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A review of error analysis for splitting

methods and exponential integrators

Bård Skaflestad

October 17, 2005

We briefly review splitting methods for differential equations and the error
analysis of such schemes available in the literature, and present several types
of splitting methods. Some of the mathematical tools needed in the analysis
are listed for reference. Progressing from splitting methods based on exact
flow maps through methods using numerical flow map approximations, we also
list some of the splitting methods in common use for time integration of in-
compressible fluid flow problems. We finally present the class of “exponential
integrators” in some detail and give an outline of the concept of stiff order condi-
tions recently introduced by Hochbruck and Ostermann to analyse exponential
integrators applied to semi-linear parabolic problems.

1 Introduction

Few numerical techniques for solving differential equations have received more attention
than splitting methods. This class of schemes is known under several different names, in-
cluding fractional step methods. Splitting methods in current form go back to Strang [33]
and Marchuk [23], but subsequent developments have proceeded in many different direc-
tions, serving a variety of purposes.

Generally, splitting methods assume that the mathematical problem in question can be
split into two or more terms, say

u̇ = X1(u) +X2(u), u(0) = u0. (1)

Next one assumes that the flows of each of these two vector fields can be solved—or at
least approximated—more easily than the aggregate vector field X1 +X2. We denote by
u(t) = Exp(tX)u0 the solution at time t of the differential equation u̇ = X(u) with initial
value u(0) = u0. Thus, in this notation a much used splitting method for the problem (1)
is

u(h) ≈ Exp(hX2) Exp(hX1)u0, (2)

which composes the separate flows of X1 and X2. This celebrated formula is called the Lie–
Trotter–Kato (LTK) formula. Using this formula will in general produce an error compared
to the exact solution of the original problem (1). By Taylor expansion, the error generally
satisfies the relation Exp(h(X1 + X2))u0 − Exp(hX2) Exp(hX1)u0 = O(h2). However,
under special circumstances, the LTK formula does in fact reproduce the exact solution.
Theorem 1.34 of [29] states that this happens if and only if the vector fields X1 and X2

commute.
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While attractive from a theoretical point of view, the LTK formula and other schemes
based on exact flows may not be practically feasible. In particular, the exponential mapping
may not be computationally available or too expensive to evaluate exactly. Thus, the flow
map Exp is often approximated using some numerical method. Some of the choices studied
in the literature are regular ODE-based integration of a single component of the vector field
and Krylov subspace approximation of Exp(hX)v for the important special case of constant
linear vector fields X. A feature of numerical approximations to the exponential function
is that such approximations usually do not satisfy the composition property experienced
by the exact flow. When evaluated exactly, Exp((t + s)X) = Exp(tX) Exp(sX) and this
does not generally hold whenever Exp is approximated by means of a numerical method.
Distinguishing the different approaches, methods based on exact flows are commonly known
as “exponential splitting” methods.

Splitting schemes are developed for a multitude of purposes. In partial differential equa-
tions, splitting schemes may be the only viable alternative in obtaining a computable
numerical solution. As an example we may consider the modelling of unsteady incompress-
ible fluid flow. The governing equations in this case are the Navier–Stokes equations which
consists of the linear indefinite Stokes operator, and the non-linear and non-symmetric con-
vection operator. Splitting the equations between the linear and non-linear terms enables
explicit treatment of the convection forces while treating the Stokes operator implicitly.
Thus, we are left with inverting an expensive linear operator at each viscous time step,
but non-linear couplings are eliminated. Examples of such schemes are presented in [22],
in which the authors use the framework of integrating factors for decoupling the viscous
and convective forces. One of the key advantages of this approach is that it allows taking
several convection sub-steps for each viscous time step, thus reducing the computational
cost of the viscous terms relative to the convection term.

Additional examples of the necessity of splitting methods may be found in strongly cou-
pled multiphysics problems, such as magneto-hydrodynamics or fluid-structure interaction.
Simulating such problems may be too taxing on available computer resources when solved
aggregately, but may be tractable if we accept a possible stability time step restriction
for the split operator. Another advantage of the operator splitting approach is an inher-
ently modular description of the problem itself. A practical upside of this description is
that software components developed separately may be modularly reused in implementing
simulation codes for more complex systems.

In the context of ordinary differential equations, however, splitting methods are viewed
differently than in the PDE case. McLachlan and Quispel, in their 2002 survey paper
on splitting methods [25], demonstrate how splitting and composition methods may be
employed in the construction of geometric integrators for ordinary differential equations
with applications to Hamiltonian, Poisson and volume-preserving systems as well as some
other kinds of systems. Geometric integration often involves the conservation or near-
conservation of various geometric properties of the continuous system. Such properties
include the Hamiltonian function, representing the total energy, of a Hamiltonian system
or the group structure of a system evolving on a Lie group.

Having constructed splitting methods for ordinary differential equations, the question
naturally arises of how to construct accurate schemes which may be used with non-small
step sizes. One approach in this direction is the construction of high-order methods,
methods for which the numerical flow map ϕh of (1) satisfies

ϕh = Exp(h(X1 +X2)) + O(hp+1),

with the order p being as high as possible. A standard technique for obtaining such methods
is to compose ϕh from more than the two exponentials of the Lie–Trotter–Kato formula.



As such, a typical non-symmetric composition method often used is

ϕh = Exp(amhX1) Exp(bmhX2) · · ·Exp(a1hX1) Exp(b1hX2) Exp(a0hX1) (3)

and various approaches have been suggested for determining conditions on the free pa-
rameters a0, a1, . . . , am, and b1, . . . , bm. Through the “Yoshida approach” of symmetric
composition of symmetric methods, one may easily derive methods of any given even order
p. These methods, however, may not be optimal in terms of accuracy or computational
cost when applied to a specific problem. Using symmetrised formulae, any composition
method may be used as a basic building block in the Yoshida framework. Such symmetrised
formulae resemble the original Strang splitting

ϕ(h) = Exp( 1
2hX1) Exp(hX2) Exp(1

2hX1)

though possibly extended to vector fields X split into more than two components.
Another approach to determining conditions on the free parameters comes from the so-

called BCH formula. This gives order conditions for s-stage methods recursively in terms
of the order conditions for (s − 1)-stage methods. In contrast Murua and Sanz-Serna
in [27] use B-series generalised to rooted infinity-trees to derive explicit order conditions
for composition methods. The rooted infinity-trees are trees with an unbounded number
of different vertex types and with a distinguished root. We note that the cardinality of
the set of such trees grows quickly as more nodes are added, and that the complete set
of rooted infinity-trees is unmanageble. However, identifying a subset of the trees which
procedurally gives all independent order conditions, the authors’ main result is an algebraic
lower bound on the attainable order of a composition method.

As a final introductory example of a class of splitting methods, we also note that the
combination of exact and numerical flows yields hybrid methods known as “exponential
integrators”. Originally introduced as integrating factor methods by Lawson in 1967, these
methods were subsequently disregarded due to prohibitive cost in evaluating the exponen-
tial function. Recently, however, exponential integrators based on splitting the vector field
into a linear and non-linear part have received renewed interest in light of more inexpensive
evaluation procedures for the exponential function and related functions.

In [3] we analysed a general class of explicit exponential integrators for systems of the
form

u̇ = Lu+N(u), u(0) = u0 (4)

in which L is a constant linear operator and N is a non-linear function. We note that both
ordinary and partial differential equations may be cast in this form. In particular, L may
be a linear differential operator such as the Laplacian operator in a non-linear diffusion
problem. The class of integrators analysed is abstractly represented as

Nr = N(Exp(crhL)u0 +

r−1
∑

j=1

aj
r(hL)hNj),

u1 = Exp(hL)u0 +

s
∑

r=1

br(hL)hNr

(5)

with cr being free parameters and aj
r and br being analytic functions satisfying aj

r(0) =
br(0) = 1.

