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1 Introduction

The cubic Schrödinger equation in Td is

iut + ∆u = λ|u|2 u. (1)

For d = 1, this equation is completely integrable and in general it has the L2-norm or
density as a conserved quantity

ρ[u] =
∫
Td

|u|2 dx (2)

and for H1-solutions one has conservation of energy

H[u] =
∫
Td

(
1
2
|∇u|2 +

λ

4
|u|4

)
dx. (3)

It is of great interest [6, 8] to devise numerical schemes which conserve discretized versions
of these same invariants. In practice one needs to introduce a space discretization of
(1) and in the periodic case, the use of a discrete Fourier transformation is a favourable
choice. Several methods have been proposed for the numerical integration of the cubic
Schrödinger equation. For arbitrary d, examples of schemes which exactly preserve (2),
(3) or discretized versions of them, are those by [9], [4]. Special attention has been given
to the one-dimensional case. Considerable success has been reported in early papers using
splitting and Fourier techniques, see [19] for a review and comparisons. Another approach
has been to impose integrability on the discrete level, the best example is the Ablowitz-
Ladik model [1], its numerical properties are discussed in [12]. The Hamiltonian structure
of nonlinear wave equations in general and the cubic Schrödinger equation in particular
has invoked the idea of applying symplectic time integrators to semidiscretizations of these
equations, see e.g. McLachlan [16]. More recently, the use of multisymplectic formulations
of Hamiltonian wave equations has become popular as a basis for designing numerical
schemes with good geometric properties. For the cubic Schrödinger equation, schemes that
preserve a discretized version of the multisymplectic form were discussed by Reich [18]. In
multisymplectic integration, there are also local conservation of quantities derived from
the multisymplectic form, like energy and momentum. When discretizing in space, and
imposing conservation of a space averaged quantity, one may observe large local fluctuations
in space that are averaged throughout the domain. In [13] Islas and Schober consider
properties of the nonlinear spectrum for a certain initial function in the cubic Schrödinger
equation, in particular they study whether a small gap in this invariant spectrum is closed
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by the numerical scheme. The multisymplectic schemes seem to handle this problem well,
however in a more recent report [2] it was pointed out that these spectral properties were
also very well conserved by another type of time integration scheme called exponential
integrators. Modern versions of these schemes are generally formulated for problems of the
form

u̇ = Lu + N(u). (4)

Here L is typically a linear unbounded differential operator, alternatively one can think of
L as a matrix arising from a space discretization of such an operator and thus bounded
for a fixed spatial resolution, but with a large norm. The map N(u) is on the other hand
nonlinear, but we assume that for spatial resolutions of interest the size of N is small
compared to L. The schemes we consider here can all be cast in the form

Nr = N(ecrhL u0 + h
∑

j

arj(hL)Nj), r = 1, . . . , s (5)

u1 = ehL u0 + h
∑

r

br(hL)Nr (6)

Here the functions arj(z) and br(z) are usually real entire or at least real analytic in a
domain of the complex plane which includes the spectrum of hL for all h of interest.
Their value at 0, arj := arj(0) and br := br(0) is the underlying Runge-Kutta method to
which the scheme reduces in situation that L = 0 in (4). One then has cr =

∑
j arj . In

applying such schemes to the nonlinear Schrödinger equation, it is of importance to choose
functions arj(z) and br(z) which are bounded on the imaginary axis, a property which is
rather common among popular exponential integrators. Although we shall not dwell too
much on the added technical difficulties related to the situation when the problem (4) is
infinite dimensional, it deserves a few remarks. In the present situation we are interested in
the case where L = iA with A a self-adjoint operator on the Hilbert space L2(Td). In this
case L is the infinitesimal generator of a one-parameter unitary group. The spectrum of L
is on the imaginary axis and we assume that functions f(hL) can be defined in terms of
eigenvalues λi of L and a complete set of orthonormal eigenvectors ei through the spectral
mapping theorem as

f(hL)u =
∑

i

f(λi)〈u, ei〉 ei

where f satisfies the requirements stated above for arj(z) and bj(z).
Exponential integrators go back a long time, at least to Certaine [7], but there has been

a revived interest in these schemes in the last decade, for an account see for instance [17]
and the references therein. Most of the recently proposed exponential integrators have
the property that arj(z) ≡ 0 for j ≥ r and are thus explicit in the nonlinear term N(u).
For periodic problems, the Fourier transformation diagonalizes the operator L making the
functions arj(hL) and br(hL) inexpensive to compute and store. For constant stepsize they
can even be reused in every step. A disadvantage with such schemes is that they cannot
be symplectic or symmetric. However, in the related class of schemes called Lie group
integrators, implicit schemes that are self adjoint were considered by Zanna et al. [20]. In
this work we shall consider implicit schemes of the form (5), (6) that are symmetric. We
shall argue that the implicitness is still relatively inexpensive to handle and that we obtain
methods with good long time preservation properties. We show however that the schemes
cannot in general preserve quadratic invariants exactly, and in particular the density ρ[u].
But it is possible to force exact preservation without the loss of symmetry by using the
symmetric projection approach as discussed by Hairer [10]. We show how this projection



can be implemented at relatively low additional cost. Finally, we illustrate the behaviour
of these new schemes by numerical experiments.

