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Abstract

We derive order conditions for commutator-free Lie group integrators. These schemes

can for certain problems be good alternatives to the Runge-Kutta-Munthe-Kaas schemes,

especially when applied to stiff problems or to homogeneous manifolds with large isotropy

groups. The order conditions correspond to a certain subsets of the set of ordered rooted

trees. We discuss ways to select these subsets and their combinatorial properties. We also

suggest how the reuse of flow calculations can be included in order to reduce the computational

cost. In the case that at most two flow calculations are admitted in each stage, the order

conditions simplify substantially. We derive families of fourth order schemes which effectively

use only 5 flow calculations per step.

1 Introduction

Crouch and Grossman [7] were perhaps the first to propose a method format in the general class
of integrators which are today recognized as Lie group integrators for solving ordinary differential
equations on manifolds. Also Lewis and Simo, see e.g. [13, 14] made significant early contributions
to this class. Going even further back, one finds the class of schemes known today as exponential
integrators, perhaps first proposed by Certaine [4], an extensive review is given in [16]. Some
exponential integrators can be recognized as Lie group integrators with respect to a particular
choice of group action. For a complete discussion of the connection between exponential integrators
and Lie group integrators, see [15, 12]. See also [9] for stiff order conditions for exponential
integrators. More recently the methods known as the Runge-Kutta Munthe-Kaas methods have
been developed [17, 18], see also the survey article [11] and the references therein.

Given a differentiable manifold M we consider the initial value problem

ẏ = F (y), y(0) = p ∈ M, (1)

where y(t) ∈ M, and where F ∈ X(M) is the space of smooth vector fields on M. We shall use
frames for expressing the numerical integrators, however one can alternatively use Lie group actions
[18]. A frame is here defined as a set of d smooth vector fields, E1, . . . , Ed where d ≥ m = dimM
and such that for every point y ∈ M we have

span{E1(y), . . . , Ed(y)} = TyM. (2)

This property plays a similar role to transitivity when schemes are expressed in terms of Lie group
actions. In the way we are going to use frames in the sequel, it is only the linear span V of the
vector fields E1, . . . , Ed which matters, in fact, one may assume, without loss of generality, that
E1, . . . , Ed are linearly independent as vector fields, and thus constitute a basis for V . A change
of basis for V is not going to affect the approximation obtained from the integration scheme.

As an example of a linear space VA of vector fields on Rm, with m = d− 1 one may consider,
for a fixed matrix L ∈ Rm×m

VA = {F : F (y) = αLy + b, α ∈ R, b ∈ Rm} (3)

which is the choice underlying the exponential integrators.
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The property (2) allows us to write an arbitrary smooth vector field F as in (1) in the form

F (y) =

d
∑

i=1

fi(y)Ei(y), (4)

for some functions fi ∈ C∞(M,R). As usual, we define the flow of a vector field F to be the
one-parameter family of diffeomorphisms exp(tF ) defined on some t-dependent subset of M such
that exp(tF ) p is the solution y(t) of (1) with initial value y(0) = p.

The notion of a frozen vector field is important when Lie group integrators are formulated in
terms of frames. Given a vector field F in the form (4) and a point p ∈ M we associate a vector
field Fp ∈ V defined as

Fp(y) =

d
∑

i=1

fi(p)Ei(y).

The schemes of Crouch and Grossman [7] are designed by composing flows of vector fields
frozen at various points near the initial value of the step. Recently Celledoni et al. [3] proposed a
new type of schemes which include the Crouch-Grossman class as a special case.

gr = exp(
∑

k α
k
r,JFk) · · · exp(

∑

k α
k
r,1Fk)(p)

Fr = hFgr
= h

∑

i fi(gr)Ei,

}

, r = 1, . . . , s,

y1 = exp(
∑

k β
k
JFk) · · · exp(

∑

k β
k
1Fk) p.

(5)

The coefficients of the methods are (αk
r,j), 1 ≤ r, k ≤ s, 1 ≤ j ≤ J and (βk

j ), 1 ≤ k ≤ s, 1 ≤ j ≤ J .

We notice that the scheme (5) is explicit if αk
r,j = 0 whenever k ≥ r. The motivation for proposing

this new scheme is twofold. On one hand, there are problems in which the use of commutators
may be undesirable, for instance in the solution of stiff systems or on homogeneous spaces with
large isotropy groups, see [3]. On the other hand, the schemes of Crouch and Grossman which
avoid the use of commutators, involve a very large number of flow computations (exponentials).
For instance, in an s stage explicit Crouch-Grossman method, there will be as many as s(s+ 1)/2
exponentials to compute in each step. The main idea behind these new schemes is to choose the
number J of exponentials per stage as low as possible, clearly, one may use a different J for each
stage.