The rest of this paper will be expanding on the introductory comments already given.
Section 2 briefly reviews some mathematical tools facilitating the analysis in the literature
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on splitting methods. Section 3 then describes various classes of splitting methods—
progressing from composition methods through methods based on exact flows to methods
based on numerical flow approximations. Order analysis is presented for some of the
schemes in this section. Finally, Section 4 presents exponential integrators in more detail
than the above introduction. Moreover, this section also presents the order analysis for
exponential integrators in both the classical case of bounded linear operators and the case
of unbounded linear operators recently studied by Hochbruck and Ostermann [16].

2 Mathematical tools

This section collects some of the tools required to develop the analysis presented in the
literature. We refer in particular to the monographs [13, 29, 31] for theoretical development
and additional references.

2.1 Basic definitions from Lie group theory

Most pertinent to the following discussion are the concepts of vector fields, flows, Lie
brackets and Lie series. We will give a brief introduction to these constructions. We adapt
Olver’s notation in [29] and repeat some of the definitions in Sections 1.3 and 1.4 of this
text.

Suppose C is a smooth curve on an m-dimensional manifold M . At every point x on C
there is a vector v|x tangent to the curve itself. The collection of all tangent vectors to
all curves on M passing through a given point x ∈M is called the tangent space to M at
x, and is denoted by here TxM . The tangent space at x is an m-dimensional vector space
and, given a suitable set of local coordinates x = (x1, . . . , xm) on M , may be provided
with the basis {∂/∂x1|x, . . . , ∂/∂xm|x}.

A vector field v on M assigns a tangent vector v|x ∈ TxM to each x ∈ M . As such,
vector fields generalise derivatives to manifolds. In physics, a typical example of a vector
field is the velocity field of a steady fluid flow. That is, at every point (x, y, z) ∈M ⊂ R
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the vector v|(x,y,z) is the velocity of fluid particles passing through (x, y, z). From vector
fields we may define an integral curve as a smooth, parametrised curve x = φ(ε) whose
tangent vector at any point coincides with the value of v at the same point:

φ̇(ε) = v|φ(ε) (6)

for all ε. In fluid flow problems, the integral curve thus gives the position at ‘time’ ε of
fluid particles passing through (x, y, z) with velocity v|(x,y,z).

When the vector field v is smooth and non-vanishing there exists a unique maximal
integral curve, not fully contained in any other integral curve, passing through a given point
x = φ(0) ∈M . This integral curve is called the flow generated by v and is denoted here by
Exp(εv)x, the same notation also used in the introduction and in the following to denote
the exact solution of u̇ = v(u) with initial condtion u(0) = x. This is intentional as the
construction of integral curves corresponds to solving an autonomous system of differential
equations. The defining properties of Exp(εv)x, detailed in pages 27–28 of [29], mirror
those of the traditional exponential function and suggests the above notation.

Underlying the definition of Lie series is the study of how flows act on smooth functions
f : M → R. Following Olver, we investigate how f changes under the flow generated by v.
More specifically we study how f(Exp(εv)x) varies as a function of ε. In local coordinates,
if the functions dxi/dε = ζ i(x), i = 1, . . . ,m are smooth, then it follows from (6) and the



basis for TxM that v =
∑m

i=1 ζ
i(x)∂/∂xi. The chain rule then yields

d

dε
f(Exp(εv)x) =

m
∑

i=1

ζi(Exp(εv)x)
∂f

∂xi
(Exp(εv)x) ≡ v(f)(Exp(εv)x). (7)

In particular, at ε = 0, we get

d

dε

∣

∣

∣

∣

ε=0

f(Exp(εv)x) =

m
∑

i=1

ζi(x)
∂f

∂xi
(x) = v(f)(x)

which shows that the vector field v defines a first order partial differential operator on
real-valued functions on M . Now, from repeated differentiation and substitution into the
Taylor series we get, assuming convergence of the Taylor series in ε, that

f(Exp(εv)x) =

∞
∑

k=0

εk

k!
v

k(f)(x) (8)

in which the powers v
k(f) are defined recursively as v

k(f) = v(vk−1(f)) for all k > 1.
This defines the Lie series for the action of the flow on f . As this definition is applicable
to each component of vector-valued functions as well, the Lie series assumes the rôle of the
Taylor series when studying functions on manifolds and may be used to construct the Lie
series of the flow Exp(εv)x itself. The latter calculation is listed as equation (1.19) of [29].

Lastly in this section we define the Lie bracket of two vector fields v and w. Geometri-
cally, the Lie bracket is the tangent vector at the origin to a specific curve generated from
the integral curves of v, w, −v, and −w. The bracket generalises the well-known matrix
commutator to vector fields and has a similar algebraic definition.

Algebraically, if v and w are vector fields on M their Lie bracket [v,w] is the unique
vector field satisfying

[v,w](f) = v(w(f)) −w(v(f)) (9)

for all smooth functions f : M → R. Proposition 1.32 of [29] states that the Lie bracket
is bilinear, skew symmetric, and satisfies the Jacobi identity

[u, [v,w]] + [w, [u,v]] + [v, [w,u]] = 0

for all vector fields u, v, and w.
The Lie bracket may be used to define a linear operator, ad, on vector fields. In partic-

ular, we define adv (w) = [v,w]. Moreover, powers of this operator is recursively defined
as

adk
v

(w) =

{

w, k = 0
[

v, adk−1
v

(w)
]

, k > 0
, (10)

for all integral k ≥ 0. This operator is needed to construct the Baker–Campbell–Hausdorff
formula in Section 2.3.

2.2 Adjoint and symmetric methods

For completeness we briefly review the concept of adjoint and symmetric methods. This
review closely follows section II.3 of [13]. A numerical method ϕ(h) for the autonomous
initial value problem

u̇ = f(u), u(t0) = u0
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generates the numerical approximation u1 = ϕ(h)u0 to the exact solution u(h) = Exp(hf)u0.
The adjoint method, ϕ(h)∗, of ϕ(h) is then implicitly defined by the relation

ϕ(−h)u1 = u0, (11)

that is ϕ(h)∗ = ϕ(−h)−1. In the case of Runge–Kutta methods, theorem II.8.3 of [14] gives
explicit formulae for the coefficients of the adjoint method in terms of the coefficients of
the original method.

A numerical method for which ϕ(h)∗ = ϕ(h) is called symmetric or self-adjoint. Sym-
metric methods therefore satisfy the relation

ϕ(h) ◦ ϕ(−h) = I

and have error expansions in even powers of h. This property simplifies order conditions
considerably. Composing any method with its adjoint method yields a symmetric method
of the form

ψ(h) = ϕ(h/2) ◦ ϕ(h/2)∗.

This method may then subsequently be employed as a basic building for constructing more
involved schemes by means of composition techniques as demonstrated in Section 3 below.
Moreover, the principle of composing methods is applicable if the method is a numerical
approximation to Exp(hf) or even the exact flow map.

2.3 The BCH formula

Proposed initially by J.E. Campbell in 1898 and subsequently proved independently by
Baker in 1905 [1] and Hausdorff in 1906, the so-called Baker–Campbell–Hausdorff (BCH)
formula is a procedure for constructing a vector field C(A,B) such that

Exp(A) Exp(B) = Exp
(

C(A,B)
)

(12)

when A and B are general vector fields. It is well known that in the case of commuting
vector fields, [A,B] = 0, equation (12) reduces to Exp(A) Exp(B) = Exp(A + B). In the
general case of non-commuting vector fields however, this relation does not hold. A detailed
derivation in sections 2.14 and 2.15 of Varadarajan’s monograph [34] and paraphrased in
section III.4 of [13] leads to a differential equation for C(A,B) given by

dC

dt
= A+B +

1

2
adA−B (C) +

∑

k≥2

Bk

k!
adk

C (A+B), (13)

in which Bk are the Bernoulli numbers and the ad operator is defined in (10). The series
converges whenever A and B are chosen sufficiently close to the origin. Equation (13)
allows computation of the Taylor coefficients of the function Y (t) =

∑∞
k=1 Ykt

k defined by
Exp(tX1) Exp(tX2) = Exp(Y (t)) for general vector fields X1 and X2.

