has been used in the study of turbulence and shock
formation, it reads

yt = λyxx − 1

2
(y2)x, x ∈ [−π, π].

We use a spectral discretisation with ND equal to 128 as default spatial resolution and
various choices of initial condition are supported. The most commonly used for this
equation, see [18], is

y(x, 0) = exp(−10 sin2(x/2)).

The rapid oscillations apparent in this problem come from the λyxx term, where λ = 0.03
is the default value.

4.2.5 The Hochbruck–Ostermann equation — hochost.m

A semi-linear parabolic problem with homogeneous Dirichlet boundary conditions from
[16] is

yt = yxx +
1

1 + y2
+ Φ, x ∈ [0, 1],

where Φ is chosen so that the exact solution is y(x, t) = x(1 − x)et. The problem is
discretized in space using a standard finite difference scheme, with ND by default set to
200. The resulting ODE is integrated from t = 0 to t = 1, with various initial conditions
supported. This problem results in a reduction in order for almost all schemes.

4.2.6 The Allen–Cahn equation — allencahn.m

The Allen–Cahn equation a parabolic problem, which reads

yt = λyxx + y − y3, x ∈ [−1, 1],

y(x, 0) = 0.53x + 0.47 sin(−1.5πx),

we choose to implement this equation with the Dirichlet boundary conditions y(−1, t) =
−1 and y(1, t) = 1. The linear part λyxx is discretized using a Chebyshev differentiation
matrix, resulting in a full matrix L. Further details may be found in [18]. In order to
deal with the boundary conditions, one defines y = w + x and works with the variable
w which has homogeneous boundary values. The default parameter values are ND = 64
and λ = 0.001.
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4.2.7 The 2D complex Ginzburg–Landau equations — cginzland2d.m

This equation describes reaction-diffusion equations close to a Hopf bifurcation and gen-
erates spiral wave fronts

yt = y + (1 + iα)∇2y − (1 + iβ)y|y|2, x, y ∈ [0, 200].

Both smooth (a series of Gaussian pulses) and random initial conditions are supported,
see [17] or the source code for more details. We implement this equation using a Fourier
spectral discretisation in 2D, this is

ŷt = (1 − (1 + iα)(k2 + l2))ŷ −F((1 + iβ)y|y|2).

By default we use ND equal to 128 and integrate from t = 0 to t = 150, with bifurcation
parameters α = 0 and β = 1.3.

4.2.8 The Gray–Scott equations in 2D — grayscott2d.m

The Gray–Scott equation is a reaction-diffusion equation which exhibits a wide variety
of interesting patterns. In non-dimensional form the system is

ut = Du∇2u − uv2 + α(1 − u),

vt = Dv∇2v + uv2 − (α + β)v,

where the positive diffusion parameters Du, Dv are generally chosen so that the ratio
Du/Dv = 2. The default choice is Du = 2 · 10−5 and Dv = 1 · 10−5. The constants α
and β can be viewed as bifurcation parameters. As a default choice we set α = 0.065
and β = 0.035. Defining y = [u, v]T , represents the equations in the appropriate form.
Note that the transformed equations in Fourier space are very similar to the original
equations, they read

ût = −Du(k2 + l2)û(l, k) −F(uv2 − α(1 − u)),

v̂t = −Dv(k
2 + l2)v̂(l, k) + F(uv2 − (α + β)v).

The initial conditions we choose can be found in the source code, the smooth initial
condition we have implemented are scaled Gaussian pulses. By default ND is chosen to be
128 on the grid x, y ∈ [0, 2.5]. The package also includes discretizations of this problem in
one and three space dimensions. We refer the reader to the source code in grayscott.m

and grayscott3d.m respectively for more details. In the directory tests you will find
files testgrayscott2d.m and testgrayscott3d.m, which can be viewed as typical test
scripts.

5 ϕ-functions

Central to the implementation of exponential integrators is the evaluation of exponential-
like functions, commonly denoted by ϕ-functions in recent literature. We define the
functions by the integral representation
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ϕ`(z) =
1

(` − 1)!

∫ 1

0
e(1−θ)zθ`−1 dθ, ` = 1, 2, . . . . (8)

For small values of `, these are

ϕ1(z) =
ez − 1

z
, ϕ2(z) =

ez − z − 1

z2
, ϕ3(z) =

ez − z2/2 − z − 1

z3
.

It is convenient to define ϕ0(z) = ez, in which case the functions obey the recurrence
relation

ϕ`(z) =
ϕ`−1(z) − 1

(`−1)!

z`
, ` = 1, 2, . . . .

Evaluating these expressions numerically is not a trivial task. The accurate computation
of ϕ1 is a well known problem in numerical literature see [13, 15, 21], and problems
arise from small values of z giving cancellation errors. For small values of z, expanding
in Taylor series leads to accurate approximations, while for large values of z, the direct
formula can be used. This approach was used by Cox and Matthews [8], but they noticed
in some cases that in an interval close to the switching point, neither approximation was
accurate.

