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Abstract

If the three moments of inertia are different from each other, the solution to the free
rigid body (FRB) equations of motion is given in terms of Jacobi elliptic functions. Using
the Arithmetic-Geometric mean algorithm, [1], these functions can be calculated efficiently
and accurately. The overall approach yields a faster and more accurate numerical solution
to the FRB equations compared to standard numerical ODE and symplectic solvers. This
approach performs well also for mass asymmetric rigid bodies.
In this paper we consider the case of rigid bodies subject to external forces. We consider
a strategy similar to the symplectic splitting method proposed in [16]. The method here
proposed is time-symmetric. We decompose the vector field of our problem in a FRB
problem and another completely integrable vector field.
In our experiments we observe that the overall numerical solution benefits greatly from
the very accurate solution of the FRB problem. We apply the method to the simulation of
artificial satellite attitude dynamics.

1 Introduction

We consider the Euler equations describing the motion of a free rigid body (FRB),

I1ω̇1 = (I2− I3)ω2ω3,

I2ω̇2 = (I3− I1)ω3ω1,

I3ω̇3 = (I1− I2)ω1ω2,

(1)

whereI1, I2 and I3 are the principal moments of inertia. These equations are completely
integrable. Energy and angular momentum are preserved along the solution, this means that
for all times the two quantities

E = I1ω2
1 + I2ω2

2 + I3ω2
3, G2 = I2

1ω2
1 + I2

2ω2
2 + I2

3ω2
3, (2)

are constant, (hereE is the energy andG2 is the total angular momentum). There is also a
non canonical symplectic structure preserved by the flow of (1), [11].

By using the two constants of motion it is possible to derive the general solution of the
equations expressed in terms of Jacobi elliptic functions.

The expression of the exact general solution of the FRB equations can be turned into a
numerical method by using efficient numerical approximations of the Jacobi elliptic func-
tions. Some extra computational work is required to impose initial conditions. We also
refer to [3] and [14] for related literature. In this paper we show how this approach is very
competitive and we discuss the details of its further use in problems of rigid bodies subject
to external forces.

The simulation of rigid body motion is interesting for applications in robotics, structural
mechanics, and molecular dynamics, [7], [9].

Symplectic integration methods for the Euler equations have been constructed by vari-
ous authors, [6], [15], [10], [13], see also [9] and references therein. Many of these methods
cannot be straightforwardly generalized to the broader class of non canonical Hamiltonian
problems, thus their use is limited to the numerical approximation of the FRB equations.
However some of these numerical tools have successfully been applied in the simulation of
rigid body dynamics and of torqued rigid bodies. In [16] and [2], a splitting method for the
FRB equations has been successfully generalized into a symplectic splitting for the case of
torqued rigid bodies.



For the FRB equations, in [12] and [16], the right hand side of (1) is split in the following
three terms,

f1(ω) =

 0
I3ω3ω1

−I2ω1ω2

 , f2(ω) =

 −I3ω2ω3

0
I1ω1ω2

 , f3(ω) =

 I2ω2ω3

−I1ω3ω1

0

 . (3)

Each of the three vector fields is Hamiltonian, and defines a differential equation which is
easy to integrate exactly. The appropriate composition of the corresponding flows produces
a symplectic approximation of the problem. This symplectic method seems to outperform
most of the known and previously proposed strategies of symplectic integration of the FRB
problem, [4], [13]. We use this splitting for comparison in our numerical experiments. The
generalization to the case of torqued rigid bodies, in [16], is achieved by considering a
splitting of the Hamiltonian of the problem in four parts, three of them give rise to vector
fields analogous tof1, f2 and f3, the last vector field is completely integrable and arises
form the potential energy yielding the torque. We will briefly recall this approach in section
4.

The method proposed in the present paper is time-symmetric, and related to the ap-
proach of [16] and and [2]. We decompose the vector field of our problem in a FRB prob-
lem and another completely integrable vector field. Even if the numerical approximation
of the FRB equations is performed to machine accuracy, the overall splitting is not sym-
plectic. However the loss of symplecticity does not seem to have significant influence on
the qualitative performance of the new method. On the contrary in some experiments the
new method presents considerably better conservation of energy and better behavior of the
numerical solution.