The first few of these are given in [13] and repeated here for reference

Y1 = X1 +X2, Y3 = 1
12

(

[X1, [X1, X2]] + [X2, [X2, X1]]
)

,

Y2 = 1
2 [X1, X2], Y4 = 1

24

[

X1, [X2, [X2, X1]]
]

.

Unfortunately, the expressions involved soon become very complicated, thus somewhat
limiting the practical use of the BCH formula. On the other hand, we note that whenever
X1 and X2 actually do commute, these Taylor coefficients are all zero apart from Y1. As



such, the BCH formula reduces to the well known relation for commuting vector fields in
this case.

Symmetric flow compositions such as Exp( t
2X1) Exp(tX2) Exp( t

2X1) may be similarly
analysed. It is interesting to note that in this case only odd powers of t enter into the
Taylor series expansion of Y (t). The first few Taylor coefficients of this series is similarly
listed in [13].

3 Classes of splitting schemes

Order analysis for splitting and composition methods produces order conditions for nu-
merical methods of the form (3). Methods based on composing a basic numerical method
with itself using different step sizes is analysed as well. Such composition methods employ
the general format

ψ(h) = ϕ(αsh) ◦ ϕ(βsh)
∗ ◦ · · · ◦ ϕ(α1h) ◦ ϕ(β1h)

∗ (14)

and are known as s-stage composition methods. It is assumed that ϕ(h), commonly known
as the basic method, is a consistent numerical method when applied to an autonomous
initial value problem u̇ = X(u), u(0) = u0. Order conditions for composition methods (14)
constitute a set of algebraic constraints on the free parameters αi and βi. This set may be
classified according to which order each constraint belong. Determining αi and βi such that
the constraints are satisfied up to and including order p guarantees that the composition
method ψ(h) is of overall order p.

At least four approaches have been proposed to determine order conditions for the coef-
ficients of methods of high order. McLachlan and Quispel [25] summarise these approaches
as

• A direct method of Suzuki and Yoshida [35] which gives methods of arbitrary even
order.

• Series expansion of the flow map composition by means of the BCH formula. The
resulting order conditions describe constraints on an s-stage method in terms of the
conditions of an (s− 1)-stage method. This approach is presented in several places,
among which Section III.5 of [13] may be the most accessible.

• Murua and Sanz-Serna’s extension of the theory of rooted trees [27], which gives the
order conditions explicitly. In complete detail, this extension requires some technical
tools and definitions which we do not describe in the following. We will however
outline the extension of B-series to rooted infinity-trees in Section 3.1 below.

• A method due to Tsuboi and Suzuki based on time-ordered symmetrised products of
non-commuting operators, which also gives the order conditions explicitly.

Two results due to McLachlan in the context of Lie algebras [24] show that there is
a link between splitting methods and composition methods. In particular, a splitting
method of order p for the special case of integrable splittings may be viewed as a specially
construced composition method. More detailed, for split systems of the form (1), the basic
Lie–Trotter–Kato method ϕ(h) = Exp(hX1) Exp(hX2) and its adjoint method ϕ(h)∗ =
Exp(hX2) Exp(hX1) may be used as building blocks in the composition method (14) as

ψ(h) = Exp(as+1hX1) Exp(bshX2) · · ·Exp(b1hX2) Exp(a1hX1)
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in which bi = αi + βi and ai = αi−1 + βi. The reciprocal result, that a p-th order splitting
method has a corresponding p-th order composition method, at least under some conditions
on the vector fields X1 and X2, is proved as theorem III.3.17 in [13].

3.1 Composition methods

Murua and Sanz-Serna in 1999 published a rigorous order analysis [27] for composition
methods (14) applied to the standard initial value problem u̇ = X(u), u(0) = u0. Under-
lying their analysis is a formal series expansion of the basic method in terms of unknown
quantities di according to

ϕ(h) = I +

∞
∑

i=1

hidi. (15)

As the basic method is assumed to be consistent, we conclude that d1 = X. However, no
prior conditions are placed on the vector fields di for i > 1. Repeated insertion of (15)
into itself using different step sizes (α1h, . . . , αsh) then gives rise to series expansions of
the quantities

vk = ϕ(αkh) vk−1, k = 1, . . . , s

for some initial condition v0. These expansions have similar structure to the standard
series expansion of Runge–Kutta methods for ordinary differential equations. However, the
resulting series is notably different from the standard expansion in that each elementary
differential itself is composed of infinitely many terms rather than just a single function.

In order to analyse this structure, Murua and Sanz-Serna introduce the infinity trees, T∞,
which consist of all rooted trees where each vertex is associated to a positive integer without
any further restriction. In other words, T∞ is the set of all rooted trees with an unbounded
number of vertex types. These trees, and their associated elementary differentials are
defined as (definition III.3.1 of [13])

j1 , j2 , j3 , . . . = the trees with a single vertex,

τ = [τ1, . . . , τm]i = tree formed by grafting τ1, . . . , τm onto a common root ji

F ( ji )(u) = di u

F (τ)(u) = d
(m)
i (F (τ1), . . . , F (τm))(u).

Extended B-series, known as B∞-series, may be defined for these trees by the relation

B∞(a, u) = a(∅)u +
∑

τ∈T∞

h‖τ‖

σ(τ)
a(τ)F (τ)(u) (16)

for an arbitrary map a : T∞ ∪ ∅ → R. Here, ‖τ‖ is the sum of the labels of τ , and σ(τ)
denotes the symmetry coefficient of τ .

Using these tools lemma III.3.4 of [13] gives recurrence relations establishing B∞-series
expansions of the intermediate mappings

ϕ(k−1/2)(h) = ϕ(βkh)
∗ ◦ ϕ(k−1)(h), ϕ(k)(h) = ϕ(αkh) ◦ ϕ(k−1/2)(h) (17)

for k = 1, . . . , s, assuming ϕ(0)(h) = I. In particular,

ϕ(k−1/2)(h)u = B∞(bk, u), bk(τ) = ak−1(τ) − (−βk)
i(τ)b′k(τ)

ϕ(k)(h)u = B∞(ak, u), ak(τ) = bk(τ) + α
i(τ)
k b′k(τ)

(18)
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Figure 1: T∞ trees of orders up to and including 3

with b′k(τ) = bk(τ1) · . . . · bk(τm) for τ = [τ1, . . . , τm]i, and i(τ) denoting the label of the
root of τ .

The exact solution to u̇ = X(u) can be represented as a B∞-series, B∞(e, u0) for which
e(τ) = 0 for all τ ∈ T∞ having at least one label different from 1. This, then, means
that the order conditions for composition methods can be extracted from the B∞-series
expansion B∞(as, u) of the complete composition method by matching the coefficients
as(τ) and e(τ) up to the desired order.

However, not all order conditions arising from direct application of the Murua–Sanz-
Serna analysis are independent. Specifically, some of the order conditions are automati-
cally satisfied whenever other conditions are fulfilled. Examples of this phenomenon occur
even for very low order. The conditions for orders up to and including 3 are given in
equation (19). We note that starred indices, such as k∗, present in the conditions modify
the last term of their corresponding sum. Specifically, for ` = k∗ we use only the term α`

rather than α` + β`.

s
∑

k=1

(αk + βk) = 1,

s
∑

k=1

(α2
k − β2

k) = 0,

s
∑

k=1

(αk + βk)
k∗
∑

`=1

(α` + β`) = 1
2 ,

s
∑

k=1

(α3
k + β3

k) = 0,

s
∑

k=1

(α2
k − β2

k)

k∗
∑

`=1

(α` + β`) = 0,

s
∑

k=1

(αk + βk)

k∗
∑

`=1

(α2
` − β2

` ) = 0,

s
∑

k=1

(αk + βk)

k∗
∑

`=1

(α` + β`)

`∗
∑

m=1

(αm + βm) = 1
6 ,

s
∑

k=1

(αk + βk)
(

k∗
∑

`=1

(α` + β`)
)2

= 1
3 .

(19)

These conditions are derived by transcribing the structure of the corresponding T∞ tree
of figure 1 and introducing a summation for each vertex in the tree, and translating tree
type into powers of the method parameters αk and βk. Moreover, even powers of βk must
be accompanied by a negative sign.