Kassam and Trefethen [18] proposed to approximate with a contour integral, which
worked well as long as the contour of integration is suitably chosen. However, the contour
is in general problem dependent and difficult to determine in advance.

We propose to use an algorithm based on first a variant of the scaling and squaring
approach (method 3 in [23]). After scaling, the exponential is calculated using a Padé
approximant. This is the same approach used to compute ϕ1 in [15] and the accompa-
nying C and matlab-software. The general form of the (d, d)-Padé approximant of ϕ`

is

ϕ`(z) =
N `

d(z)

D`
d(z)

+ O(z2d+1),

where the unique polynomials N `
d and D`

d are

N `
d(z) =

d!

(2d + `)!

d∑

i=0




i∑

j=0

(2d + ` − j)!(−1)j

j!(d − j)!(` + i − j)!


 zi,

D`
d(z) =

d!

(2d + `)!

d∑

i=0

(2d + ` − i)!

i!(d − i)!
(−z)i.

(9)

When ` = 0, these reduce to the well known diagonal Padé approximations of the expo-
nential function, see for example [4].

To reverse the scaling for ` > 0 is not trivial, in [2] a list of scaling relations for
` = 1, . . . , 6, is given. In general one can find that the ϕ-functions obey scaling relations
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of the form

ϕ2`(2z) =
1

22`


ϕ`(z)ϕ`(z) +

2∑̀

j=`+1

2

(2` − j)!
ϕj(z)


 ,

ϕ2`+1(2z) =
1

22`+1


ϕ`(z)ϕ`+1(z) +

2`+1∑

j=`+2

2

(2` + 1 − j)!
ϕj(z) +

1

`!
ϕ`+1(z)


 .

(10)

The overall algorithm for computing ϕ-functions may be summarized as follows.

1. Let p be the smallest integer such that 2p ≥ ‖z‖∞.

2. Set zscaled = z/2max(0,p+1).

3. Compute ϕ`(zscaled) using a (6,6)-Padé approximant from (9).

4. Undo scaling by (10).

In step 3, we choose the (6,6)-Padé approximation, we choose this case because it
was promoted in [15] for ϕ1. Note that the evaluation of ϕ` by scaling and modified
squaring requires ϕj , for j < `, so the function implemented in this package will only
take in ranges of ϕ-functions to compute, starting with ϕ1. A detailed analysis of the
ϕ-functions is a topic we intend to pursue in the near future.

6 Included functions and scripts

We discuss here selected functions included in the package, and their usage. The header
documentation in each script is usually more in-depth than present here, but may be of
a more technical nature.

6.1 integrator.m

The basic stepper routine for exponential integrators.

[ t , u, varargout] = integrator(problem, tspan, h, cof)
[ t , u, varargout] = integrator(problem, tspan, h, cof, timepoints);

This is the key interface function in this package. It is the function that integrates the
differential equation (or the “problem”) throughout a timespan. If an addition vector
of timepoints is supplied, the numerical solution at those points will be returned. Each
element in timepoints must be an integer multiple of h. integrator.m has a callback
functionality in case one wants to calculate a function, or plot some function (energy)
of the solution as integrator integrates through time. This uses the field outputfcn in
the problem-structure, Section 4.1. The nls-problem contains two examples on usage of
this callback functionality.
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6.2 phipade.m

Computes approximations to ϕ-functions.

phi_k = phipade(z, k);
[phi_1, phi_2, ..., phi_k] = phipade(z, k);

This is a function crucial to all schemes using ϕ-functions. It implements the algorithm
sketched in Section 5. For efficiency, especially in order-tests, additional memory re-
sources are expended in caching recently computed function values. The function value
cache is organized in an LRU (least recently used) fashion and, unfortunately, increases
the code complexity of phipade. Caching is turned on by default, but may be tog-
gled with the use of the wantcache-function or by setting a variable wantcache within
phipade.m. The function is entirely self-contained with respect to use of other functions.
It may be pulled out of the expint-package and used independently if necessary.

6.3 globalorder.m

Performs a global order test.

schemes = globalorder(problem, tspan, dt, schemes, varargin)

Input arguments are the problem in question, the timespan, a vector of timesteps to test
and the schemes to test. Optionally, one may provide a string with a scheme-name which
will be used for the reference solution. The default is to use ode15s. It is important to
build up a sensible vector of timesteps to be used, all timesteps used should divide the
length of the timespan so that all stepsizes are constant throughout each test. An example
is

tspan = [0, 1];
steplist = round(10.^(4:−0.1:0));
dt = unique(diff(tspan)./steplist);

The function returns the cell-structure of schemes, but with error-data added (and also
timings, measured using cputime). This data is used by orderplot and timingplot.