We shall adopt the definition from [20] of order of consistency (or simply order) of an integration
scheme, by saying that a scheme, represented as a map χh : M → M, has order q if for any smooth
function ψ ∈ C∞(M,R) and point p ∈ M one has

ψ(exp(hF )p) − ψ(χh(p)) = O(hq+1) as h→ 0. (6)

The conditions one needs to impose on the coefficients of the scheme (5) such that (6) holds for
some prescribed q, will be called order conditions.

In this paper we will derive a complete set of order conditions for methods of the format (5).
In Section 2 we extend the results of [20] where order conditions were derived for the schemes
of Crouch and Grossman [7]. In Section 2.4 we shall see how the conditions can be significantly
simplified in the case that J = 2 in (5). Then, in Section 4 we provide examples of schemes, and
we will show how reuse of exponentials can reduce the computational cost of the schemes.

2 Order conditions in terms of rooted ordered trees

The schemes (5) are defined for an arbitrary choice of frame, in particular one can choose M to be
a Euclidean space with global coordinate system (x1, . . . , xd), and the vector fields Ei = ∂

∂xi
. The

flow of an element in the span of these vector fields is just translation, exp(tV )p = p+ tV where
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V =
∑

i Vi
∂

∂xi
. With this choice of frame, it follows that the scheme (5) reduces to a classical

Runge-Kutta scheme

gr = p+
∑

k a
k
rFk

Fr = hFgr











, r = 1, . . . , s,

y1 = p+
∑

r b
rFr,

where ak
r =

∑

j α
k
r,j and br =

∑

j β
r
j . So a necessary condition for the scheme to have order p for

a general frame, is that the coefficients ak
r , bk defined above, satisfy the classical order conditions

for Runge-Kutta methods.

2.1 Trees and elementary differentials

For studying the schemes proposed above, we shall use a generalisation of Butcher series [2, 8]
based on the use of rooted trees. In the classical order theory for Runge-Kutta methods, the
trees are non-ordered trees, meaning that no ordering is imposed on the set of subtrees of a tree.
However, as explained in [20] we here need to use ordered rooted trees. We denote by TO the set
of all ordered rooted trees. A tree t ∈ TO if either t = •, or if t = B+(t1, . . . , tµ) with each ti ∈ TO.
B+ maps an ordered set of trees in TO to one tree in TO by connecting the root of each tree ti to a
new common root. Similarly we define the map B− which assigns to a tree in TO the (ordered) set
of its subtrees. In particular, we set B+(∅) = • and B−(•) = ∅. The number of nodes in the tree
is denoted |t|, so we have | • | = 1 and for t = B+(t1, . . . , tµ) we have |t| = 1 +

∑

i |ti|. We define a
non-commutative concatenation product between elements in TO. The tree • is the unit element,
i.e. • · t = t · • = t for every t ∈ TO. For trees u = B+(u1, . . . , uµ) and v = B+(v1, . . . , vν), we set
u · v = B+(B−(u), B−(v)) = B+(u1, . . . , uµ, v1, . . . , vν). Note that |u · v| = |u| + |v| − 1.

We can now generalize the concept of elementary differentials by associating to each tree
t ∈ TO a differential operator F(t) : C∞(M,R) → C∞(M,R). As usual, we let vector fields
be derivations of C∞(M,R) and we use the notation F [ψ] to signify the result of applying this
operator to a function ψ ∈ C∞(M,R). The product of two derivations F and G is defined as
(F ·G)[ψ] = F [G[ψ]] and we sometimes write this product just as juxtaposition. Note that even
if both F and G are derivations, their composition is not. We define

F(•) =
�
, F(B+(t1, . . . , tµ)) =

∑

i1,...,iµ

F(t1)[fi1 ] · · ·F(tµ)[fiµ
]Ei1 · · ·Eiµ

As with vector fields, we can freeze the coefficients of these operators at any point p ∈ M and we
define

Fp(•) =
�
, Fp(B+(t1, . . . , tµ)) =

∑

i1,...,iµ

F(t1)[fi1 ](p) · · ·F(tµ)[fiµ
](p)Ei1 · · ·Eiµ

This leads to a generalisation of the B-series discussed in [8]. For any map a : TO → R and
p ∈ M we define the formal operator series

B(a) =
∑

t∈TO

h|t|−1a(t)Fp(t) (7)

In what follows, we will frequently make calculation with series, these series should be always
thought of as formal series without any concern about convergence.

