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Most exponential integrators use functions similar to the exponential in their
implementation. This report describes a structure in which these function play
a central role, and the framework developed herein is believed to be applicable
to further studies of these functions. The framework is constructed using ideas
from Lie group methods, with generalized affine groups as the fundamental
building block, for the solution of non-autonomous systems of ordinary differen-
tial equations. This work can be seen as an extension to work by Minchev [10].

1. Introduction

Exponential integrators are numerical schemes tailored for systems of ordinary differential
equations of the type

y′(t) = Ly + N(y, t), y(t0) = y(0) (1)

in which L is a linear operator and N(y, t) is a (possibly nonlinear) function. If, for
instance, L is such that (1) is stiff, classical explicit Runge–Kutta integrators encounter
step size restrictions, and the aim of exponential integrators is to enable the use of explicit
schemes without step size restrictions.

A building block of exponential integrators is the “ϕ functions”, which we define by the
integral representation

ϕj(z) =
1

(j − 1)!

∫ 1

0
e(θ−1)zθj−1 dθ, j = 1, 2, . . . , (2)

which for j = 1, 2, 3 (and for z 6= 0) can be calculated as

ϕ1(z) =
ez − 1

z
, ϕ2(z) =

ez − z − 1
z2

and ϕ3(z) =
ez − z2/2− z − 1

z3
.

Numerous exponential integrators exist for the equation (1), we refer to [3] and its
accompanying software for a list. Most of them make use of ϕ functions, but the Lawson
integrators are examples that do not [8, 2].

Lie group integrators may be extended to exponential integrators through the affine
group (of degree one) GLn(R)oRn and its affine action on Rn. This was already mentioned
in [11]. The simplest affine Lie group integrator for (1) is then

yn+1 = ehLyn + hϕ1(hL)N(yn, tn) (3)
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where yn ≈ y(tn). This scheme can be called Lie–Euler in our context, but is also known
as Nørsett–Euler, ETD Euler, filtered Euler, exponentially fitted Euler etc.

The important feature of (3) in this context is the use of the function ϕ1. φ functions (2)
is a class of functions that are all exponential-like, but has not been as extensively studied
in mathematical literature such as the exponential function itself.

The motivation for this work was to construct a group around the ϕ functions in order
to reveal further properties. All details on these generalized affine groups are developed in
Section 2. A direct application of Corollary 2.8 herein already exists for the implementation
of the scaling and squaring approach of evaluating ϕ functions in [3].

The report [10] has the same framework up to degree d = 2, and focuses mainly on
constructing Lie group integrators using the higher order affine groups. This report owes
a lot to [10] and [7] for ideas and inspiration. Section 3 exemplifies how this framework
can be applied for d = 2 in order to construct Lie group integrators.

2. Generalized affine groups and their Lie algebras

The well-known affine group, GLn(R) o Rn and its corresponding group action on Rn,
(A, b) · y = Ay + b, is in this section generalized to higher degree by incorporating further
Rn-vectors into the group. The basic affine group is denoted degree d = 1, as the group
has one Rn vector. One perhaps unexpected necessity for higher order groups, is the
introduction of an additional scalar, λ, which is needed for this framework to be able to
solve non-autonomous differential equations. The parameter λ is used in the algebra to
maintain a notion of unity time.

We start with Lemma 2.1 which is well known in recent texts on exponential integrators.
ϕ functions appear in this lemma as a convenient symbol for a recurring expression. Then
an affine algebra, an affine group, an exponential and logarithm connecting the algebra
and the group is defined. Lemma 2.5 then proves that this framework is able to solve the
differential equation (1).

Lemma 2.7 is an application of the group structure which gives meaning to ϕ functions on
sums. It has the immediate Corollary 2.8 which is already useful for the current numerical
implementation of ϕ functions, and also Corollary 2.9 which is yet to be applied for future
backward error analysis of ϕ functions.

Lemma 2.1. The nonautonomous differential equation

y′(t) = αy +
d−1∑
j=0

tj

j!
β[j], y(t0) = y0 (4)

for y(t) ∈ Rn, α ∈ Rn×n, β[j] ∈ Rn, has the exact solution

y(t0 + h) = ehαy0 +
d−1∑
j=0

j∑
k=0

tj−k
0

(j − k)!
hk+1ϕk+1(hα)β[j] (5)

with ϕk defined in (2).

Proof. Differentiate y(t0 + h) in (5) with respect to h and set h = 0.