6.4 localorder.m

Performs a local order test.

schemes = localorder(problem, dt, schemes, varargin)

This does not make any sense for multistep-schemes. Arguments are as for globalorder,
but now the vector of timesteps must be built up differently. The smallest timestep must
divide all other timesteps used, or else the computation would take an unnecessarily long
time. An example is

steplist = round(10.^(4:−0.1:1));
dt = unique(10^−4 .∗ steplist);

Error and timing data is added as for globalorder.
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6.5 orderplot.m

Makes a plot of experimental order.

varargout = orderplot(schemes)
varargout = orderplot(schemes, thexlabel, theylabel, thetitle )

This function produces a plot of local or global error versus timestep. Both error and
timesteps are read from the schemes-array.

6.6 timingplot.m

Makes a plot of timing results.

varargout = timingplot(schemes)
varargout = timingplot(schemes, thexlabel, theylabel, thetitle )

This function works almost the same as orderplot.m, although it plots (global) error as
a function of time spent for each time step and for each scheme.

6.7 orderline.m

Plots a dotted straight line to show order.

orderline(gradient)
orderline(gradient, [h, err])

This is a small utility function for plotting a dotted straight line in a loglog-plot along
with a number representing the gradient of the line. This is useful to add in an orderplot
to visualize the observered order of the schemes. With only one argument, the function
is interactive, waiting for the user to click with the mouse in a plot specifying one point
the line is to go through. The function prints out a vector that can be used as [h, err]

the next time the function is used. The function is non-interactive when [h, err] is
supplied.

6.8 surfplot.m

Surface plot of numerical solution.

varargout = surfplot(data, timepoints, problem, varargin)

Produces a surface plot of the numerical solution. In this case, one should use the
“processed” solution of the problem if applicable, see integrator, Section 6.1. A typical
usage could be:

tspan = [0 1]; h = 0.1; timepoints = [tspan(1):h:tspan(end)];
[ t , U, UF] = integrator(problem, tspan, h, ’lawson4’, timepoints);
surfplot(UF, timepoints, problem);
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6.9 randdecayfcn.m

This is a function used internally in some problem-files. It produces a vector resembling
a discrete Fourier transform of a random function with a prescribed regularity. The
function is used for example in nls.m to be able to choose arbitrary regularity for the
initial condition and the potential.

7 Illustrative examples

In this section we show some typical uses of the expint package.

7.1 Global order with timing plot

The global order test provides a simple way of producing plots which can be used for
comparing the quality of certain schemes on a particular problem. We show here one
representative example of a global error plot, that is the Kuramoto–Sivashinsky equation
in 1D. Both global error as a function of timestep and error as a function of time spend
are shown in Figure 1.
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(b) Error as a function of computational
time

Figure 1: Example testrun for the Kuramoto–Sivashinsky equation. Code used is shown
in Listing 3

7.2 Surface plot

The following sequence of commands generates the plot in Figure 2.

problem = kursiv(’ND’, 256);
[ t , U, UF] = integrator(problem, [0 100], 0.1, ’lawson4’, [0:0.2:100]);
surfplot(UF, t, problem);

Here we use the third optional output argument from integrator, which returnes post-
processed output determined by the problem, in this case for the Kuramoto–Sivashinsky
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Listing 3: Code used to reproduce Figure 1

problem = kursiv(’ND’, 256);
timespan = [0, 1];
steplist = unique(round(10.^(3:−0.01:1)));
dt = diff(timespan)./ steplist ;

% Set up choice of schemes and placeholder for results :
M = setupschemes(’lawson4’, ’hochost4’, ’etd4rk’, ’rkmk4t’, ...

’abnorsett4’ , ’ablawson4’, ’etd5rkf ’ , ...
’genlawson45’, ’modgenlawson45’ );

% Do the global order test . The M structure is returned augmented.
M = globalorder(problem, timespan, dt, M);

% Plot the results
orderplot(M, ’Timestep␣h’, ’Global␣error’, problem.problemname);
timingplot(M, ’Time␣used’, ’Global␣error’, problem.problemname);

Figure 2: Example surface plot, Kuramoto–Sivashinsky 1D, ND = 256, Initial condition:
cos(x/16)(1 + sin(x/16)).
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equation it does the inverse fourier transform and picks out only the real part. We also
specifically instruct integrator to return the solution values at specific points.

A similar procedure produces the plot in Figure 3. However, as this procedure requires
a bit of extra manipulation to generate the desired graphic effects, we refer the reader to
the testgrayscott3d script implemented in tests/testgrayscott3d.m for additional
detail.

Figure 3: Example 3D plot, Gray–Scott, ND = 48.

8 Discussion

The expint package was designed as a tool for facilitating easy testing and comparison of
exponential integrators (and approximations to them) applied to semi-linear problems.
The function which performs the integration known as integrator.m implements the
exponential general linear method described in Section 2. This generality enables all
known exponential integrators to be included in our framework, which allows the user to
easily add their own integrators for comparison. This generality comes to some extent at
the cost of efficiency, however we believe this to be justified given our aims of providing
usability. The package includes many well known exponential integrators (and approxi-
mations to them) and some not so well known ones. Also several semi-discretizations of
well known PDEs have been included. We encourage the user to add their own integrators
and problems.