Accurate, symplectic, energy and momentum preserving approximations for the solu-
tion of the FRB equations, have been recently addressed in [13]. In this work the authors
propose a new implementation of the Discrete Moser-Veselov algorithm of [15], and achieve
order four and six in the integration by applying appropriate rescaling of the initial condi-
tion. The rescaling need to be performed just once, at the beginning of the integration lead-
ing to a significant improvement with respect to the second order Discrete Moser-Veselov
algorithm.

Our numerical tests show that using the exact solution and computing (14) to machine
accuracy leads to a very competitive method also compared to the improved Discrete Moser-
Veselov approach for the solution of the FRB equations. Both approaches require the com-
putation of some quantities prior to the time stepping, the rescaling factors for the DMV, and
the constants for imposing the initial condition in the case of the Jacobi elliptic functions.
This implies increased computational cost when the methods are used within a splitting
technique for torqued rigid bodies. Still the symmetric splitting method of this paper ap-
pears to be very competitive also in the case of torqued rigid bodies, at least in the presented
experiments.

The outline of the paper is as follows. The new method is presented in section 2. Some
technical issues for the implementation of this approach are discussed in section 3. In
section 4 we report some numerical experiments comparing the proposed approach to the
Discrete Moser Veselov approach of [13] and the symplectic splitting of [16], [2].

2 A symmetric splitting method for torqued rigid bodies

Efficient integrators for the free rigid body can be used in connection with splitting methods
in the numerical approximation of more complex rigid body dynamics. The method pre-



sented here can also be applied to problems of interacting rigid bodies, rigid body linked by
constrains, etc [2].

The Hamiltonian function for our problem is

H = H (π,Q) =
1
2

(
π2

1

I1
+

π2
2

I2
+

π2
3

I3

)
+V(Q),

whereπ = (I1ω1, I2ω2, I3ω3)T is the angular momentum andQ is the rotation matrix.
The HamiltonianH gives rise to the following system of ordinary differential equations

π̇ = skew(T−1π)π+ f (Q), (4)

Q̇ = skew(T−1π)Q, (5)

where

skew(v) =

 0 v3 −v2

−v3 0 v1

v2 −v1 0

 ,

f depends on the potential energyV(Q), and

T =

 I1 0 0
0 I2 0
0 0 I3


is the inertia tensor. To derive a symmetric splitting method for the above equations, we
start by applying a Störmer/Verlet splitting,

H = H1 +H2, H2 = V(Q),

andH1 = H −H2 is the kinetic energy. The system of differential equation is then split into
the two systems

S1 =

{
π̇ = skew(T−1π)π,

Q̇ = skew(T−1π)Q,
(6)

with π(t) = Q(t)π0, corresponding to the kinetic part and

S2 =

{
π̇ = f (Q),

Q̇ = 0,
(7)

corresponding to the potential part, and the numerical scheme is

(π,Q)( j+1) = ϕ[S2]
h/2 ◦ϕ[S1]

h ◦ϕ[S2]
h/2((π,Q)( j)), j = 0,1, . . . ,

whereϕ[S1]
h andϕ[S2]

h represent the exact flows ofS1 andS2.
The first equation in (6) is independent from the external forcef (Q), and is simply a

free rigid body problem.
Rewriting the first part of system (6) in terms of the angular velocity,ω = T−1π, one

obtains the Euler equations (1). We can computeπ(t), for anyt and any initial valueπ( j),
to machine accuracy by using the exact solution of the Euler equations, and computing the
Jacobi elliptic integrals by the method of Arithmetic-Geometric mean, see section 3. Hence,
the update ofπ, on the interval[t j , t j+1],

π( j+1) = Q(t j+1)π( j), (8)



is “exact”. However,Q(t j+1) can not be directly deduced from the solution of the first
equation in (6) and must be obtained by numerical integration of the second equation of (6).
The approximationQ( j+1) ≈Q(t j+1) is obtained integrating numerically the equation

Q̇ = skew(T−1π)Q, Q(t j) = I ,

using a symmetric Magnus method (of order 2 or 4), [8]. For order 2 this results in the
following expression

Q( j+1) = exp
(

skew
(

hT−1π( j+1/2)
))

, (9)

whereπ( j+1/2) = π(t j + h/2) is obtained as a by-product of the updateπ( j+1) in (8) with
little extra cost (see section 3 for details). The exponential in (9) is computed by Rodrigues

formula. Thus, the flowϕ[S1]
h is approximated by a second order flowφ[S1]

h .