The composition of frozen operators Fp(t) is multiplicative with respect to the product on
trees defined above, that is, for any two trees u and v in TO one has

Fp(u)Fp(v) = Fp(u · v). (8)
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2.2 Expansion of the exact solution

To expand the exact solution in a B-series, we need to consider the following series for the flow of
a vector field

ψ(exp(tF )y) = ψ(y) + F [ψ](y) +
1

2!
(F · F )[ψ](y) + · · · = Exp(tF )[ψ](y)

so we let Exp(tF ) denote the exponential series of the operator tF . We have the following result
from [20]

Proposition 2.1 The expansion of the exact flow ψ(exp(hF )y) can be expressed in a B-series
B(a)[ψ](y) where a(t) = α(t)/(|t| − 1)!, and where α(t) is defined recursively as follows:

α(•) = 1 and α(t) = α(B+(t1, . . . , tµ)) =

µ
∏

`=1

(∑`
i=1 |ti| − 1

|t`| − 1

)

α(t`). (9)

2.3 Expansion of the numerical solution

Lemma 2.2 Suppose that φa and φb are maps of M with B-series B(a) and B(b), where a(•) =
b(•) = 1. Thus for any smooth function ψ we have

ψ(φa(y)) = B(a)[ψ](y), ψ(φb(y)) = B(b)[ψ](y).

Then the composition of the maps φa ◦ φb has a B-series B(ab) defined as

ab(•) = 1

and for t = B+(t1, . . . , tµ),

ab(t) =
∑

u·v=t

a(v)b(u) =

µ
∑

k=0

a(B+(tk+1, . . . , tµ))b(B+(t1, . . . , tk))

Proof. We first set z = φb(y), and calculate

ψ(φa(z)) = B(a)[ψ](z) = B(a)[ψ](φb(y)) = B(b)[B(a)[ψ]](y) := B(b)B(a)[ψ](y)

Thus, B(ab) = B(b)B(a) and we multiply the two series and use (8) to obtain

∑

u∈T
O

v∈TO

h|u|−1b(u)h|v|−1a(v)Fp(u)Fp(v) =
∑

u∈T
O

v∈TO

h|u·v|−1b(u)a(v)Fp(u · v)

A change of summation index yields the claimed result. 2

Lemma 2.3 Suppose that a = φa(p) has a B-series B(a). Then the frozen vector field Fa =
∑

fi(a)Ei ∈ V has the B-series Fa = B(Fa) where

Fa(•) = 0

Fa(B+(t1, . . . , tµ)) = 0, µ ≥ 2

Fa(B+(t)) = a(t)

Proof:

Fa =
∑

i

fi(φa(p))Ei =
∑

i

∑

t∈TO

h|t|−1a(t)Fp(t)[fi]Ei =
∑

t∈TO

h|t|−1a(t)Fp(B+(t))

where we have used the recursive definition of the elementary differential operators. 2
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Lemma 2.4 Let G ∈ V be any vector field with B-series of the form

G =
∑

t∈T
O

h|t|−1G(t)Fp((t))

Then, its h-flow exp(hG)p has again a B-series B(g) where

g(•) = 1

g(B+(t1, . . . , tµ)) =
1

µ!
G(t1) · · ·G(tµ)

Proof: The exponential series gives, setting ui = B+(ti)

ψ(exp(hG)p) =

∞
∑

µ=0

hµ

µ!
Gµ[ψ](p) =

∞
∑

µ=0

hµ

µ!

∑

t1,...tµ∈T
O

µ
∏

i=1

h|ti|−1G(ti)Fp(u1) · · ·Fp(uµ)[ψ](p)

By (8) one has Fp(u1) · · ·Fp(uµ) = Fp(B+(t1, . . . , tµ)), and since the subtrees constitute an or-
dered set, every t ∈ TO appears precisely once in the form t = B+(t1, . . . , tµ) as µ ranges from
zero to infinity. Furthermore, since hµ

∏µ
i=1 h

|ti|−1 = h
P

i ti = h|t|−1, we get by reorganising the
above expression

ψ(exp(hG)p) =
∑

t∈TO

h|t|−1g(t)Fp(t)[ψ](p)

with g(t) given as in the lemma. 2

We now define

gr,0 = p ∈ M and gr,j = exp(
∑

k

αk
r,jFk) gr,j−1, j = 1, . . . , J.