An important part of the expint package is the evaluation of the ϕ-functions. There
are various problems associated with the alternative approaches used to evaluate these
functions. Combining scaling and squaring with Padé-approximations has become the
standard approach in numerical software like matlab for computing the matrix exponen-
tial. In the self contained function phipade.m a scaling and corrected squaring combined
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with diagonal Padé approximations enables efficient evaluation of the ϕ-functions. The
Padé-coefficients in Section 5 have not been published elsewhere as far as we know.

The implementation uses fixed stepsizes, the reason being twofold. First the coeffi-
cients of the exponential integrator are functions of the stepsize h and the linear term
L. Which means that if the stepsize is changed the coefficients of the method need to
be recomputed before integrating over the new step. Secondly, semi-linear problems are
generally integrated using low order methods such as Crank–Nicolson with fixed step-
sizes. This enables us to compare exponential integrators with the standard approach
for such problems. We do intend to extend this package so that variable stepsizes are
possible, a way to overcome the higher computational cost arising from the change of
the stepsize, is to take advantage of the fact that when implementing any exponential
integrator, we do not really need to compute the ϕ-functions. What we need, is just their
action to a given state vector v. Krylov subspace approximations to the exponential and
some related functions, have been studied by many authors, see for example [12, 14, 29].
The main idea is to approximately project the action of the function ϕ`(hL) on a state
vector v, to a smaller Krylov subspace. The computations are then performed in this
subspace typically of much smaller dimension than the original problem. This technique
has been used effectively for exponential integrators, we cite the papers [11, 15].

We hope that this package is in some way useful in testing and comparing exponential
integrators and will encourage the use of these novel integrators in the future.

A Coefficient functions for included schemes

In this section we list all schemes implemented in this package, with reference to their
origin. For space and æstethic reasons we adopt the notation

ϕi,j = ϕi(cjz) i = 0, 1, . . . , and j = 1, . . . , s (11)

where ϕ0(z) = ez. Also we use 1 to represent the identity matrix. All schemes with
relevant figures describing their performance is listed in Table 1.

A.1 Lawson schemes

Lawson schemes are constructed by applying the Lawson transformation [20] to the semi-
linear problem, then solving the transformed equation by a standard numerical scheme
then back transforming. This whole process can be written in the original variables
see [9], and results in the coefficients of the method involving exponentials. Below we
include some Adam–Bashforth–Lawson and Runge–Kutta–Lawson methods schemes of
low order.

A.1.1 Lawson–Euler — lawsoneuler.m

This is the simplest example of a Lawson scheme, which we choose to call Lawson–Euler.
It has also occasionally been called the “exponential Euler scheme”, but this is confusing
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Name Nonstiff p Stiff p Stages s Output r #ϕ matvecs

Lawson–Euler 1 1 1 1 1 1
ABLawson2 2 1 1 2 2 2
ABLawson3 3 1 1 3 3 3
ABLawson4 4 1 1 4 4 4
Lawson2a 2 1 2 1 2 3
Lawson2b 2 1 2 1 1 2
Lawson4 4 1 4 1 2 6
Nørsett–Euler 1 1 1 1 2 2
ABNørsett2 2 2 1 2 3 3
ABNørsett3 3 3 1 3 4 4
ABNørsett4 4 4 1 4 5 5
ETD2RK 2 2 2 1 3 4
ETD3RK 3 2 3 1 6 7
ETD4RK 4 2 4 1 6 10
Krogstad 4 3 4 1 7 11
Strehmel–Weiner 4 3 4 1 7 10
Friedli 4 3 4 1 7 11
Hochbruck–Ostermann 4 4 5 1 8 13
ETD5RKF 5 1 6 1 9 26
Ehle–Lawson 2 2 4 1 6 9
RKMK2e 2 2 2 1 2 3
ETD2CF3 3 2 3 1 9 8
Cfree4 4 2 4 1 4 9
RKMK4t 4 2 4 1 4 9
GenLawson41 4 2 4 1 4 8
GenLawson42 4 3 4 2 6 12
GenLawson43 4 4 4 3 8 16
GenLawson44 5 4 4 4 10 20
GenLawson45 6 5 4 5 12 24
ModGenLawson41 4 2 4 1 5 9
ModGenLawson42 4 3 4 2 7 13
ModGenLawson43 4 4 4 3 9 17
ModGenLawson44 5 5 4 4 11 21
ModGenLawson45 6 6 4 5 13 25

Table 1: Integrators included in the package, along with relevant figures describing their
properties. #ϕ is the number of distinct ϕ-functions needed to be evaluated for each
scheme. Beware that this counting of ϕ-functions and matrix-vector products do not tell
the full story for all schemes.
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given that the Nørsett–Euler scheme also goes by this name. This scheme has stiff order
one.