Given f (Q j) the flowϕ[S2]
h can be calculated exactly

π( j+1) = π( j) +h f(Q( j)),

Q( j+1) = Q( j),

and the updating (second order) scheme is finally

(π( j+1),Q( j+1)) = ϕ[S2]
h/2 ◦φ[S1]

h ◦ϕ[S2]
h/2((π

( j),Q( j))),

where

φ[S1]
h ((π( j),Q( j))) =

{
π( j+1) = Q(t j+1)π( j),

Q( j+1) = exp
(

skew
(

hT−1π( j+1/2)
))

,
(10)

ϕ[S2]
h ((π( j),Q( j))) =

{
π( j+1) = π( j) +h f(Q( j)),

Q( j+1) = Q( j)
(11)

It is easy to verify thatφ[S1]
h φ[S1]

−h = I and the overall splitting method has the time-
symmetry property,

ΦhΦ−h = 1, Φh = ϕ[S2]
h/2 ◦φ[S1]

h ◦ϕ[S2]
h/2.

3 Implementation issues

Starting form the Euler equations (1) and using the constants of motion (2), consider the
values

a2
1 = 2EI3−G2, a2

3 = G2−2EI1,

b2
1 = I2(I3− I2), b2

3 = I2(I2− I1).
(12)

Assumeb3/a3 ≤ b1/a1 (we will have a similar situation ifb3/a3 ≥ b1/a1), the solutions of
the Euler equations are

ω1 =
a1cnu√
I1(I3− I1)

, ω2 =
a1snu

b1
, ω3 =

a3dnu√
I3(I3− I1)

, (13)



where the Jacobi elliptic functions cn, sn and dn, are defined by

cnu = cosϕ, snu = sinϕ, dnu =
√

1−k2sin2 ϕ, (14)

with u(t) =±λ(t− τ), λ = b1a3/(I2
√

I1I3) andτ is a constant of integration which is used
to satisfy the initial conditions. Here, theamplitudeϕ is given implicitly as the solution of
the following equation

F(ϕ|k2) = u(t), (15)

where

F(ϕ|k2) :=
∫ ϕ

0

dθ√
1−k2sin2 θ

is an elliptic integral of the first kind with modulusk = b3a1/(b1a3). For each integration
step, as described in the previous section, we have to calculate the exact solutionω( j+1) :=
ω(t j +h) andω( j+ci) := ω(t j +cih), ci ∈ (0,1), of a free rigid body problem with the initial
conditionω(t j) = ω( j), computed at the previous time step. For this purpose we compute
the values of

snu = sinϕ, cnu = cosϕ, dnu =
√

1−k2sin2 ϕ,

to machine accuracy for a given inputu = λ(t − τ). In practice the vector of times(t j +
cih, t j +h)T is used to calculate simultaneously the amplitudesϕ( j+ci), ϕ( j+1), with respect
to the same initial condition. Hereλ andk are given, except for the sign.

The first task of the process is to determine the appropriateτ to satisfy the initial condi-
tion ω(t j) = ω( j). To this end, we first find the amplitudeϕ( j) ∈ [0,2π], which is uniquely
determined from the equations

ω1(t j) =
a1 cosϕ( j)√

I1(I3− I1)
, ω2(t j) =

a1 sinϕ( j)

b1
.

Furthermore, from the sign ofω3(t j),

ω3(t j) =
a3

√
1−k2sin2 ϕ( j)√
I3(I3− I1)

,

we determine the sign of the constantsa3 andλ. Now we computeτ from (15) and we have

τ = t j −
1
λ

F(ϕ( j)|k2) (16)

where

F(ϕ( j)|k2) =
∫ ϕ( j)

0

dθ√
1−k2sin2 θ

. (17)

The latter integral can be computed to the desired accuracy using the method of Arithmetic-

Geometric Mean. We consider the sequence{ϕ( j)
n }n=0,1,..., ϕ( j)

n+1 > ϕ( j)
n , defined by

tan(ϕn+1−ϕn) =
bn

an
tanϕn, ϕ0 = ϕ( j),

wherean, bn are given by the Arithmetic-Geometric Mean sequence, [1], i.e.

an+1 =
an +bn

2
, bn+1 =

√
anbn, cn+1 =

an−bn

2
.