Definition 2.2 (Lie affine algebra). We define the Lie affine algebra of degree d as con-
taining the elements (α, β[0], . . . , β[d−1], λ) ∈ Mn(R) × (Rn)d × R. Addition and scalar
multiplication are defined trivially elementwise. The bracket operation is[

(α1, β
[0]
1 , . . . , β

[d−1]
1 , λ1), (α2, β

[0]
2 , . . . , β

[d−1]
2 , λ2)

]
= ([α1, α2], γ[0], . . . , γ[d−1], 0) (6)
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where

γ[j] = α1β
[j]
2 − α2β

[j]
1 +

d−1−j∑
k=1

(
β

[j+k]
1

λk
2

k!
− β

[j+k]
2

λk
1

k!

)
.

This algebra is a Lie algebra as both the skew-symmetry and the Jacobi identity can be
proved. This is not surprising due to the connection with the vector field in (4) which will
be presented in Lemma 2.5.

The scalar λ in the algebra is necessary for d ≥ 2 to have a notion of unity time when
this algebra is used to solve non-autonomous differential equations. Choosing λ 6= 1 and
rescaling β[j]’s accordingly, is equivalent to scaling the time parameter in (4), as will be
demonstrated in Remark 2.6. For d = 1, the parameter λ is insignificant and could be
removed from the definitions and expressions.

Definition 2.3 (Affine group). The affine group of degree d is defined as containing the
elements (A, b[0], . . . , b[d−1], λ) ∈ GLn(R) o (Rn)d ×R.

The group product is

(A2, b
[0]
2 , . . . , b

[d−1]
2 , λ2) · (A1, b

[0]
1 , . . . , b

[d−1]
1 , λ1) = (A2A1, ξ

[0], . . . , ξ[d−1], λ1 + λ2) (7)

where

ξ[j] = A2b
[j]
1 +

d−1−j∑
k=0

b
[j+k]
2

λk
1

k!
.

The group identity is written
Id = (I,0, . . . ,0, 0).

Moreover the group inverse is

(A, b[0], . . . , b[d−1], λ)−1 = (A−1, χ[0], . . . , χ[d−1],−λ) (8)

where

χ[j] = −A−1
d−1−j∑
k=0

b[j+k] (−λ)k

k!
.

Elements of the affine group act on Rn ×R as follows

(A, b[0], . . . , b[d−1], λ) · (y, t) =

Ay +
d−1∑
j=0

b[j] t
j

j!
, t + λ

 . (9)

We define the following map from the affine algebra to the affine group,

Exp(α, β[0], . . . , β[d−1], λ) = (eα, b[0], . . . , b[d−1], λ) (10)

where

b[j] =
d−1−j∑
k=0

λkϕk+1(α)β[k+j].

Lemma 2.5 establishes that this map really is the exponential as it represents the one-
parameter subgroups in the affine group.

3



Lemma 2.4 (Logarithm map).

Log(A, b[0], . . . , b[d−1], λ) = (log(A), β[0], . . . , β[d−1], λ)

where

β[j] =
d−1−j∑
k=0

λkck+1b
[k+j].

The coefficients ck obey the recursive formula

ck+1 = −ϕ−1
1 (log A)

k−1∑
i=0

ϕk+1−i(log A)ci+1, k ≥ 1, c1 = ϕ−1
1 (log A). (11)

A must be sufficiently close to the identity I ∈ GLn(R).

The first few ck coefficients are

c1 = ϕ−1
1

c2 = −ϕ−2
1 ϕ2

c3 = ϕ−3
1 ϕ2

2 − ϕ−2
1 ϕ3

c4 = −ϕ−2
1 ϕ4 + 2ϕ−3

1 ϕ2ϕ3 − ϕ−4
1 ϕ3

2

c5 = −ϕ−2
1 ϕ5 + ϕ−3

1 ϕ2ϕ4 − ϕ−4
1 ϕ2

2ϕ3 + ϕ−3
1 ϕ2

3 + ϕ−5
1 ϕ2ϕ4 − 2ϕ−4

1 ϕ2
2ϕ3 + ϕ−2

1 ϕ4
2

where all ϕ functions and their inverses are evaluated at log A.

Proof. Assume d fixed. We will prove that the recursion (11) is necessary for Exp◦Log = Id
to hold. In this proof, all ϕ functions are evaluated at log A.