0 1

ϕ0 ϕ0

A.1.2 ABLawson2 — ablawson2.m

This scheme is based on the Adams–Bashforth scheme of order two, we represent the
scheme in this form so that the incoming approximations are y [n−1] = [yn−1, hNn−2], in
accordance with the starting procedure implemented in integrator.m. This scheme has
stiff order one.

0 1 0

1 3
2ϕ0 ϕ0 −1

2ϕ2
0

3
2ϕ0 0 ϕ0 −1

2ϕ2
0

1 0 0 0

A.1.3 ABLawson3 — ablawson3.m

This scheme has stiff order one and is based on the Adams–Bashforth scheme of order
three and is represented in this way so that the incoming approximation has the form
y[n−1] = [yn−1, hNn−2, hNn−3]

T .

0 1 0 0

1 23
12ϕ0 ϕ0 −4

3ϕ2
0

5
12ϕ3

0
23
12ϕ0 0 ϕ0 −4

3ϕ2
0

5
12ϕ3

0

1 0 0 0 0

0 0 0 1 0

A.1.4 ABLawson4 — ablawson4.m

This scheme has stiff order one and is based on the Adams–Bashforth scheme of order
four and is represented in this way so that the incoming approximation has the form
y[n−1] = [yn−1, hNn−2, hNn−3, hNn−4]

T .

0 1 0 0 0

1 55
12ϕ0 ϕ0 −59

24ϕ2
0

37
24ϕ3

0 −3
8ϕ4

0
55
12ϕ0 0 ϕ0 −59

24ϕ2
0

37
24ϕ3

0 −3
8ϕ4

0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0
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A.1.5 Lawson2a — lawson2a.m

Based on the midpoint rule see [4, Eq. (232b)], this scheme has stiff order one.

0 1
1
2

1
2ϕ0,2 ϕ0,2

0 ϕ0,2 ϕ0

A.1.6 Lawson2b — lawson2b.m

Based on the trapezoidal rule see [4, Eq. (232a)], this scheme has stiff order one.

0 1

1 ϕ0 ϕ0
1
2ϕ0

1
2 ϕ0

A.1.7 Lawson4 — lawson4.m

Based on the classical fourth order scheme of Kutta see [4, Eq. (235i)], this scheme has
stiff order one.

0 1
1
2

1
2ϕ0,2 ϕ0,2

1
2

1
2 ϕ0,2

1 ϕ0,2 ϕ0
1
6ϕ0

1
3ϕ0,2

1
3ϕ0,2

1
6 ϕ0

(12)

A.2 ETD-schemes

ETD schemes are based on algebraic approximations to the nonlinear term in the vari-
ation of constants formula. ETD means “Exponential Time Differencing” and the name
stems from [8]. This is not a particularly good name for this type of scheme as the
name does not indicate anything about this type of schemes distinguishing it from other
exponential integrators. Nevertheless, we still adopt the term for the time being.

Nørsett [26] developed a class of schemes which reduced to the Adams–Bashforth
methods when the linear part of the problem is zero. The Adam–Bashforth–Nørsett
schemes have recently been reinvented by Cox and Matthews [8] and Beylkin, Keiser
and Vozovoi [2]. Many ETD schemes based on Runge–Kutta methods have also been
developed, below we give some of the well known schemes.

A.2.1 Nørsett–Euler — norsetteuler.m

The most well known exponential version of the Euler method was first found by Nørsett
in [26, 27]. It is also known as the exponentially fitted Euler, ETD Euler, ETD1RK,
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filtered Euler scheme, or Lie–Euler as it is the simplest Lie group integrator with the
affine Lie group, it has stiff order one.

0 1

ϕ1 ϕ0

A.2.2 ABNørsett2 — abnorsett2.m

This stiff order two scheme of Nørsett [26], is implemented in this way so that the
incoming approximation has the same form as in ABLawson2.

0 1 0

1 ϕ1 + ϕ2 ϕ0 −ϕ2

ϕ1 + ϕ2 0 ϕ0 −ϕ2

1 0 0 0

A.2.3 ABNørsett3 — abnorsett3.m

This stiff order three scheme of Nørsett [26], is implemented in this way so that the
incoming approximation has the same form as in ABLawson3.

0 1 0 0

1 ϕ1 + 3
2ϕ2 + ϕ3 ϕ0 −2ϕ2 − 2ϕ3

1
2ϕ2 + ϕ3

ϕ1 + 3
2ϕ2 + ϕ3 0 ϕ0 −2ϕ2 − 2ϕ3

1
2ϕ2 + ϕ3

1 0 0 0 0

0 0 0 1 0

A.2.4 ABNørsett4 — abnorsett4.m

This stiff order four scheme of Nørsett [26], is implemented in this way so that the
incoming approximation has the same form as in ABLawson4.