The iteration stops whenn = N andcN is less than tolerated error, the initial values are

a0 = 1, b0 =
√

1−k2, c0 = k.

One can show that
F(ϕ0|k2) = lim

n→∞

ϕn

2nan
, ϕ0 = ϕ( j). (18)

As the Geometric-Arithmetic Mean sequence converges quadratically, one obtains accurate
approximations ofF(ϕ( j)|k2) in very few recursion steps. From (16) we easily obtainτ. In
our implementation we terminate the iteration whencN is less then machine epsilon.

Now to find the solution of the Euler equations at the desired time values we consider
(u( j+ci),u( j+1))T = (λ(t( j+ci) − τ),λ(t( j+1) − τ))T , we substitute in (15), and we get the
values of the elliptic integrals for the amplitudes(ϕ( j+ci),ϕ( j+1))T .

To recover the values of the amplitudes we use (18) with

ϕ0 = ϕ( j+ci), ϕ0 = ϕ( j+1),

and findϕ0 by recursion. We start atϕN ≈ 2NaNF(ϕ0|k2), and apply the transformation

sin(2ϕn−1−ϕn) =
cn

an
sinϕn, ϕ( j+ci)

n > ϕ( j+ci)
n−1 , ϕ( j+1)

n > ϕ( j+1)
n−1 ,

for n = N,N−1, . . . ,0.
The described procedure, to calculateϕ to desired accuracy foru and k2 given, can

be performed inMATLAB by the functionellipj . Our implementation is slightly more
efficient as it computes the Arithmetic-Geometric mean just once for each time-step of the
splitting algorithm.

Note thatϕ, from the relation (17), can be found explicitly for the special casesk2 = 1
or k2 = 0.

4 Numerical experiments

The splitting method proposed in this paper is compared with the symplectic method of [2]
and [16] which we denote in short by MR, with the Discrete Moser-Veselov methods of
[13] (DMV), and with the classical fourth order Runge-Kutta method (RK4). We also refer
to the second order symmetric splitting method, described in the previous section, as SEJ.
The symplectic method MR is based on a splitting of the the HamiltonianH into four parts,

H̃1 =
π2

1

2I1
, H̃2 =

π2
2

2I2
, H̃3 =

π2
3

2I3
, H̃4 = V(Q).

Each of the corresponding Hamiltonian vector fields can be integrated exactly (H̃1, H̃2, H̃3

correspond to the vector fields (3)), the symmetric composition of the flows gives rise to the
approximation scheme,

(π,Q)( j+1) = ΦM((π,Q)( j)),

where
ΦM = ϕ4,h/2◦ΦT,h◦ϕ4,h/2.

Here
ΦT,h = ϕ1,h/2◦ϕ2,h/2◦ϕ3,h◦ϕ2,h/2◦ϕ1,h/2



is the contribution from the kinetic parts,̃H1, H̃2 andH̃3. The flows of kinetic parts corre-
spond to elementary rotations inR3. For example forH1

ϕ1,h((π,Q)( j)) =

{
π( j+1) = Rx(h)π( j),

Q( j+1) = Rx(h),

where

Rx(h) =

 1 0 0
0 cos(C( j)h) sin(C( j)h)
0 −sin(C( j)h) cos(C( j)h)

 ,

and

C( j) =
π( j)

1

2I1
.

While the flow for H̃4 is the same as for the systemS2 (5) of the previous section, i.e.

ϕ4,h = ϕ[S2]
h .

4.1 Free rigid body experiments

In the first experiment we consider the integration of the FRB. In this experiment we per-
form a comparison also with the DMV methods. We refer to [13] and [15] for a detailed
description of these methods, and recall that the higher order DVM are obtained by com-
puting appropriate rescaling of the initial condition. In figure 1 we plot on thex axis the
number of floating point operations required by the methods to perform the integration on
the interval[0,1], for different choices of the step size. On they axis we report the cor-
responding values of the 2-norm of the global error. In all the experiments the reference
solution for computing the global error is obtained using the built in function ofMATLAB ,
ode45 , setting the absolute and relative tolerance equal to 10e−14. The MR method in
this case involves the computation of the three flows corresponding to the HamiltoniansH̃1,
H̃2, H̃3 only. The SEJ method produces a very accurate solution of the problem (the error
is of the size of 10−14) and the error is independent on the step size of integration. The MR
and DMV methods of order 2 and 4 perform similarly with a slight advantage for the MR in
the second order case and of DVM in the fourth order case. It is plausible that the advantage
for DMV is even bigger in the sixth order case.