so that gr = gr,J in (5). Also, it is convenient to define αk
s+1,j := βk

j for 1 ≤ k ≤ s and 1 ≤ j ≤ J .
Then we can extend the above definition of gr,j also to r = s+ 1 such that gs+1 := gs+1,J = y1.
From these definitions and the above lemmas, we have the result

Theorem 2.5 Consider the commutator-free method (5) where we set gs+1,J := gs+1 = y1 and
gr,J = gr, 1 ≤ r ≤ s. Then gr,j , 1 ≤ r ≤ s + 1, 1 ≤ j ≤ J have B-series B(gr,j) defined
recursively as follows

gr,j(•) = 1, (10)

gr,0(t) = 0, ∀t : |t| > 1, (11)

gr,j(B+(t1, . . . , tµ)) =

µ
∑

k=0

gr,j−1(B+(t1, . . . , tk)) · br,j(B+(tk+1, . . . , tµ)), (12)

br,j(•) = 1, 1 ≤ r ≤ s+ 1, 1 ≤ j ≤ J, (13)

br,j(B+(t1, . . . , tµ)) =
1

µ!
Gr,j(t1) · · ·Gr,j(tµ), (14)

Gr,j(t) =

s
∑

k=1

αk
r,jgk,J(t). (15)

By combining Proposition 2.1 and Theorem 2.5 we obtain

Corollary 2.6 A commutator-free Lie group method (5) has order of consistency q if and only if

gs+1,J(t) =
α(t)

(|t| − 1)!
, ∀t : |t| ≤ q + 1.

Here gs+1,J(t) is given recursively from Theorem 2.5 and α(t) is given by (9).
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Remark 2.7 It is possible to make the recursion formulas in the above theorem more in line with
those that were derived for Crouch-Grossman schemes in [20]. By inserting (15) and (14) into (12)
one gets

gr,j(B+(t1, . . . , tµ)) =

µ
∑

k=0

1

(µ− k)!
gr,j−1(B+(t1, . . . , tk))

∑

`

α
`k+1

r,j · · ·α`µ

r,jg`k+1,J(tk+1) · · ·g`µ,J(tµ)

(16)
where the last sum is over µ − k indices li all ranging from 1 to s. One may apply this formula
repeatedly, starting with j = J and the final result is

gr,J(B+(t1, . . . , tµ)) =

J
∑

j<

1

j!

s
∑

k

αk1

r,j1
· · ·αkµ

r,jµ
gk1,J(t1) · · ·gkµ,J(tµ), 1 ≤ r ≤ s+ 1.

where we have used the short hand summation convention
J
∑

j<

=
J
∑

j1=1

J
∑

j2=j1

· · ·
J
∑

jµ=jµ−1

and
s
∑

k

=
s
∑

k1=1

s
∑

k2=1

· · ·
s
∑

kµ=1

.

The factorial of the multi-index j is defined as

j! = q1! . . . qJ !, qi = (#occurrences of i in j)
∑

qi = µ.

Example: (1, 1, 2, 2, 3)! = 2! · 2! · 1! = 4. 2

2.4 Simplifications for the case J = 2

We begin by presenting a very useful simplification of the formula for the quantities gr,j as given
in Theorem 2.5 when J = 2.

Theorem 2.8 Let t1, . . . , tµ, µ ≥ 2 be any collection of trees in TO. Define t, u, v ∈ TO such that
t = B+(t1, . . . , tµ), u = B+(t1, . . . , tµ−1) and v = B+(t2, . . . , tµ). Then, if J = 2

gr(t) = gr,2(t) =
1

µ

s
∑

`=1

(

α`
r,1g`(t1)gr(v) + α`

r,2g`(tµ)gr(u)
)

, 1 ≤ r ≤ s+ 1.

In particular one has for r = s+ 1

y1(t) = gs+1(t) =
1

µ

s
∑

`=1

(

β`
1g`(t1)y1(v) + β`

2g`(tµ)y1(u)
)

Proof: By applying (16) twice one gets

gr(t) =
1

µ!

µ
∑

k=0

(

µ

k

)

∑

`

α`1
r,1 · · ·α`k

r,1α
`k+1

r,2 · · ·α`µ

r,2g`1(t1) · · ·g`µ
(tµ)

One may now split this sum into two parts, and use the identity
(

µ

k

)

=

(

µ− 1

k − 1

)

+

(

µ− 1

k

)

, 1 ≤ k ≤ µ− 1.