0 1 0 0 0
1 ϕ1 + 11

6 ϕ2 + 2ϕ3 + ϕ4 ϕ0 −3ϕ2 − 5ϕ3 − 3ϕ4
3
2ϕ2 + 4ϕ3 + 3ϕ4 −1

3ϕ2 − ϕ3 − ϕ4

1 ϕ1 + 11
6 ϕ2 + 2ϕ3 + ϕ4 0 ϕ0 −3ϕ2 − 5ϕ3 − 3ϕ4

3
2ϕ2 + 4ϕ3 + 3ϕ4 −1

3ϕ2 − ϕ3 − ϕ4

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

A.2.5 ETD2RK — etd2rk.m

This scheme first derived by Strehmel and Weiner [31, Eq. (3.6)], has roots in chemistry
[24, Section 3] and was recently derived by Cox and Matthews [8, Eq. (22)], it has stiff
order two.
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0 1

1 ϕ1 ϕ0

ϕ1 − ϕ2 ϕ2 ϕ0

A.2.6 ETD3RK — etd3rk.m

This scheme was first derived by Friedli in [10, Section 4], and more recently appeared
in [8, Eq. (23)–(25)], it has stiff order three.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1 −ϕ1 2ϕ1 ϕ0

ϕ1 − 3ϕ2 + 4ϕ3 4ϕ2 − 8ϕ3 −ϕ2 + 4ϕ3 ϕ0

A.2.7 Ehle–Lawson — ehlelawson.m

This is a scheme of Ehle and Lawson [9] made to remedy problems with the Lawson
schemes. It has four stages but only stiff order two.

0 1
1
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1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 ϕ0,2

1 ϕ1 ϕ0

ϕ1 − 3ϕ2 + ϕ3 2ϕ2 − ϕ3 2ϕ2 − ϕ3 −ϕ2 + ϕ3 ϕ0

A.2.8 ETD4RK — etd4rk.m

This scheme due to Cox and Matthews in [8, Eq. (26)–(29)], was one of the schemes that
kick started the recent focus on exponential integrators, unfortunately it has only stiff
order two.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 ϕ0,2

1 1
2ϕ1,2(ϕ0,2 − 1) ϕ1,2 ϕ0

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 −ϕ2 + 4ϕ3 ϕ0

A.2.9 Krogstad — krogstad.m

This scheme appeared in [19, Eq. (51)] as a variant of ETD4RK by adding the ϕ2-
function in the internal stages, it does not require stage splittings and has stiff order
three.
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ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 −ϕ2 + 4ϕ3 ϕ0

A.2.10 Strehmel–Weiner — strehmelweiner.m

This scheme appeared in [32, Example 4.5.5] one of the earliest exponential Runge–Kutta
methods, it has stiff order three.
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1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 − 1

2ϕ2,2
1
2ϕ2,2 ϕ0,2

1 ϕ1 − 2ϕ2 −2ϕ2 4ϕ2 ϕ0

ϕ1 − 3ϕ2 + 4ϕ3 0 4ϕ2 − 8ϕ3 −ϕ2 + 4ϕ3 ϕ0

A.2.11 Friedli — friedli.m

This scheme appeared in [10, Section 5], it is also one of the earliest exponential Runge–
Kutta methods, it has stiff order three.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 − 1

2ϕ2,2
1
2ϕ2,2 ϕ0,2

1 ϕ1 − 2ϕ2 −26
25ϕ1 + 2

25ϕ2
26
25ϕ1 + 48

25ϕ2 ϕ0

ϕ1 − 3ϕ2 + 4ϕ3 0 4ϕ2 − 8ϕ3 −ϕ2 + 4ϕ3 ϕ0

A.2.12 Hochbruck–Ostermann — hochost4.m

This scheme developed by Hochbruck and Ostermann [16, Section 5], with five-stages is
the only known exponential Runge–Kutta method with stiff order four.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 − ϕ2,2 ϕ2,2 ϕ0,2

1 ϕ1 − 2ϕ2 ϕ2 ϕ2 ϕ0
1
2

1
2ϕ1,2 − 2a5,2 − a5,4 a5,2 a5,2 a5,4 ϕ0,2

ϕ1 − 3ϕ2 + 4ϕ3 0 0 −ϕ2 + 4ϕ3 4ϕ2 − 8ϕ3 ϕ0

where

a5,2 =
1

2
ϕ2,2 − ϕ3 +

1

4
ϕ2 −

1

2
ϕ3,2, a5,4 =

1

4
ϕ2,2 − a5,2
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A.2.13 ETD5RKF — etd5rkf.m

This is a non-stiff fifth order scheme developed in [1]. It usually performs worse than
other order four schemes presented here due to bad error constant. It is based on the six
stage fifth order scheme of Fehlberg.