With about the same amount of floating point operations the MR and DMV methods
produce a much pourer approximation of the solution compared to SEJ, in this case the ac-
curacy depends on the step size and increases with the number of floating point operations.
In this experiment the principal moments of inertia and the initial value forω are I1 = 5,
I2 = 4, I3 = 3 andω0 = (1,0,2)T . The cost for computing the rescaling factors in the DMV
methods and for the computation ofτ in SEJ are not included in this experiment.

In the second experiment we perform the numerical integration of a FRB with the same
moments of inertia and the same initial value of the first experiment, on the interval[0,400].
In figure 2 we consider the energy error as the difference between the constant exact energy,
given byH , and the energy obtained from the numerical methods (with step sizeh = 0.4).
We note that for the Runge-Kutta method there is a visible energy drift, for the MR of order
2 and 4 method we observe a typical behavior of symplectic methods, i.e. the energy error
is oscillating near zero, (the amplitude of the oscillations is about 10−3 for order 2, and
about 10−5 for the order 4 method). The DMV methods give an energy error of the size of



10−13, and the method based on the use of the Jacobi elliptic functions, SEJ, computes a
very accurate solution of the FRB problem and the energy is conserved to the same accuracy
(the energy error is about 10−16).

4.2 Heavy top experiments

In figure 3 we report the results of the third experiment. We consider the integration of the
heavy top problem which corresponds to taking

V(Q) = eT
3 Qu0,

wheree3 is the third canonical vector andu0 is the initial position of the center of mass of
the heavy top. This gives rise to a torque in (5) of the form

f (Q) =

 u2

−u1

0

 , u(t) = Q(t)u0.

We use the splitting methods MR and SEJ on the interval[0,1]. The principal moments of
inertia areI1 = 0.1, I2 = 1, I3 = 10, andω0 = (3,3,3)T andu0 = (0,0,1)T , respectively.

We first integrate on the interval[0,1] and compare the performance of the two splitting
methods in terms of floating point operations against global error, figure 3, in this case the
advantage of the new splitting method is quite clear.

Next we illustrate the qualitative performance of the two methods by comparing the
results obtained by using different step sizes. We look at the energy error and the numerical
trajectory describing the motion of center of mass, in figures 4 and 5. For step sizeh =
0.01 the two methods produce similar trajectories (the norm‖uSEJ− uMR‖ = O(10−1)).
The energy error for SEJ is a factor 10−3 smaller than for MR. Increasing the step size to
h = 0.02 andh = 0.04, the amplitude of the oscillations in the energy error increases for
both methods. Consistently for all the experiments, SEJ has much smaller energy error than
MR. Forh = 0.02 the trajectory of the center of mass produced by the MR method is quite
different from the one produced with step sizeh = 0.01, and it becomes completely chaotic
for h = 0.04. For the SEJ method the numerical trajectory of the center of mass preserve
the same qualitative behavior forh = 0.01, h = 0.02 andh = 0.04, figure 4.

Next, we compare the energy error between the two methods for different values of the
inertia tensor. The initial conditions for the angular velocity and the position of the center
of mass are chosenω0 = (3,3,3) andu0 = (0,0,1). The energy error is measured when
I1 and I2 are held fixed atI1 = 0.1, I2 = 0.2 andI1 = 0.1, I2 = 5, respectively, whileI3 is
varying betweenI2 < I3 < 10. Studying the two graphs in figure 6 it appears that the energy
error for the SEJ method is generally lower than for the MR method, in particular when the
inertia is significantly larger in one direction (I3) and the body is strongly asymmetric.