We get

gr(t) =
1

µ!

(

µ
∑

k=1

∑

`

α`1
r,1g`1(t1)

(

µ− 1

k − 1

)

α`2
r,1 · · ·α`k

r,1α
`k+1

r,2 · · ·α`µ

r,2g`2(t2) · · ·g`µ
(tµ)

+

µ−1
∑

k=0

∑

`

α
`µ

r,2g`µ
(tµ)

(

µ− 1

k

)

α`1
r,1 · · ·α`k

r,1α
`k+1

r,2 · · ·α`µ

r,2g`1(t1) · · ·g`µ−1
(tµ−1)

)

=
1

µ

(

s
∑

`1=1

α`1
r,1g`1(t1)gr(v) +

s
∑

`µ=1

α
`µ

r,2g`µ
(tµ)gr(u)

)
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2

3 Minimal sets of order conditions

We have seen that B-series of the form (7) are used to formally express objects of very different
kinds, such as maps and vector fields. This suggests that in the set of maps from TO to R, there
are subsets representing each object type. In order to characterise these subsets, we begin by
interpreting the trees and expansions in a strictly algebraic fashion.

Let A− ⊂ TO be the set of tree of the form B+(t) for t ∈ TO, and let A = A− ∪ {•}. Any
tree t = B+(t1, . . . , tµ) ∈ TO can now be considered as a word of the alphabet A, in the sense
that the finite sequence B+(t1), . . . , B+(tµ) of elements of A, form the word B+(t1, . . . , tµ). With
the concatenation product defined on trees in Section 2.1, we obtain the whole set TO as the free
monoid on A, see for instance [21]. The tree • serves as the identity element. We may now extend
this structure to an R-algebra RTO which we for notational convenience denote B. Its elements
are the formal series on A and it is in fact known to be the free associative R-algebra on the set
A. Denoting by (P, t) ∈ R the coefficient of the tree t in the series P , we define the product of
two series S and T to be the series with coefficients

(ST, t) =
∑

t=uv

(S, u)(T, v).

Next, we note that all integration methods methods considered here are derived by composing
exponentials of linear combinations of frozen vector fields. According to Lemma 2.3 these linear
combinations have expansions with coefficients which are zero on trees not belonging to A−.
Compositions of exponentials of such series can be expressed formally as the exponential of one
single vector field through the Baker-Campbell-Hausdorff formula, thus we conclude that every
map considered here is the exponential of a vector field whose expansion is in the free Lie algebra
g on the set A− ⊂ TO.

We define the following three subsets of B

• The subspace g ⊂ B which is the free Lie algebra on the set A.

• V ⊂ g is the subspace of g consisting of series S such that

(S, t) = 0 whenever t 6∈ A−

• G is the Malcev group of exponential series T = exp(S), S ∈ g. In particular, if T ∈ G then
(T, •) = 1.

The characterization of this Lie algebra is well-known, see for instance [21]. We define the
coproduct ∆ : B → B⊗B to be the unique homomorphism of R-algebras sending • to (•⊗•) and
such that

∆(t) = • ⊗ t+ t⊗ • for any t ∈ A−.

Writing this out for an arbitrary tree t = B+(t1, . . . , tµ), one gets

∆(t) =
∑

f⊆B−(t)

B+(f) ⊗B+(f c)

where the sum is over all subforests of B−(t) including the empty set and B−(t) itself and where
f c is the complement of f in B−(t). The ordering of the subforests f and f c is inherited from the
ordered set B−(t).

The Lie algebra g is now characterised as

g = {S ∈ B : ∆(S) = • ⊗ S + S ⊗ •}.

7



By dualizing this relation, one obtains internal relations between the coefficients (S, t) of a series
S ∈ g. One gets for any t1 ⊗ t2 ∈ B ⊗ B

(S, t1

∃

t2)t1 ⊗ t2 = 0

so we may conclude that the dependencies among the coefficients of a Lie series S ∈ g occur for
trees which are identical modulo a permutation of subtrees. Using, yet again, classical theory of
free Lie algebras, one may characterize this dependency by a generalized Witt formula counting,
for a given tree t, the dimension of the subspace of g spanned by the set of trees obtained from
permuting the subtrees of t. Consider the equivalence class [t] characterized by a set of ν distinct
subtrees ti ∈ TO, i = 1, . . . , ν where there are exactly αi occurrences of the subtree ti. From
Bourbaki [1], we find that the subspace spanned by the set of trees in [t] has dimension

c(α) = 1/|α|
∑

d|α

µ(d)
(|α|/d)!
(α/d)!