c =
[

0 2
9

1
3

3
4 1 5

6

]T

ui1(z) = ϕ0,i(z) v11(z) = ϕ0(z)

A(z) =



−
2

3
ϕ2 + 10

9
ϕ̂2

569

11544
ϕ2 + 1355

11544
ϕ̂2 −

831

3848
ϕ2 + 2755

3848
ϕ̂2

−
77157

61568
ϕ2 + 143535

61568
ϕ̂2

587979

61568
ϕ2 −

821745

61568
ϕ̂2 −

405

64
ϕ2 + 675

64
ϕ̂2

655263

7696
ϕ2 −

2031205

23088
ϕ̂2 −

1148769

7696
ϕ2 + 1252665

7696
ϕ̂2

1593

40
ϕ2 −

405

8
ϕ̂2

144

5
ϕ2 −

80

3
ϕ̂2

−
2212835

277056
ϕ2 + 6888625

831168
ϕ̂2

477285

30784
ϕ2 −

496525

30784
ϕ̂2 −

39

16
ϕ2 + 65

16
ϕ̂2 −

4

9
ϕ2 + 20

27
ϕ̂2 −

185

96
ϕ2 + 575

288
ϕ̂2




b11(z) =
47

150
ϕ1 −

188

75
ϕ2 +

94

15
ϕ3 b12(z) = 0

b13(z) = −43

25
ϕ1 +

132

5
ϕ2 − 66ϕ3 b14(z) =

4124

75
ϕ1 −

6152

15
ϕ2 +

2704

3
ϕ3

b15(z) =
189

10
ϕ1 −

662

5
ϕ2 + 284ϕ3 b16(z) = −1787

25
ϕ1 +

12966

25
ϕ2 −

5628

5
ϕ3

where ϕ̂2(z) = ϕ2(
3
5z). Note that the coefficient in front of ϕ3 is different from [1] due

to differing definitions of ϕi.

A.3 Affine Lie group schemes

The construction of Lie group integrators for the solution of semi-discretized PDEs
started with the paper of Munthe–Kaas [25], where the affine Lie group was used. The
RKMK methods requires the computation of the dexp−1 operator which involves iter-
ated commutators. To overcome the need for commutators which often result in stepsize
restrictions Celledoni, Martinsen and Owren [6], constructed the commutator-free meth-
ods.

A.3.1 RKMK2e — rkmk2e.m

This scheme which generalizes the trapezoidal rule can be derived from [25, Ex. 4], but
is also a standard scheme in the chemistry literature, known as the Pseudo-Steady-State-
Approximation (PASSA) scheme, see [34, Section 2], it has stiff order one.

0 1

1 ϕ1 ϕ0
1
2ϕ1

1
2ϕ1 ϕ0
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A.3.2 ETD2CF3 — etd2cf3.m

This is a stiff order three ETD version [16] of a commutator-free scheme in [6].

0 1
1
3

1
3ϕ1,2 ϕ0,2

2
3

2
3ϕ1,3 − 4

3ϕ2,3
4
3ϕ2,3 ϕ0,3

ϕ1 − 9
2ϕ2 + 9ϕ3 6ϕ2 − 18ϕ3 −3

2ϕ2 + 9ϕ3 ϕ0

A.3.3 Cfree4 — cfree4.m

This scheme given in [6, Eq. (7)] assuming affine Lie group action is used, is of stiff order
two. Note that the internal stages are equivalent to those of ETD4RK, Section A.2.8.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 ϕ0,2

1 1
2ϕ1,2(ϕ0,2 − 1) ϕ1,2 ϕ0

1
2ϕ1 − 1

3ϕ1,2
1
3ϕ1

1
3ϕ1 −1

6ϕ1 + 1
3ϕ1,2 ϕ0

A.3.4 RKMK4t — rkmk4t.m

Using a suitable truncation of the dexp−1 operator leads to the method of Munthe–Kaas
[25, Ex. 4], which again is of stiff order two but suffers from instabilities, especially when
non-periodic boundary conditions are used.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

z
8ϕ1,2

1
2(1 − z

4)ϕ1,2 ϕ0,2

1 ϕ1 ϕ0
1
6ϕ1(1 + z

2) 1
3ϕ1

1
3ϕ1

1
6ϕ1(1 − z

2) ϕ0

A.4 Generalized Lawson schemes

Krogstad [19], constructed these schemes as a means of overcoming some of the un-
desirable properties of the Lawson schemes. The methods boil down to using a more
sophisticated transformation which better approximates the dynamics of the original
differential equation see [28] for more details. The transformation involves using approx-
imations of the nonlinear term from previous steps, resulting in an exponential general
linear method.