Exp ◦ Log(A, b[0], . . . , b[d−1], λ) = (A, b[0], . . . , b[d−1], λ)

Exp(log A, β[0], . . . , β[d−1], λ) = (A, b[0], . . . , b[d−1], λ)

(A, b̄[0], . . . , b̄[d−1], λ) = (A, b[0], . . . , b[d−1], λ)

which means that b̄[j] = b[j] must hold for 0 ≤ j ≤ d− 1. Furthermore

b̄[j] =
d−1−j∑
k=0

λkϕk+1β
[j+k]

=
d−1−j∑
k=0

λkϕk+1

d−1−(j+k)∑
i=0

λici+1b
[i+j+k]

=
d−1−j∑
m=0

λm

[
m∑

i=0

ϕm−i+1ci+1

]
b[j+m]

using m = k + i. Letting j = d − 1, this immediately yields c1 = ϕ−1
1 if b̄[d−1] = b[d−1].

Require b̄[d−1−k] = b[d−1−k] for k = 1, 2, . . . , d− 1. In

b̄[d−1−k] =
k∑

m=0

λm
m∑

i=0

ϕm−i+1ci+1b
[d−1−k+m]
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the coefficient in front of λk must be zero. This means

0 =
k∑

i=0

ϕk+1−ici+1 = ϕ1ck+1 +
k−1∑
i=0

ϕk+1−ici+1

and immediately gives the recursion (11). A similar calculation gives that (11) must also
hold for Log ◦ Exp = Id. We have used that all ϕ functions and their inverses commute
with each other.

The proof of Lemma 2.4 tacitly assumes that the affine algebra of degree d − 1 is a
subalgebra of the affine algebra of degree d, and similarly for the groups. The proof of this
is omitted, but is easily seen in the matrix representation in Remark 2.10.

Lemma 2.5.

Exp(h(α, β[0], . . . , β[d−1], 1)) · (y(t0), t0) = (y(t0 + h), t0 + h)

where y(t) satisfies (4).

Proof. Using the exponential map (10) and the group action (9) we write

Exp(h(α, β[0], . . . , β[d−1], 1)) · (y(t0), t0)

=

ehαy(t0) +
d−1∑
j=0

d−1−j∑
k=0

hkϕk+1(hα)hβ[k+j] t
j
0

j!
, t0 + h


Changing outer summation variable from j to i = k + j we obtain(

ehαy(t0) +
d−1∑
i=0

i∑
k=0

ti−k
0

(i− k)!
hk+1ϕk+1(hα)β[i] , t0 + h

)

in which the first element corresponds to y(t0 + h) in (5).

Remark 2.6. If we scale time in (4) by t = γτ , we obtain the equation

ỹ′(τ) = γαy +
d−1∑
j=0

τ j

j!
γj+1β[j], ỹ(τ0) = y(t0) = y0

Using this and Lemma 2.5, one sees that

Exp(h(α, β[0], γβ[1], . . . , γd−1β[d−1], 1/γ)) · (ỹ(τ0), τ0) = (y(t0 + h), t0 + h)

thus illustrating a one-parameter isotropy subalgebra [1, 9] parametrized by γ.

Lemma 2.7.

ϕ`((γ1 + γ2)α) =
1

(γ1 + γ2)`

(
eγ1αγ`

2ϕ`(γ2α) +
∑̀
k=1

γ`−k
1 γk

2

(`− k)!
ϕk(γ2α)

)

where γ1 and γ2 are real numbers.
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Proof. Let γ̄ = γ1 + γ2. By the homomorphism property of the exponential, we have

Exp(γ̄(α, β[0], . . . , β[d−1], λ)) =

Exp(γ1(α, β[0], . . . , β[d−1], λ)) · Exp(γ2(α, β[0], . . . , β[d−1], λ)) (12)

The left hand side of (12) is the group element
(
eγ̄α, b

[0]
L , . . . , b

[d−1]
L , γ̄λ

)
where

b
[j]
L =

d−1−j∑
k=0

(γ̄λ)kϕk+1(γ̄α)γ̄β[k+j]

and the right hand side of (12) will be (eγ̄α, b
[1]
R , . . . , b

[d−1]
R , γ̄λ) where

b
[j]
R = eγ1α

(
d−1−j∑
k=0

(γ2λ)kϕk+1(γ2α)γ2β
[k+j]

)

+
d−1−j∑
k=0

(γ1λ)k

k!

d−1−(j+k)∑
i=0

(γ2λ)iϕi+1(γ2α)γ2β
[i+j+k]

in which the double sum is rearranged using l = i + k to obtain

b
[j]
R = eγ1α

(
d−1−j∑
k=0

(γ2λ)kϕk+1(γ2α)γ2β
[k+j]

)

+
d−1∑
l=0

(γ1λ)(l−i)

(l − i)!

d−1−l∑
i=0

(γ2λ)iϕi+1(γ2α)γ2β
[i+l].