(17)

This relation will be useful in the sequel in selecting a minimal set of order conditions. Some
examples are

c(n) = 0, n > 1
c(n, 1) = 1, n > 0,
c(n, 1, 1) = n+ 1, n > 0,
c(n, 2) = bn+1

2 c n > 0.

(18)

We have seen that there is a natural grading on B corresponding to the number of nodes in each
tree, defining the grade ν(t) = |t|−1 one sees that ν(u ·v) = |u ·v|−1 = |u|+ |v|−2 = ν(u)+ν(v).
One may decompose the spaces B and g according to this grading as

B =
∐

n≥0

Bn, g =
∐

n≥1

gn, gn = g ∩ Bn

Clearly dimBn is the number of ordered rooted trees with exactly n + 1 nodes, it is well-known
(see e.g. [5]) that this number is given as the Catalan number

dimBn = Cn =
1

n+ 1

(

2n

n

)

, (19)

having generating function

g(T ) =

∞
∑

n=0

CnT
n =

2

1 +
√

1 − 4T
(20)

We prove the following result

Theorem 3.1

dim gn = νn =
1

2n

∑

d|n

µ(d)

(

2n/d

n/d

)

where µ(d) is the Möbius function defined for any positive integer as µ(1) = 1, µ(d) = (−1)p when
d is the product of p distinct primes, and µ(d) = 0 otherwise. The sum is over all positive integers
which divide n, including 1 and n.

Proof. This formula is well-known in several different contexts, for instance, it counts the
number of balanced Lyndon words [1] and has been used recently in the context of geometric
integration in [10] and [19]. The proof is mainly based on the Poincaré-Birkhoff-Witt (PBW)
theorem concerning the enveloping algebra of the free Lie algebra g. It is well-known [22, Thm
3.2.8, p. 174] that B is also the enveloping algebra of g. A standard way of finding the dimensions
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νn is to consider the dimensions dimBn. Viewing B as the enveloping algebra of g, one has from
the PBW theorem

∞
∑

m=0

dimBm Tm =

∞
∏

n=1

(

∞
∑

r=0

Tnr

)νn

=

∞
∏

n=1

(1 − Tn)−νn (21)

which we now just need to compare to (20) and solve for νn.
We take logarithms of both expressions and use the expansion − log(1 − x) =

∑∞
k=1 x

k/k

∞
∑

n=1

νn

∞
∑

k=1

1

k
Tnk = log g(T ) =

∞
∑

m=1

1

2m

(

2m

m

)

Tm.

where the Taylor coefficients of log g(T ) are found for instance by using the relation
(

log g(T )
)′

=
g′(T )/g(T ) = 1

2 (g′(T ) − (g(T ) − 1)/T ) which is easily verified. Comparing equal powers we get

∑

d|m

νd

d

m
=

1

2m

(

2m

m

)

The Möbius inversion formula thus yields

nνn =
∑

d|n

µ(d)
1

2

(

2n/d

n/d

)

2

The maps we consider here have B-series in B interpreted as exponentials of series in g. It is
easy to prove that if T = exp(S) with S ∈ g, then T satisfies the following relation in terms of the
above coproduct

∆(T ) = T ⊗ T

This relation can also be characterized in terms of the shuffle product on B by

(T, u

∃

v) = (T, u)(T, v),

see [21] for a proper definition of the shuffle product

∃

.

4 Examples and implementation issues

4.1 Order conditions up to order 4.

The eight classical order conditions up to order 4 are well-known, and given as

Order Condition

1
∑

r b
r = 1,

2
∑

r b
rcr = 1

2 ,

3
∑

r b
rc2r = 1

3 ,

3
∑

r,k b
rak

rck = 1
6 ,

Order Condition

4
∑

r b
rc3r = 1

4 ,

4
∑

r,k b
rcra

r
kck = 1

8 ,

4
∑

r,k b
rar

kc
2
k = 1

12 ,

4
∑

r,k,m brak
ra

m
k cm = 1

24 .