However, not all order conditions arising from mechanically applying the above procedure
to all rooted inifinty-trees are independent. It is a routine check to verify that

(

s
∑

k=1

(αk + βk)
)2

= 2

s
∑

k=1

(αk + βk)

k∗
∑

`=1

(α` + β`) +

s
∑

k=1

(α2
k − β2

k),

and, consequently, that the order conditions derived from the trees in figure 2 are inter-
dependent. To eliminate such order conditions, the authors construct a subset of T∞

which contains only those trees carrying independent order conditions. This construction
is somewhat technical, and we refer the interested reader to the original paper [27] for
detailed description of the process and tools involved. Additional explanation may be
found in section III.3 of [13].
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1

Figure 2: First inter-dependent T∞ trees

An immediate consequence of the order condition
∑s

k=1(α
3
k + β3

k) = 0 which must be
satisfied to attain an order 3 method is that some of the coefficients αk or βk must be
negative. This fact has important implications for the possibility of constructing higher
order schemes for partial differential equations. Such equations often evolve only on a
semigroup [31] and hence cannot be integrated in the reverse direction without adversely
affecting the stability of the numerical solution. Blanes and Casas, in an as yet unpublished
work [5], prove, in a slightly different fashion, the non-existence of purely positive method
parameters for methods of orders p ≥ 3. The authors also study composition methods of
effective order p ≥ 3. The notion of effective order concerns order behaviour of integrators
of the form

ψ̂(h) = π(h) ◦ ψ(h) ◦ π(h)−1

in which π(h) is known as a post-processor method which is only evaluated for the sake
of outputting data. A numerical method is of effective order p if ψ̂(h)u0 = Exp(hX)u0 +
O(hp+1). The map π(h) is usually taken as a flow map close to the identity π(h) = I+O(h).
Effective order is less restrictive than ‘regular’ order as a method of order p will exhibit
effective order of at least p, while the converse is not true in general.

On the other hand, the paper constructs an order p = 4 pure positive coefficient splitting
method for the second order autonomous differential equation ÿ = g(y) by incorporating
the flow of an iterated commutator vector field into the integrator. Further research into
processed methods and their effective orders is presented in recent papers by Blanes, Casas
and Murua [7, 6].

3.2 Methods based on exact flows

McLachlan and Quispel in [25] trace the history of splitting methods to the product formula

lim
n→∞

(

Exp(tX1/n) Exp(tX2/n)
)n

= Exp(t(X1 +X2)), (20)

presented in Trotter’s 1959 paper on semi-group operators. The formula holds under
certain conditions on X1 and X2 and admissible values of the parameter t. Schemes based
on exact flows exploit this relationship in its simplest form in the LTK formula (2), but
more advanced alternatives have been developed, notably the more general scheme (3).

Several important physical problems exist for which the exact flow map is readily availble.
Hamiltonian systems

q̇ = ∂H/∂p, ṗ = −∂H/∂q
occur for instance in problems involving the dynamics of multiple rigid bodies, and can
often be split into a sum of simpler Hamiltonian systems for which the flow map is both
known and easily computable. Examples of such problems may be found in pages 363–368
of [25]. An integrator may then be constructed by composing the flows of the individual,
integrable parts. Such integrators may also possess attractive geometric properties, e.g.
preservation or near-preservation of the system’s total energy. We refer the reader to the
above mentioned survey paper for a much expanded treatment of this theory and focus in
the following on the error analysis of a few exact flow map integrators.



3.2.1 Local error in stiff/non-stiff splitting

In their recent paper [20] Kozlov, Kværnø and Owren study the behaviour of the local error
of several splitting methods applied to problems of the form (1). The vector field X2 is
assumed to be stiff, typically in terms of a small parameter ε > 0, such asX2(u) = X̃2(u)/ε.
A very popular model problem in this form, and the problem used in [20], is the Van der
Pol equation

x′′ + 1
ε (x2 − 1)x′ + x = 0, x(0) = x0, x′(0) = ẋ0,

which, rewritten as a first order system, becomes

[

u1

u2

]′

=

[

u2

−u1

]

+
1

ε

[

0
(1 − u2

1)u2

]

= X1(u) + 1
εX̃2(u). (21)

Here, the vector field X1 is a rotation in the u1u2-plane and X2 = X̃2/ε is stiff near the
initial point for small values of ε.

The authors consider the schemes

u1 = Exp(hX1) Exp(hX2)u0, u1 = Exp(h
2X1) Exp(hX2) Exp(h

2X1)u0

u1 = Exp(hX2) Exp(hX1)u0, u1 = Exp(h
2X2) Exp(hX1) Exp(h

2X2)u0

(22)

and analyse their respective local error from the point of view of both formal Lie series
computations and singular perturbation analysis. Of particular interest are step sizes in
the region ε / h /

√
ε. Numerical experiments show that the local error for schemes

following the flow of the X2 vector field as their final substep remain constant in this
region. In other words, these schemes reduce to order zero. We do remark, however, that
this does not necessarily imply an inherent disadvantage of the schemes, but rather relates
to properties of the specific problem being solved. On the other hand, the existence of
an order zero region implies that one should be careful when using variable step methods
employing traditional step size controllers based on local error estimates.

The Lie series analysis is further substantiated in Section 4 of [20] which applies singular
perturbation theory to the local error. The singular perturbation approach assumes u1 and
u2 are smoothly varying functions perturbed by fast transients. Expanding the smooth
parts in formal series of the parameter ε and collecting terms of equal power of this pa-
rameter, a sequence of differential-algebraic equations may be formulated. Analysing these
systems reveal that the schemes concluding the step with the flow of X2 will tend to a
manifold O(ε) away from the correct manifold of X1 + X2. This translates to an O(ε)
error for these schemes while a similar analysis shows that schemes ending with the flow
of X1 will exhibit an error of O(h).

3.2.2 Commutator bounds for Strang splitting

Restricting their attention to the linear evolution problem

u̇ = (X1 +X2)u, u(0) = u0, (23)

Jahnke and Lubich in [17] develop error analysis for Strang splitting scheme

u1 = Sh(X1, X2)u0 = Exp(h
2X2) Exp(hX1) Exp(h

2X2)u0. (24)

This paper is interesting because the analysis is developed purely in terms of commu-
tator bounds, rather than explict use of specific properties of the operators X1 and X2

themselves.
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We may assume, without loss of generality, that the fractional powers (−X1)
γ are well

defined for all γ ≥ 0. Then, the commutator bounds in question assert the existence of
constants c1 and c2 as well as non-negative numbers α and β such that

‖[X1, X2] v‖ ≤ c1‖(−X1)
αv‖, (25)

‖[X1, [X1, X2]] v‖ ≤ c2‖(−X1)
βv‖ (26)

hold for all functions v in the domain of [X1, X2] and [X1, [X1, X2]] respectively. Com-
mutator terms of the form (25) and (26) occur in the expansion of the local error of the
Strang splitting scheme when applied to (23). This error expansion is facilitated through
repeated application the variation of constants formula representation of the exact solution
and subsequently writing the local error in Peano form.

We illustrate the validity of the approach by recounting the example from Section 3
of [17]. Here, the authors consider a Cauchy problem for the linear Schrödinger equation

i
∂u

∂t
= −∆u+ V u, u(0) = u0. (27)

Assuming V is sufficiently differentiable and defining −X1 = ∆ and X2 = V , this is a
problem for which the bounds (25) and (26) hold with α = 1

2 and β = 1 respectively.
The general error analysis for (24) applied to (23) is settled in two theorems which,

through the above assumptions, establish the local error bounds
∥

∥Sh(X1, X2) v − Exp(h(X1 +X2)) v
∥

∥ ≤ C1h
2‖(−X1)

αv‖
∥

∥Sh(X1, X2) v − Exp(h(X1 +X2)) v
∥

∥ ≤ C2h
3‖(−X1)

βv‖
in which C1 depends only on c1 and ‖X2‖ and C2 depends only on c1, c2, and ‖X2‖. The
first bound is valid if (25) is satisfied while the second bound addtionally requires (26).
First and second order global error bounds then follow through standard means. We refer
the reader to [17] for the actual error bounds, but note that the bounds’ dependence upon
the values of u vary according to whether X1 generates an analytic semigroup or merely
a strongly continuous semigroup. In the former case the bounds involve only the initial
value u0 while the latter case involves u at all times.