The relation for ϕ`, 1 ≤ ` ≤ d is now obtained by comparing the coefficients of λ` in
b
[0]
L = b

[0]
R .

The ϕ functions possess a double-angle relation. This relation is a building block of the
scaling and corrected squaring approach of calculating the ϕ functions numerically.

Corollary 2.8 (Squaring of ϕ functions). The ϕ functions (2) have the following squaring
property,

ϕ`(2α) =
1
2`

(
eαϕ`(α) +

∑̀
k=1

1
(`− k)!

ϕk(α)

)

Proof. Set γ1 = γ2 = 1 in Lemma 2.7.

This squaring property is also attainable by dividing the integration interval in (2) in
half and then shifting the integration variable in the second half, as outlined in [6].

The following corollary will be applied in further studies on ϕ functions.

Corollary 2.9.

e−αϕ`(α) =
∑̀
k=1

(−1)k+1

(`− k)!
ϕk(−α)

Proof. Set γ1 = −1 and γ2 = 1 in Lemma 2.7.
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Remark 2.10. According to Ado’s theorem, we have that the Lie affine algebra and
affine group are isomorphic to a subalgebra of matrices in Mn+d(R) and to a subgroup of
GLn+d(R). The isomorphism for the Lie affine algebra can be represented by the map

(α, β[0], . . . , β[d−1], λ) 7→


α β[0] β[1] · · · β[d−1]

0T 0 0 · · · 0

0T λ
. . . 0

...
. . . . . .

...
0T 0 · · · λ 0

 (13)

where 0 is a column vector of size n.
The isomorphism for the affine group can be represented by the map

(A, b[0], . . . , b[d−1], λ) 7→



A b[0] b[1] . . . b[d−1]

0T 1 0 . . . 0

0T λ
. . .

...
. . . . . .

0T λd−1

(d−1)!

. . . . . . 0

0T λd

d!
λd−1

(d−1)! . . . λ 1


(14)

where elements below the diagonal are

ci,j =
λi−j

(i− j)!
for 2 ≤ j ≤ d + 1 and i ≥ j.

3. Affine Lie group integrators

In this section, we extend the Lie group integrators presented in [11] using a second degree
affine group on a scalar equation. This is an exemplification of the results presented in
Section 2.

Let a non-autonomous differential equation be given by

y′(t) = αy + β[0] + tβ[1] y(t0) = y0 ∈ Rn, α ∈ Rn×n, β[j] ∈ Rn (15)

In order to construct a Runge–Kutta–Munthe-Kaas (RKMK) scheme, one needs to define
a configuration space (a manifold M) for the solution, a map from the configuration space
to an algebra g, and an action from the algebra on the configuration space. Our problem
is non-autonomous, so the time parameter t must be included in the configuration space,
we write M = Rn ×R. The map f : M → g can be chosen to be

f : (y, t) 7→ (α, β[0], β[1], 1) (16)

Alternative maps using the isotropy subalgebra are given in Remark 2.6.
In RKMK schemes, calculations (inner stages) are performed in the algebra g and the

result is subsequently obtained via the algebra action which factors into the exponential
map and the group action. If we want to implement Lie–Euler for the problem (15)
using (16), we would get the scheme

(yn+1, tn+1) = Exp(h(α, β[0], β[1], 1)) · (yn, tn) (17)
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and by inserting explicit expressions from (10) and (9) (or from Section A.1), one obtains

(yn+1, tn+1) =
(
ehαyn + hϕ1(hα)β[0] + hϕ1(hα)β[1] + h2ϕ2(hα)β[1], tn + h

)
(18)

which can be coined Lie–Euler of degree 2.
The report [10] constructs a fourth order commutator free scheme using a second degree

(d = 2) affine group for a non-autonomous problem. The approach there to find f : M → g

is to linearize the nonlinear function,

N(y, t) ≈ Nn + t
N(y, t)−Nn

t
= N [0] + tN [1]

where Nn = N(yn, tn). Given this, a commutator free scheme of degree 2 is constructed
using the exponential map and group action that corresponds to the group chosen. This
scheme is compared numerically with the fourth order commutator free scheme obtained
by using only N [0] above and the affine group of degree d = 1. The numerical results
therein indicate that the commutator free scheme using d = 2 has a slight advantage over
the scheme with d = 1.