(22)

These must be fulfilled also by the commutator-free schemes (5) with

br =
∑

j

βr
j , ak

r =
∑

j

αk
r,j (23)
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To simplify the notation in what follows, we shall work with covectors in (Rs)∗ whose components
are the upper indices, as

βj = [β1
j , . . . , β

s
j ]

and we use tensor product notation to indicate multilinear mappings on Rs × · · · × Rs as for
instance

(βj ⊗ βm)(u, v) =
∑

k1,k2

βk1

j βk2

j uk1
vk2

We next introduce the (µ, 0)-tensor

tµ =
∑

j<

1

j!
βj1 ⊗ · · · ⊗ βjµ

, µ ≥ 1. (24)

We have for example

t2 =

J
∑

j1=1

(βj1 ⊗ (
1

2
βj1 +

∑

j2>j1

βj2)) (25)

There are no additional order conditions for order 1 and 2. For order 3, however, one must take
into account the order condition associated to either of the two trees

•
•
•
•

or •
• •
•

Denote by 1 = [1, . . . , 1]T the s-vector of ones and cq = [cq1, . . . , c
2
s]

T the qth power of the abscissae
in the scheme, and c = c1. The third order non-classical condition is

t2(1, c) = 2 t2(c,1) =
1

3
. (26a)

In the case that there are two exponentials in the final stage, one can use Theorem 2.8 and replace
(26a) by the condition

β1(c) +
1

2
β2(1) =

1

3
(26b)

As for the fourth order condition, one first sees that there are 14 trees with five nodes. The two

trees •
• • • •

and •
•
•
•
•

can be discarded, and among the subsets

{ •
•
•
• •
, •
• •
•
•
, •
• • •

•
}, { •

•
• •

•
, •
• •
• •

}, { •
•
•
•
•
, •
• •
•
•

}
one needs to include exactly one tree. The corresponding general condition and the version valid
in case of two exponential are respectively

t3(c,1,1) =
1

24
(general) (27a)

1

6
β1(c) +

1

18
β2(1) =

1

24
(two exponentials) (27b)

Choosing the first tree of the second set, we get the conditions

t2(
1

2
c2,1) =

1

24
(general) (28a)

1

4
β1(c

2) +
1

12
β2(1) =

1

24
(two exponentials) (28b)

and from the first condition of the last set we get

t2(ac,1) =
1

24
(general) (29a)

1

2
β1(ac) +

1

12
β2(1) =

1

24
(two exponentials) (29b)

10



The remaining 5 trees are related to the classical order conditions (22). The first, third and fourth
condition of order four correspond respectively to the trees

•
•

• • •
•
•
•
• •

•
•
•
•
•

whereas the second fourth order condition of (22) is the sum of the conditions corresponding to
each of the two trees

•
•
•
•
•

•
•
• •
•

(30)

So, given that the classical order conditions have been imposed, it suffices to consider one of the
two above trees and the order condition is

∑

r

brT2,r(c, 1) =
1

24
(general) (31a)

where the (µ, 0)-tensor Tµ,r is formed as

Tµ,r =
∑

j<

1

j!
αj1,r ⊗ · · · ⊗ αjµ,r (32)

The condition (31a) is actually the first one to involve the non-classical coupling coefficients αk
r,j of

the scheme, thus this condition is responsible for the necessity of having more than one exponential
in at least one of the internal stages. Setting J = 1 in all internal stages would yield conflicting
conditions corresponding to the two trees (30). If we allow instead at most two exponentials in
the internal stages, we get the condition

1

2





∑

r,`

br cr α
`
r,1 c` +

∑

r,`,m

br a`
r c` α

m
r,2



 =
1

24
(two exponentials) (31b)

A useful strategy for constructing commutator-free schemes, is to start with an underlying
classical Runge-Kutta scheme which satisfies the classical order conditions (22) up to order p ≤ 4.
Then, there is one extra condition schemes order three and four additional ones for order four.
One may used the equations marked “a” for the general case, and those marked “b” when there
are at most two exponentials. For schemes of order three one needs three stages and the update
stage must contain (at least) two exponentials in order to satisfy (26b). On the other hand, this
extra exponential provides three parameters. For schemes of order four satisfying the classical
conditions, the β-parameters are, in the case of two exponentials in the update stage, involved in
(26b), (27b), (28b) and (29b). We observe that these 4 equations immediately yield

β1(1) =
1

2
, β1(c) =

1

12
, β1(c

2) = 0, β1(ac) = 0, (33)

The condition (31b) calls for two exponentials in one of the internal stages. Adding one in stage
r gives r − 1 extra parameters.