Finally, the authors demonstrate both theoretically and numerically that the error
bounds remain valid when considering spatially discretised problems as well. Continu-
ing the treatment of the linear Schrödinger equation (27) Jahnke and Lubich discretise the
problem in space by means of spectral collocation. Representing the numerical solution as
a trigonometric polynomial U(x, t) =

∑N−1
k=−N eikx ûk(t), this technique leads to the linear

ODE system
iÛ ′ = −D2Û +WÛ, t ≥ 0

in which D2 is the Fourier space discrete Laplacian and W is the Fourier space representa-
tion of the potential function V . In this case Jahnke and Lubich prove that for sufficiently
smooth potential functions there exist constants c1 and c2 such that

∥

∥[−D2 + I,W ] v
∥

∥ ≤ c1
∥

∥(−D2 + I)1/2 v
∥

∥

∥

∥[−D2 + I, [−D2 + I,W ]] v
∥

∥ ≤ c2
∥

∥(−D2 + I) v
∥

∥

for all v ∈ R
2N independently of the spectral resolution N . We thus note that even though

−D2 is unbounded in terms of N , the commutators remain well behaved and, moreover,
that the global errors, in agreement with the general analysis presented in [17], are bounded
by

∥

∥Un − U(·, nh)
∥

∥

L2 ≤ C1h
∥

∥U0
∥

∥

H1 ,
∥

∥Un − U(·, nh)
∥

∥

L2 ≤ C2h
2
∥

∥U0
∥

∥

H2 .

Note in particular that only the norms of the initial conditions enters into these expressions.



3.3 Methods based on numerical flow approximations

Numerical flow approximations have traditionally been the only viable approach to con-
structing splitting based numerical solutions to partial differential equations. A number
of these traditional schemes are summarised in section 5.7 of [32]. The so-called Yanenko
splitting scheme

u1/2 − u0

h
= X1u1/2,

u1 − u1/2

h
= X2u1 (28)

is unconditionally stable and first order accurate with respect to the time step h when
applied to the linear problem

u̇ = X1u+X2u

assuming X1 and X2 are both negative, or at least non-positive, definite matrices. Such
problems arise in the spatial discretisation of linear parabolic partial differential equations,
for instance using finite element methods. Being implicit, two linear systems must be
resolved at each time step when computing u1. However, if X1 and X2 are discretisations
of elliptic spatial operators, the systems become diagonally dominant for which efficient
linear system solvers exist. Eliminating the intermediate quantity u1/2 from (28), we
observe that

u1 = ( 1
hI −X2)

−1 ( 1
hI −X1)

−1 u0

which is simply the LTK formula (2) when using the backward Euler scheme for approxi-
mating the flow of each constituent vector field, X1 and X2.

Improving the Yanenko scheme another classic splitting method, known as the Peaceman–
Rachford scheme, is usually presented as a two-stage method alternately solving X1 and
X2 implicitly as

u1/2 − u0

h
= X1u1/2 +X2u0,

u1 − u1/2

h
= X1u1/2 +X2u1. (29)

Eliminating the intermediate quantity u1/2, the method can however be rewritten as

u1 = ( 1
hI −X2)

−1 ( 1
hI +X1) ( 1

hI −X1)
−1 ( 1

hI +X2)u0

and, accordingly, this method is the symmetric composition of the symplectic Euler method
and its adjoint method applied to the partitioned system

v̇1 = X1(v1 + v2), v̇2 = X2(v1 + v2)

if the function u is additively split as u = v1 + v2. The symplectic Euler method treats
one part of the partitioned system by the forward Euler method and the other by the
backward Euler method. Its adjoint method switches the rôle of which parts are treated
explicitly and implicitly. Being a symmetric composition of two first order schemes, the
Peaceman–Rachford scheme is second order accurate with respect to h.

Finally, the Strang splitting method

ϕS,h = ϕ1(h/2) ◦ ϕ2(h) ◦ ϕ1(h/2) (30)

in which ϕk(h) denotes a numerical approximation to Exp(hXk) is arguably the most
well-known of the early splitting methods. The method illustrates the idea of constructing
integrators by composing integrators for simpler flows. A prime advantage of this method
is its attainable symmetry when composed of symmetric methods.
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3.4 Krylov subspace exponential approximations

Following the detailed exposition of [15], the main idea supporting the approximation of
matrix exponentials by means of Krylov subspace techniques is the Arnoldi decomposition

XVm = VmHm + hm+1,mvm+1e
T
m

in which X is a matrix, Vm is a matricial representation of an orthonormal basis of the
Krylov subspace Km(X, v) = span {v,Xv, . . . ,Xm−1v} for some initial vector v, and Hm

is a Hessenberg matrix of dimension m. Furthermore, the vector ej is the regular j’th unit
vector of R

m. Then, for a suitably chosen contour Γ ⊂ C encapsulating the “numerical
range” of the matrix X, any function f analytic in a neighbourhood of the numerical range
of X admits the relation

f(X)v =
1

2πi

∫

Γ
f(λ) (λI −X)−1v dλ. (31)

The Arnoldi process is usually employed in approximating (λI −X)−1v. In particular we
have (λI −X)−1v ≈ Vm(λI −Hm)−1e1 and inserting this into (31) we get

f(X)v ≈ 1

2πi

∫

Γ
f(λ)Vm(λI −Hm)−1e1 dλ = Vmf(Hm)e1.

We have thus reduced the original problem to that of computing the expression f(Hm)e1,
a task much more tractable than f(X)v whenever m is much less than the dimension of v.
Diagonalising Hm may be fully feasible, thus yielding a computable expression for f(Hm).

Unfortunately, in practice the Krylov subspace dimension m must still be quite large
unless the matrix is e.g. Hermitian negative definite with a limited spectrum. In other
words, the convergence rate of these methods though super-linear in many cases, may not
be fully sufficient in the general case. The authors suggested using Lanczos type oblique
projection techniques and bi-orthogonal sequences to remedy this problem, although this
means abandoning the orthogonality of the basis Vm. In the recent paper [11], a method of
preconditioning the Lanczos approximations has been developed, giving excellent conver-
gence rates for matrices arising from spatial discretisation of some elliptic operators found
in common partial differential equations. However, the need for preconditioning coupled
to the difficulty of constructing good preconditioners shows that there is still work to do.
While general-purpose black-box integrators for all problems may not be feasible, or indeed
not desirable, automated procedures for finding sufficient preconditioners will benefit the
Krylov subspace methodology. Other ways of computing the exponential function, at least
for constant linear vector fields, are discussed Moler and van Loan in [26].

3.5 Splitting methods in incompressible fluid flow modelling

Incompressible fluid flow is usually modelled by the unsteady incompressible Navier–Stokes
equations

∂u

∂t
+ (u · ∇)u+ ∇p = 1

Re
∆u+ f

div u = 0
(32)

with u denoting the fluid velocity field and p the thermodynamic pressure. External body
forces are accounted for by the source term f . The Reynolds number Re is a dimensionless
number measuring the effects of convection relative to diffusive forces present in the phys-
ical problem. The fluid’s interaction with the outside world is incorporated in additional



boundary condtions. Such conditions typically specify the fluid’s velocity or contact shear
forces at the boundary of the physical domain. Additionally, an initial condition must be
specified. Discretising this system in space by some method, e.g. finite elements or spectral
elements, we arrive at a system of non-linear ordinary differential equations

M
du

dt
+ C(u)u+DT p = −Au+ F (t)

Du = 0
(33)

in which M is known as the mass matrix, C(u) is the non-linear discrete convection oper-
ator, and −A is the discrete diffusion operator. Furthermore, D is the discrete divergence
operator, DT is the discrete pressure gradient, and F (t) is a spatially discretised source
term associated with the body forces f of (32).