Two schemes are included in the package but not listed here due to space reasons,
that is the genlawson44.m and genlawson45.m.
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A.4.1 GenLawson41 — genlawson41.m

This exponential Runge–Kutta scheme closely related to Lawson4 has stiff order two.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 − 1

2
1
2 ϕ0,2

1 ϕ1 − ϕ0,2 ϕ0,2 ϕ0

ϕ1 − 2
3ϕ0,2 − 1

6
1
3ϕ0,2

1
3ϕ0,2

1
6 ϕ0

A.4.2 GenLawson42 — genlawson42.m

This scheme requires yn−1 and Nn−2 as initial data. At least one step of an alternative
method is needed to start the integration. The overall stiff order is three.

0 1 0
1
2

1
2ϕ1,2 + 1

4ϕ2,2 ϕ0,2 −1
4ϕ2,2

1
2

1
2ϕ1,2 + 1

4ϕ2,2 − 3
4

1
2 ϕ0,2 −1

4ϕ2,2 + 1
4

1 ϕ1 + ϕ2 − 3
2ϕ0,2 ϕ0,2 ϕ0 −ϕ2 + 1

2ϕ0,2

ϕ1 + ϕ2 − ϕ0,2 − 1
3

1
3ϕ0,2

1
3ϕ0,2

1
6 ϕ0 −ϕ2 + 1

3ϕ0,2 + 1
6

1 0 0 0 0 0

A.4.3 GenLawson43 — genlawson43.m

This scheme requires yn−1, Nn−2 and Nn−3 as initial data. At least two steps of an
alternative method are needed to start the integration. The overall stiff order is four and
for æsthetic reasons the method is broken into the individual matrices.
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c =
[

0 1
2

1
2 1

]T

A(z) =




1
2ϕ1,2 + 3

8ϕ2,2 + 1
8ϕ3,2

1
2ϕ1,2 + 3

8ϕ2,2 + 1
8ϕ3,2 − 15

16
1
2

ϕ1 + 3
2ϕ2 + ϕ3 − 15

8 ϕ0,2 0 ϕ0,2




U(z) =




1 0 0

ϕ0,2 −1
4ϕ2,2 − 1

4ϕ3,2
1
8ϕ2,2 + 1

8ϕ3,2

ϕ0,2 −1
2ϕ2,2 − 1

4ϕ3,2 − 3
16

1
8ϕ2,2 + 1

8ϕ3,2 − 3
16

ϕ0 −ϕ2 − 2ϕ3 + 5
4ϕ0,2

1
2ϕ2 + ϕ3 − 3

8ϕ0,2




B(z) =




ϕ1 + 3
2ϕ2 + ϕ3 − 5

4ϕ0,2 − 1
2

1
3ϕ0,2

1
3ϕ0,2

1
6

1 0 0 0

0 0 0 0




V (z) =




ϕ0 −ϕ2 − 2ϕ3 + 5
6ϕ0,2 + 1

2
1
2ϕ2 + ϕ3 − 1

4ϕ0,2 − 1
6

0 0 0

0 1 0




A.5 Modified generalized Lawson schemes

To overcome a loss of stability which some times occurs in the generalized Lawson schemes
a modification is suggested in [28]. This modification only effects the solution approxi-
mation but significantly improves the accuracy of the schemes. Therefore, the following
listing only include the B(z) and V (z) matrices.

Two schemes are included in the package but not listed here due to space reasons,
they are modgenlawson44.m and modgenlawson45.m.

A.5.1 ModGenLawson41 — modgenlawson41.m

This scheme of stiff order two but performs significantly better than its counterpart
GenLawson1.

B(z) =
[

ϕ1 − ϕ2 − 1
3ϕ0,2

1
3ϕ0,2

1
3ϕ0,2 ϕ2 − 1

2ϕ0,2

]

V (z) =
[

ϕ0

]

A.5.2 ModGenLawson42 — modgenlawson42.m

This scheme of stiff order three but performs significantly better than its counterpart
GenLawson2. It requires yn−1 and Nn−2 to be passed from step to step.
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B(z) =

[
ϕ1 − 2ϕ3 − 1

2ϕ0,2
1
3ϕ0,2

1
3ϕ0,2

1
2ϕ2 + ϕ3 − 1

4ϕ0,2

1 0 0 0

]

V (z) =

[
ϕ0

1
2ϕ2 + ϕ3 − 1

4ϕ0,2

0 0

]

A.5.3 ModGenLawson43 — modgenlawson43.m

This scheme of stiff order four and does not have stability problems for large values of
the timestep. It requires yn−1, Nn−2 and Nn−3 to be passed from step to step.

B(z) =




ϕ1 + 1
2ϕ2 − 2ϕ3 − 3ϕ4 − 5

8ϕ0,2
1
3ϕ0,2

1
3ϕ0,2

1
3ϕ2 + ϕ3 + ϕ4 − 5

24ϕ0,2

1 0 0 0

0 0 0 0




V (z) =




ϕ0 −ϕ2 + ϕ3 + 3ϕ4 + 5
24ϕ0,2

1
6ϕ2 − ϕ4 − 1

24ϕ0,2

0 0 0

0 1 0



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