4.2 Reusing exponentials

Suppose the commutator-free scheme (5) is explicit. In [3] it was suggested that whenever more
than one exponential is to be included in a stage, one may try to reuse exponential calculations
performed in previous stages. If it is possible to find coefficients such that for some 1 ≤ r < r̂ ≤ s+1
and j∗ ≥ 1, one has

αk
r,j = αk

r̂,j , 1 ≤ k ≤ s, 1 ≤ j ≤ j∗,

11



one may in stage r calculate

p∗ = exp(
∑

k

αk
r,j∗Fk) · · · exp(

∑

k

αk
r,1Fk)(p)

and find gr, gr̂ as

gr = exp(
∑

k

αk
r,JFk) · · · exp(

∑

k

αk
r,j∗+1Fk)(p∗), gr̂ = exp(

∑

k

αk
r̂,JFk) · · · exp(

∑

k

αk
r̂,j∗+1Fk)(p∗),

and thereby save j∗ calculations of the exponential map. In the case that one may allow for storing
separate exponential maps (as e.g. matrices), there are further possibilities for reuse.

The schemes of order three are discussed in detail in [3].

Explicit fourth order schemes with four stages We refer to [8, p. 138] for a complete
classification of fourth order classical Runge-Kutta schemes. There exists one two-parameter
family and three one-parameter families of such schemes. We shall allow exactly two exponentials
in the update stage, and assume that there is an underlying classical Runge-Kutta scheme with
coefficients br, ak

r as in (23) satisfying the classical order conditions (22). The conditions (33)
uniquely determines all the βk

1 . It is impossible to reuse an exponential in the update stage
because the explicitness of the scheme would require β4

1 = 0, leading to an inconsistency. As
mentioned above, one extra exponential is needed in one of the internal stages. We include this
in the last stage to maximize the number of free parameters and allow for reusing an exponential
from one of the first two stages. We have at our disposal the coefficients α1

4,1, . . . , α
3
4,1, the αk

4,2

being determined by (23). It is natural to try to make the exponential from the second or third
stage coincide with the rightmost exponential in the fourth stage, setting

αk
4,1 = ak

r , r = 2 or 3, k = 1, . . . , r − 1. (34)

This requirement is rather restrictive, it completely determines all the αk
4,j coefficients when the

underlying classical scheme is given.
However, equation (31b) must still hold and this leads to further conditions on the classical

underlying coefficients

b4(a42c2 + a43c3)c2 =
1

24
, if r = 2 in (34)

or

b4(a42c2 + a43c3)c3 − b4a32c2 =
1

24
, if r = 3 in (34)

In reusing the exponential from the second stage, one can choose c2 6∈ {0, 1/3, 1/4, 1} and then set

c3 =
3c2 − 1

4c2 − 1

The classical RK4 scheme of Kutta with c2 = c3 = 1
2 was given as an example of such schemes in

[3], it is the leftmost scheme of figure 1. It is interesting to observe also that with the choice of linear
space V as in (3) the internal stages of this scheme coincide with an exponential integrator presented
by Cox and Matthews [6]. Note that the famous 3/8-rule of Kutta having c2 = 1/3, c3 = 2/3
cannot be used in this way. Reusing the exponential of the third stage is also possible. Incidentally,
it happens that the RK4 scheme also allows for a reuse of the exponential in the third stage, see
the rightmost scheme of figure 1.

There exists one other confluent scheme which is reusing this exponential namely the one given
in figure 2

All other schemes which reuse the exponential from the third stage must have c2 and c3 which
satisfy the relation

2(3c2 − 2)c23 + (3 + 2c22 − 6c2)c3 + 3c2 − 2c22 = 1
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Figure 1: Commutator-free schemes of order four based on the classical RK4 scheme, reusing
exponentials from second and third stage respectively
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Figure 2: Commutator-free schemes of order four based on a confluent scheme, reusing exponentials
the third stage
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Unfortunately, the procedure presented here cannot be applied to obtain commutator-free
generalizations of classical schemes of order five and higher because the composition of more than
two exponentials is required. There are for instance a total of 25 conditions of order 5 according
to theorem 3.1. Of these, 11 involve the β-coefficients of the update stage. Fifth order classical
explicit Runge-Kutta schemes have at least six stages, thus three exponentials (J = 3) in the
update stage would add 12 parameters. The conditions can however not be made linear when
J = 3.

We have presented a general order theory for the commutator-free schemes introduced in [3].
Several new schemes of order four are easily obtained from this discussion. Much work still remains
for constructing schemes of higher order, but the theory presented here can be used to write down
the order conditions to any order.
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