A challenging aspect of both problems (32) and (33) is that the pressure variable p is not
dynamically determined by the equations themselves. This is in contrast to compressible

fluid flow in which equations of state uniquely determine the pressure in terms of the
velocity field and, possibly, the temperature distribution throughout the domain. This
fact is reflected in the construction of numerical methods for simulating fluid flows, and
the usual approach is to view p as a Lagrange variable associated with the incompressibility
constraint div u = 0. As such, the pressure is determined so as to enforce divergence free
velocity fields at all time steps.

Splitting methods for (32) orignated with Chorin’s projection method in 1967. A single
step of this method is divided into two substeps. The first substep splits the convection
and diffusion operators into one-dimensional single coordinate components and, by treating
the convection operator explicitly, resolves the resulting linear systems one coordinate
component at a time. This produces a velocity field which only weakly satisfies the Navier–
Stokes equations. The second substep recovers the final velocity field by projecting this
velocity field onto divergence free vector fields as a post-processing step. This method
implicitly assumes that the velocity field is divergence free at all times, thus eliminating
the pressure variable from the equation. Consequently, the pressure values cannot be
recovered directly from the method.

In particular, for two-dimensional fluid flows, Chorin’s method uses the splitting

Au+ C(u)u = (A1 +A2)u+ (C1(u) + C2(u))u

with Ai and Ci representing, respectively, diffusive and convective contributions in direction
i = 1, 2. The resulting algorithm is

1a. Solve

M
u1/3 − u0

h
+ 1

Re
A1u1/3 + C1(u0)u1/3 = F1

with respect to u1/3.

1b. Solve

M
u2/3 − u1/3

h
+ 1

Re
A2u2/3 + C2(u1/3)u2/3 = F2

with respect to u2/3.

2. Project u2/3 onto divergence free vector fields to recover u1.

The source terms F1 and F2 are temporally averaged parts of the body force F (t). We note
that the exact representations of Ai and Ci depend upon the chosen spatial discretisation
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and formulation of the original problem (33). In particular, it is common to choose the
convective contributions Ci to be single coordinate components of a symmetrised convec-
tion operator as this leads to symmetric linear systems when computing the intermediate
velocities u1/3 and u2/3. Another numerical method for modelling incompressible fluid
flow, based on dimensional splitting of the diffusive operator to simplify the linear algebra
problems and explicit treatment of the convection operator, was analysed by Kim and
Moin in [19].

Subsequent development has produced a splitting method for the Navier–Stokes equa-
tions which has been much used and which guarantees divergence free velocity fields. This
method decomposes the physical operators into convective and diffusive sub-problems. A
basic step of this method consists of a convective sub-step followed by a pressure projec-
tion step to enforce the incompressibility contstraint. Finally a linear system is resolved
to balance the viscous forces. Symbolically, the algorithm is described by the following
sequence

u1/3 = ϕM−1C(u)(h)u0

(DMDT ) p1 = 1
hDMu1/3

u2/3 = u1/3 − hMDT p1

u1 = ϕ( 1

h
M+ 1

Re
A)−1(h)

(

Mu2/3 + b1(t)
)

in which b1(t) is the source term F (t) and, possibly, additional terms arising from using lin-
ear multistep methods for evaluating the flow of ( 1

hM+ 1
Re
A)−1. Linear multistep methods

have traditionally been the common choice for computing u1/3 and u1 due to only a sin-
gle linear diffusive system at each basic step of the global algorithm. Originally developed
from the point of view of temporal discretisation prior to spatial discretisation, the pressure
evaluation step amounts to solving a spatial Poisson problem for which efficient solvers ex-
ist. However, this approach is adversely affeceted by a need to supply boundary conditions
for the pressure field. Such boundary conditions are artificial and have been the subject
of much study. Early implementations used non-homogeneous Neumann type boundary
conditions derived from the normal component of u1/3 − u0, but this approach in some
cases introduces large splitting errors which degrade the performance of the method. Kar-
niadakis and co-workers in [18] derived more general boundary conditions for the Poisson
pressure problem and through several numerical tests showed that the resulting numerical
scheme was second order accurate with respect to h.

Advantages of physical decomposition of the Navier–Stokes equations into their convec-
tive and diffusive constituents led Maday and co-workers [22] to using integrating factors
for the convective forces. Focusing on the action of the integrating factors rather than
explicit formation of the exponential matrix, this framework is a general procedure for
generating splitting methods for problems of the form (1). The underlying idea of the “op-
erator integrating-factor splitting (OIFS) methods”, is the introduction of the integrating
factor Exp((t∗ − t)X1) with X1 defined in (1) and t∗ ≥ t a fixed parameter. Then

d

dt

(

Exp((t∗ − t)X1)u
)

= Exp((t∗ − t)X1)X2(u) (34)

Splitting schemes for (1) are generated through various discretisations of (34). Generating
the flow Exp((t∗ − t)X1)u is typically accomplished by solving

dv

ds
= X1(v), 0 < s < t∗ − t (35)

using v(0) = u(t) as an initial value. Discretising problems (34) and (35) using numer-
ical schemes ϕ2(h) and ϕ1(h) respectively, the complete scheme for (1) is denoted by



ϕ2(h)/ϕ1(h). In the context of the incompressible Navier–Stokes equations, ϕ2(h) is com-
monly chosen as a BDF scheme of order k ≥ 1 while ϕ1 is some one-step Runge–Kutta
method, usually explicit. Choosing BDF schemes for ϕ2 makes the choice of t∗ simpler.
Using t∗ = t + h reduces Exp((t∗ − t)X1) to the identity in this case. Consequently, the
right hand side of (34) becomes X2(u). The original paper [22] specifically studied the
“BDF3/RK4” scheme in this context.

An immediate consequence of splitting the vector field is that ϕ1 and ϕ2 need not use
the same step sizes. This can be used to good effect when solving incompressible fluid flow
problems, as numerical schemes and step sizes can be tuned to a specific sub-problem while
temporarily disregarding the coupling effects. Schemes derived from the OIFS framework
enable treating the diffusive contributions implicitly leading to less frequent inversions of
the indefinite Stokes operator, whilst the convection forces can be treated explicitly to
remove the need for solving non-linear systems of algebraic equations. Furthermore, the
incompressibility constraint can be naturally incorporated into the overall scheme to en-
sure that the output velocity field is divergence free. A drawback to the OIFS approach,
however, is that using step sizes for the convective sub-problems and diffusive outer prob-
lems that are too disparate may lead to unstable computations due to steepening boundary
layers in the solution. This steepening effect may occur because the splitting does not nec-
essarily balance the convective and diffusive forces at all times, and is observed in actual
simulations of flows exhibiting narrow boundary layers.

Applied to the spatially discretised Navier–Stokes equations (33), the OIFS methods
become

[

α0

h M +A DT

D 0

] [

un+1

pn+1

]

=

[

M(fn+1 − 1
h

∑k
s=1 αsũ

n+1−s)
0

]

(36)

if the outer, diffusive Stokes problem is discretised using a BDF scheme of order k. In the
right hand side of (36), we denote by ũn+1−s the quantities Exp((t+h− sh)(−C))un+1−s.

Equation (36) is an algebraic saddle-point problem which must be resolved at each
time step. A Uzawa type decoupling of the global discrete operator using the pressure
variable for enforcing divergence free velocity fields is possible, but the resulting algorithm
is normally too expensive in terms of computer resources. However, accepting an additional
algebraic splitting error, equation (36) may be resolved at the expense of one scalar and
strongly diagonally dominant Helmholtz problem for each velocity component and one
system solve involving the consistent Poisson (DMDT ) operator at each time step.

This algorithm involves the following three stages at each time step

1. Solve

(
α0

h
M +A)u∗i = (F n+1 − 1

hM

k
∑

s=1

αsũ
n+1−s)i −DT

i p
∗

for each velocity component i = 1, . . . , d. The pressure p∗ is an extrapolated estimate
of the pressure at the next time step. This demands caution in the case of high-order
outer stepping schemes.

2. Solve
(DMDT ) δpn = α0

h Du∗

obtaining the pressure update δpn = pn+1 − p∗.