For arbitrary nonlinear function, a Taylor expansion in t is needed to be able to apply
arbitrary degree affine Lie group integrators. This may or may not be feasible depending on
the way N(y, t) is presented. For this reason, it is not believed that arbitrary degree affine
Lie group integrators can contribute much to efficient numerical solution of differential
equations.

4. Discussion

Generalized affine groups of arbitrary degree d have been constructed and the role of higher
degree ϕ functions have been exemplified. It is not believed that Lie group integrators using
high degree affine groups can benefit substantially with regard to numerical performance
compared to using the first degree group, given a general N(y, t) in (4), but it is hoped
that this generalization can provide a tool for further analysis on exponential integrators.

The intention of this study was rather to reveal a structure in which the ϕ functions
appear and to possibly be able to use this structure in future studies of ϕ functions. A
natural step forward is to see if backward error analysis of the ϕ functions is possible
analogously to work of N. Higham in [5] on backward error analysis of Padé approximants
to the exponential function, in which precisely the group and algebra structure of general
linear groups are used. This is the task of the forthcoming paper [4].
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A. Explicit low-degree groups

This appendix lists the definitions and operations specified in Section 2 explicitly when
the group degree d is fixed.
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A.1. First degree, d = 1

The parameter λ plays no role for d = 1 and is thus superflous. It has been kept in these
expression in order to match precisely with the general results in Section 2.

Group: GLn(R) o Rn ×R
Group identity: (I,0, 0)
Group product: (A2, b2, λ2) · (A1, b1, λ1) = (A2A1, A2b1 + b2, λ1 + λ2)
Group inverse: (A, b, λ)−1 = (A−1,−A−1b,−λ)
Algebra: Mn ×Rn ×R
Algebra addition: (α1, β1, λ1) + (α2, β2, λ2) = (α1 + α2, β1 + β2, λ1 + λ2)
Algebra bracket: [(α1, β1, λ1), (α2, β2, λ2)] = ([α1, α2], α1β2 − α2β1, 0)
Exponential map: Exp(α, β, λ) = (eα, φ1(α)β, λ)
Logarithm: Log(A, b, λ) =

(
log A, log A

A−I b, λ
)

= (log A,ϕ−1
1 (log A)b, λ)

Group action: (A, b, λ) · (y, t) = (Ay + b, t + λ)

A.2. Second degree, d = 2

Group: GLn(R) o (Rn ×Rn)×R
Group identity: (I,0,0, 0)
Group product: (A2, b

[0]
2 , b

[1]
2 , λ2) · (A1, b

[0]
1 , b

[1]
1 , λ1)

=
(
A2A1, A2b

[0]
1 + b

[0]
2 , A2b

[1]
1 + b

[1]
2 , λ1 + λ2

)
Group inverse: (A, b[0], b[1])−1 =

(
A−1,−A−1(b[0] − b[1]λ),−A−1b[1],−λ

)
Algebra: Mn ×Rn ×Rn ×R
Algebra addition: (α1, β

[0]
1 , β

[1]
1 , λ1) + (α2, β

[0]
2 , β

[1]
2 , λ2)

=
(
α1 + α2, β

[0]
1 + β

[0]
2 , β

[1]
1 + β

[1]
2 λ1 + λ2

)
Algebra bracket: [(α1, β

[0]
1 , β

[1]
1 , λ1), (α2, β

[0]
2 , β

[1]
2 , λ2)]

= ([α1, α2], α1β
[0]
2 − α2β

[0]
1 + β

[1]
1 λ2 − β

[1]
2 λ1, α1β

[1]
2 − α2β

[1]
1 , 0)

Exponential map: Exp(α, β[0], β[1], λ)
= (eα, φ1(α)β[0] + λφ2(α)β[1], φ1(α)β[1], λ)

Logarithm: Log(A, b[0], b[1], λ)

= (log(A), (A log A−log A)b[0]+(log A−A+1)b[1]λ)
(A−I)2

, log A
A−I b[1], λ)

= (log A,ϕ−1
1 (log A)b[0] − ϕ−2

1 (log A)ϕ2(log A)b[1]λ,

ϕ−1
1 (log A)b[1], λ)

Group action: (A, b[0], b[1], λ) · (y, t) = (Ay + b[0] + tb[1], t + λ)
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