4.3 Satellite experiments

We consider the motion of a satellite in a circular orbit of radiusr around the earth. The
frame of reference centered in the center of the earth is calledFc. The orthogonal matrixQ
represents the rotation of the fixed body frame, (Fb), with respect toFc. The third canonical
vectore3 is aligned with the vector pointing from the center ofFc to the center ofFb. The
canonical vectore1 is aligned with the tangent to the circular orbit at the origin ofFb, and
e2 = e3×e1, and× denotes the usual vector cross product. Considerµ = GM whereG is



the gravitational constant andM is the mass of the earth, then the potential energy of the
problem is given by

V(Q) = 3
µ

2r3 (Qe3)TTQe3,

T is the inertia tensor. The torquef (Q) in equations (5) is here given by

f (Q) = 3
µ
r3 (Qe3)× (TQe3).

Here after we indicate with SEJ4 the second order symmetric splitting method where the
rotation matrixQ is approximated with a 4th order symmetric Magnus method, while for
the method SEJ the rotation matrixQ is approximated with a second order Magnus method
as in (9).

In the first experiment on the satellite model we compare the methods MR, SEJ and
SEJ4. The inertia moments are chosen to be

I1 = 1.7×104, I2 = 3.7×104, I3 = 5.4×104,

the initial condition for the angular velocity is

ω0 = (15,−15,15)T ,

andQ(0) = I (the identity matrix). We haveµ = GM = 3.986×1014, r = 1.5×105. We
integrate on the interval[0,400] for two different step sizesh= 0.1 andh= 0.05. In figure 7,
the step size ish = 0.1. Figures 7 (a), (c), (e) in the left column illustrate the qualitative
performance of the three methods for the vectorQe3. The method SEJ4 gives the best
results.

In the right column of figure 7, the energy error for the three methods is presented. Both
SEJ and SEJ4 preserve the energy much better than the MR method.

In figure 8, the step size ish = 0.05. Here the qualitative behavior seams to be almost
identical for the three different methods. Similarly to the previous case the SEJ methods
give better energy preservation compared to MR.

In some of the presented experiments we have considered different orderings of the
elementary flows which define the MR methods, this has not given significant differences
in the results. An analysis of how different compositions of the flows can influence the size
of the enrgy error can be found in [5]. We do not exclude that appropriate orderings of the
flows can give improved performance for the MR splitting in some cases.

5 Conclusions

In this paper we presented a symmetric splitting method for the integration of rigid body
problems subject to external forces. The numerical strategy is based on the use of avail-
able efficient algorithms for the computation of Jacobi elliptic functions. We compared the
method with a similar symplectic splitting method of [16] and [2]. In many of the performed
experiments the presented symmetric splitting is more efficient then the symplectic splitting,
giving smaller global error for the same amount of floating point operations. Moreover the
new method presents in many experiments a better energy conservation. This seems to be
true especially for problems where the principal moments of inertia are very different in
size.
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Figure 1: Free rigid body. Number of floating point operations against the global error. Integra-
tion on the interval[0,1] with different step sizes. The methods are: MR of order 2 and 4, DMV
of order 2, 4 and 6, and the method SEJ based on the accurate computation of the Jacobi elliptic
functions.
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Figure 2: Energy error for the numerical integration of the free rigid body equations. Integration
on the interval[0,400].
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Figure 3: Heavy top. Number of floating point operations against the global error. Integration
on the interval[0,1] with different step sizes.
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(a) Center of massu, h = 0.01, SEJ
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(c) Center of massu, h = 0.02, SEJ
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(d) SEJ,h = 0.02
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(e) Center of massu, h = 0.04, SEJ
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(f) SEJ,h = 0.04

Figure 4: Energy error for the heavy top. Integration on the interval[0,100], using the method
SEJ.
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(c) Center of massu, h = 0.02, MR
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Figure 5: Energy error for the heavy top. Integration on the interval[0,100], using the method
MR.
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Figure 6: Energy error for the heavy top. Integration on the interval[0,10], h = 0.01, using
different inertia tensors.I2 andI3 are varying, whileI1 = 0.1 is held fixed. In 6(a)I2 = 0.2. In
6(b) I2 = 5.
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Figure 7: Plot ofQe3 and the energy error for the satellite simulation. Integration on the interval
[0,400], using the method MR, SEJ and SEJ4 (SEJ with 4th order approximation of the rotation
matrixQ).
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(a) Body frameQe3, h = 0.05, MR
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Figure 8: Plot ofQe3 and the energy error for the satellite simulation. Integration on the interval
[0,400], using the method MR, SEJ and SEJ4 (SEJ with 4th order approximation of the rotation
matrixQ).