3. Update the velocity and pressure variables

pn+1 = p∗ + δpn

un+1 = u∗ − h
α0
M−1DT δp∗,
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the latter system being trivial as the mass matrix is diagonal.

The non-vanishing algebraic splitting error present in this algorithm is explicitly given by
A(un+1 − u∗) at each time step.

4 Exponential integrators

4.1 Order conditions for exponential integrators

Connecting splitting methods based on exact flows for each vector field component Xk

and methods based on numerical flow approximations for all vector field components, are
methods which employ exact flows for some components and flow map approximations for
the remaining vector field components. A particular class of such methods is useful if the
additional structure of a linear and a non-linear term can be imposed on the prototypical
vector field splitting (1). We will in the following assume that X1 is a constant, linear
vector field. This vector field may either be a matrix in the case of ordinary differential
equations, or a constant linear differential operator in the case of partial differential equa-
tion. Moreover, as previously indicated in equation (5), we will consider explicit schemes
of the form

kr = X2(Exp(crhX1)u0 +

r−1
∑

j=1

aj
r(hX1)hkj), r = 1, . . . , s

u1 = Exp(hX1)u0 +
s

∑

r=1

br(hX1)hkr.

This format is not fully general, but nevertheless covers all of the classic exponential
integrators. We note, however, that generalisations to schemes based on underlying general
linear methods have recently been derived in [30]. Implementation of such schemes are
available in expint matlab package described in the technical report [4].

Early exponential integrators were used by Certaine [9] for solving ODEs with large
time constants. These integrators were all from the class now known as exponential time
differencing (ETD) schemes. This class may be derived by rewriting the original problem
using the “variation of constants formula”

u(t0 + h) = Exp(hX1)u(t0) + Exp(hX1)

∫ h

0
Exp(−τX1)X2(u(τ)) dτ (37)

and subsequently approximating the integral term in some way. Integrating an interpo-
lating polynomial representation of X2 produces multistep ETD schemes. This class was
also analysed by Nørsett in [28] as a means of producing high order A-stable explicit linear
multistep methods.

The Nørsett methods may be summarised as

un+1 = Exp(hX1)un + h

k−1
∑

j=0

bj(hX1)X2(un−j) (38)

in which n denotes the time level, tn = t0 + nh, and the coefficient functions are given by

bj(z) = (−1)j
k

∑

i=j

(

k

i

)

Si(z), Si(z) = −1

z

i
∑

m=1

(

1
kSi−m(z)

)

.



We note that S0(z) = −(Exp(z) − 1)/z. The explicit coefficient function formulae arise
from the well known representation of the interpolating polynomial in terms of backwards
differences. In his seminal paper [28] Nørsett proved that (38) are, in fact, A-stable and,
moreover, that the methods’ truncation error behaves as O(hk). Finally, as X1 → 0,
we recover the underlying explicit linear multistep scheme. We remark that the Nørsett
methods employ the variation of constants formula over a single time step of size h.

In contrast, another class of multistep based exponential integrators recently investigated
by Calvo and Palencia in [8], uses (37) across a k-step time interval [tn, tn + kh] and are
thus derived by representing the exact solution as

u(tn + kh) = Exp(khX1)u(tn) + h

∫ k

0
Exp

(

(k − τ)hX1

)

X2(u(tn + τh)) dσ

for all n ≥ 0. Using the data {(tj , X2(uj))}n+k−1
j=n to define an interpolating polynomial

In,k(t) and substituting this into the integral, these schemes may be written in an “uneval-
uated” form as

un+k = Exp(khX1)un + h

∫ k

0
Exp

(

(k − τ)hX1

)

In,k−1(τh) dτ. (39)

Then, choosing an explicit representation of the interpolating polynomial in terms of ordi-
nates and evaluating the required integrals, the schemes may also be written as

un+k = Exp(khX1)un + h

k−1
∑

j=0

bj(hX1)X2(un+j)

in which the coefficient functions bj(hX1), given by

bj(z) =

∫ k

0
Exp((k − τ)z)

k−1
∏

`=0

`6=j

τ − t`
tj − t`

dτ,

need be evaluated only once unless the step size h is changed. We note, however, that
Calvo and Palencia cite implementational and analytical reasons for preferring the forward
difference representation of the interpolating polynomial In,k−1(t). In this case, the schemes
are given by

un+k = Exp(khX1)un + h

k−1
∑

j=0

γj(hX1)∆jX2(un), γj(z) =

∫ k

0
Exp((k − τ)z)

(

τ

j

)

dτ.

Irrespective of the actual representation of the interpolating polynomial, the main distin-
guishing feature of the Calvo–Palencia schemes compared to the Nørsett modified Adams–
Bashforth schemes is the fact that un is exponentially pushed k steps forward in the former
and only a single step in the latter. When implementing the Calvo–Palencia schemes, this
increased delay either doubles the scheme’s memory requirements or forces additional eval-
uations of X2.

Asserting a number of technical conditions on the regularity of X2 and the domain of X1,
mainly to guarantee existence and uniqueness of the solution, Calvo and Palencia study
the behaviour of (39) with respect to order of convergence for parabolic problems. Their
main result is that when solving the problem to final time T ,

‖u(tn) − un‖α ≤ K · hk · ‖g(k)‖∞, 0 ≤ n ≤ T/h. (40)
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Here, g(t) = X2(u(t)), and ‖·‖α is a problem dependent norm involving fractional powers
of X1 + νI for some ν guaranteeing positivty of X1 + νI. In other words, the Calvo–
Palencia schemes attain correct order even in the case of unbounded linear operators X1.
The constant K in (40) is independent of h and g but may otherwise depend on the
characteristics of the problem itself.

Defining the quantities Un = (un, . . . , un+k−1)
T , and U(tn) = (u(tn), . . . , u(tn+k−1)

T ,
the multistep method (39) is rewritten as a one step method in the proof of (40). The
resulting one step method is

Un+1 = A(hX1)Un +B(hX1)X2(Un)

in which

A(z) =



















0 I 0 · · · 0

0 0 I
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . .
. . . I

Exp(kz) 0 · · · 0 0



















, B(z) =











0 · · · 0
...

. . .
...

0 · · · 0
b0(z) · · · bk−1(z)











.

The circulant structure of A(z) provides bounds on its operator norm when applied re-
peatedly and when combined with B(z). These bounds are then subsequently used in a
somewhat technical analysis to establish upper bounds on the defects U(tn)−Un, and, ul-
timately on ‖u(tn)− un‖α. Moreover, the authors note that the proof may be modified to
give similar results for the Nørsett schemes (38). However, recent research by Ostermann
and co-workers [30] has revealed that the Calvo–Palencia schemes are less desirable than
the Adams–Bashforth schemes from a stability point of view.

We finally mention one of the technical assumptions used by Calvo and Palencia. The
“starting values” u0, u1, . . . , uk−1 are all assumed to be in a suitable subspace of a Banach
space. The initial value satisfies this condition by default but the remaining values may not.
The authors describe a procedure by which suitable starting values may be constructed
and give practical details on how this procedure may be realised. This procedure employs
a one step scheme, such as the Nørsett–Euler, to construct initial approximations to the
starting values and subsequently uses fixed point iteration to solve a nonlinear system of
equations for the starting values. The fixed point iteration is continued until the starting
values are suitably accurate.

Exponential integrator methods based on Runge–Kutta processes were introduced by
Lawson [21] as a means of constructing explicit one-step methods for stiff, semilinear
problems. The integrating factor methods

kr = X2(Exp(crhX1)u0 +

r−1
∑

j=1

aj
r Exp((cr − cj)hX1)hkj) r = 1, . . . , s

u1 = Exp(hX1)u0 +
s

∑

r=1

br Exp((1 − cr)hX1)hkr

(41)

may thus be viewed as the initial work on exponential integrators. The method parameters
aj

r, br and cr are usually chosen from an underlying Runge–Kutta scheme on which we
impose the coefficient “summability condition” cr =

∑r−1
j=1 a

j
r.

Friedli [12] extended the integrating factor methods to the general format shown above
and also derived order conditions for methods up to order four. Recent analysis by Berland



et al [3] provides non-stiff order conditions of any order for exponential integrators in this
format. These non-stiff order conditions are valid whenever ‖hX1‖ ≤ O(1). However,
additional requirements must be asserted in the stiff regime of ‖hX1‖ � O(1). Stiff order
conditions are derived and analysed by Hochbruck and Ostermann [16] in the context of
explicit exponential integrators for semilinear parabolic problems.

4.2 Stiff order conditions

Hochbruck and Ostermann consider non-autonomous semilinear parabolic systems of the
form

du

dt
= X1u+X2(t, u), u(t0) = u0

viewed as an evolution equation in a Banach space (V, ‖ · ‖). The linear operator −X1,
defined on the domain D(−X1) = D(X1) ⊂ V , is assumed to be sectorial. That is, a densly
defined and closed linear operator on V satisfying the resolvent condition

‖(λI − (−X1))
−1‖ ≤ M

|λ− a| (42)

on the sector {λ ∈ C : θ ≤ |arg(a−λ)| ≤ π, λ 6= a} for someM ≥ 1, a ∈ R, and θ ∈ [0, π/2].
This assumption guarantees the existence of fractional powers of the shifted linear operator
X̃1 = (−X1) + ωI whenever ω > −a, and moreover, that X1 is the infinitesimal generator
of an analytic semigroup {Exp(tX1)}t≥0.

The authors additionally assume that X2 is locally Lipschitz continuous in a strip around
the exact solution u. Moreover, in order to obtain high order convergence results, it
is assumed that the exact solution u : [0, T ] → D(X̃α

1 ), with derivatives in D(X̃α
1 ) is

sufficiently smooth and that X2 is sufficiently Frechét differentiable in a strip around u.
These assumptions ensures that the composition

f : [0, T ] → V : t 7→ f(t) = X2(t, u(t))

is a smooth mapping. Finally, the coefficient functions aj
r and br are assumed to satisfy a

stability condition of the form

‖c(tX1)‖ + ‖tγX̃γ
1 c(tX1)‖ ≤ C, 0 ≤ γ ≤ 1 (43)

for some constant C and coefficient function c(z).
As X1 may be unbounded and is not generally a closed operator on D(X1), defining

integral powers of X1 is not generally meaningful in this setting. Thus, power series
expansion in terms of X1 is not generally meaningful either, though analytic functions of
X1 may still be defined by means of the Cauchy integral formula. However, the function f
is not directly affected by these characteristics of X1 and may thus still be represented by
Taylor polynomial with a remainder term in the form of an integral. This representation
yields, through a somewhat technical derivation, explict expressions of the local numerical
defects ∆nr and δn+1 defined by inserting the exact solution into the stages and updates
of the numerical method respectively. These defect expressions involve the functions

ψ`,r(z) = ϕ`(crz)c
`
r −

r−1
∑

j=1

aj
r(z)

c`−1

j

(`−1)! , ψ`(z) = ϕ`(z) −
s

∑

r=1

br(z) c`−1
r

(`−1)! (44)

of fundamental importance in deriving and expressing the stiff order conditions. Given
0 < γ ≤ 1 and X̃ν−1

1 f (m) ∈ L∞
(

0, T ;D(X̃α
1 )

)

, the explicit defect expressions yield the
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bounds

h1−ν
∥

∥∆(m)
nr

∥

∥

D(X̃α
1

)
+

∥

∥X̃ν−1
1

∥

∥

D(X̃α
1

)
≤ Chm+1 sup

0≤τ≤1

∥

∥X̃ν−1
1 f (m)(tn + τh)

∥

∥

D(X̃α
1

)

∥

∥

∥

n−1
∑

j=0

Exp(jhX1) δ
(m)
n−j

∥

∥

∥

D(X̃α
1

)
≤ Chm sup

0≤t≤tn

∥

∥X̃ν−1
1 f (m)(t)

∥

∥

D(X̃α
1

)
,

which subsequently relate attainable scheme order to the differentiability of f .
Assuming sufficient differentiability of f and repeatedly applying the explicit defect

recursion formulae, Hochbruck and Ostermann’s main result is the existence of a family
of bounded operators Nn(v) on V such that the global errors en = un − u(tn) satify the
recursion relation

en+1 = Exp(hX1) en + hNn(en) en − h2ψ2(hX1)f
′(tn)

− h3ψ3(hX1)f
′′(tn) − h3

s
∑

r=1

br(hX1)Jnψ2,r(hX1)f
′(tn)

− h4ψ4(hX1)f
′′′(tn) − h4

s
∑

r=1

br(hX1)Jnψ3,r(hX1)f
′′(tn)

− h4
s

∑

r=1

br(hX1)Jn

r−1
∑

j=1

aj
r(hX1)Jnψ2,j(hX1)f ′(tn)

− h4
s

∑

r=1

br(hX1)crKnψ2,r(hX1)f
′(tn) + h5Rn,

(45)

with uniformly bounded remainders ‖Rn‖ ≤ C. The paper gives explicit expressions for
operators Jn and Kn, though the actual expressions are suppressed in the list of algebraic
order conditions.

Those algebraic order conditions may be directly extracted from equation (45) as a
numerical scheme of order p must eliminate all terms of orders less than and including p
from the recursion (45). Table 1 lists the algebraic order conditions which must be satisfied
in order to construct numerical schemes of orders up to and including p = 4. This table is
replicated from [16] and the operators J and K denote here general bounded operators on
V . As a further refinement, we note that the complexity of constructing numerical schemes
of high order which satisfy these conditions is somewhat ameliorated through theorem 4.7
of [16]. This theorem states that in order to achieve order p, 2 ≤ p ≤ 4, one need only
satisfy the conditions for schemes of order p− 1 for all z. The conditions associated with p
may be replaced by the weaker conditions ψp(0) = 0 and by subsituting br(0) for br(z) in
the other relations. Nevertheless, the task of constructing such high order schemes remains
considerable.

There are some practical consequences of these conditions. Hochbruck and Ostermann
demonstrate the impossibility of constructing explicit fourth order schemes using only
four stages. At least five stages must be employed to achieve guaranteed fourth order
schemes for semilinear parabolic problems. The authors explicitly construct an example of
such a scheme. Moreover, the coefficient functions aj

r(z) and br(z) are restricted to linear
combinations of ϕ functions to even satisfy ψ1(z) = 0. Consequently, Lawson’s integrating
factor schemes (41) will, in general, exhibit order reduction down to order 1 when applied
to this class of problems.

Order reduction phenomena occur for other classes of schemes as well, even schemes
using ϕ-based coefficient functions, although not generally as severe as in the case of no



Table 1: Stiff algebraic order conditions
Order Order condition, z = hX1

1 ψ1(z) = 0

2 ψ2(z) = 0
2 ψ1,r(z) = 0, r = 1, . . . , s

3 ψ3(z) = 0

3
s

∑

r=1
br(z)J ψ2,r(z) = 0

4 ψ4(z) = 0

4
s

∑

r=1
br(z)J ψ3,r(z) = 0

4
s

∑

r=1
br(z)J

r−1
∑

j=1
aj

r(z)J ψ2,j(z) = 0

4
s

∑

r=1
br(z)crK ψ2,r(z) = 0

ϕ functions. The so-called ETD4RK scheme of Cox and Matthews constructed in [10]
exhibits order reduction when applied to both test problems in [16], a fact explained by
the scheme’s failure to fully satisfy all the stiff order conditions even though the conditions
are satisfied in a very weak sense.

On the other hand, numerical and empirical evidence suggest [2] that satisfying the
stiff order conditions may not be crucial whenever the problem is not parabolic. The
complete characterisation of conditions under which exponential integrators perform well
thus remains, at present, unresolved.

5 Conclusion

We have presented a brief review of some of the error analysis available in the literature
for splitting methods in various forms. A significant body of work is devoted to the
topic, yet important issues remain unresolved—particularly for the exponential integrators.
Extending the order theory for exponential integrators to non-parabolic problems and
constructing good methods, possibly using variable step sizes, are directions for future
research.
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