2 Symmetric exponential integrators

Writing u1 = Φh(u0) for the exponential integrator defined in the introduction, one defines
the adjoint method as the map

∗Φh = Φ−1
−h.

A straightforward calculation (exchanging 1 ↔ 0 and h ↔ −h, as usual) shows that the
adjoint scheme ∗Φh is again a scheme of the form (5)-(6) where the coefficient functions
∗arj(z) and ∗br(z) are given as

∗arj(z) = e(1−cs+1−r)z bs+1−j(−z)− as+1−r,s+1−j(−z) (7)

∗br(z) = ez bs+1−r(−z). (8)

We now consider the possibility of obtaining symmetric methods, i.e. schemes where
∗arj(z) = arj(z), ∗br(z) = br(z).

Symmetric one-stage exponential integrators If s = 1 there is only a(z) := a11(z),
b(z) := b1(z), c := c1 = a11(0) to be determined. We get immediately from (7)-(8) that

a(z) = e(1−c)z b(−z)− a(−z) (9)
b(z) = ez b(−z). (10)

So by multiplying (10) from each side by e−z/2 we realize that G(z) := e−z/2b(z) must be
an even function so that

b(z) = ez/2 G(z), G(z) even, G(0) = 1.

Combining (9) and (10) we derive

a(z) + a(−z) = e−czb(z) = e( 1
2
−c)zG(z),

thus c = 1
2 , and the even part of a(z) equals G(z)/2. Summarizing, a one stage symmetric

exponential integrator is constructed as follows

- Let c = 1
2 and choose a(z) arbitrary, subject only to the condition a(0) = 1

2 .

- Set b(z) = ez/2(a(z) + a(−z)).

Note in particular that every one stage symmetric exponential integrator will have the
midpoint rule as its underlying scheme.

An example can be written as follows

U = e
hL
2 u0 +

h

2
ϕ1(

hL

2
) N(U) (11)

u1 = ehL u0 + h ϕ1(hL) N(U). (12)

Alternatively, the update step can be written as

u1 = e
hL
2 U +

h

2
ϕ1(

hL

2
) N(U), (13)

with ϕ1(z) = ez−1
z (see [17], for details on the ϕl functions).
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Symmetric two-stages exponential integrators To illustrate the case with two stages, we
use the Hammer and Hollingsworth method (a Gauss method with s = 2) as an underlying
scheme:
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Of the six conditions (7)-(8) only three are independent. Subject to the obvious condition
on the coefficient functions at z = 0 we can use the following recipe to obtain a two-stage
symmetric exponential integrator

- Pick b1(z) arbitrarily and set b2(z) = ez b1(−z).

- Pick a11(z) arbitrarily and set a22(z) = ec2zb1(−z)− a11(−z).

- Pick a12(z) arbitrarily and set a21(z) = e−c1zb1(z)− a12(−z).

We have not pursued any further the question of how to best make use of this freedom
to find optimal symmetric schemes with two stages. It however not difficult to see that the
two-stages Lawson method (see [14]) having coefficients

arj(z) = αrje(cr−cj)z, br(z) = βre(1−cr)z

actually satisfy (7) and (8) if the underlying Runge-Kutta with coefficients αrj and βr is
the method of Hammer and Hollingsworth.

Symmetric Lawson methods We will now give a complete characterization of the sym-
metric Lawson methods. The Lawson methods are symmetric if

arj(z) = e(1−cs+1−r)z bs+1−j(−z)− as+1−r,s+1−j(−z)

br(z) = ez bs+1−r(−z).

Recalling the definition of the coefficient functions arj(z) and br(z) of a Lawson scheme,
we obtain symmetry if

αr,j e(cr−cj)z = (βs+1−j − αs+1−r,s+1−j) e(cs+1−j−cs+1−r)z

βr e(1−cr)z = βs+1−r ecs+1−rz.

We thus obtain the following result (which can be compared to the result on symmetric
Runge-Kutta, see [11, Sect. V.2])

Proposition 2.1. The Lawson method with coefficients

arj(z) = αrje(cr−cj)z, br(z) = βre(1−cr)z

is symmetric if the underlying Runge-Kutta method with coefficients αrj, βr verify

cs+1−r = 1− cr, βs+1−r = βr, βj = αr,j + αs+1−r,s+1−j for all r, j.



3 L2-norm preservation for the nonlinear Schrödinger
equation

We know (see for example [15]) that the L2-norm ||u(·, t)||L2 of the exact solution of the
nonlinear Schrödinger equation is a conserved quantity.

The aim of geometric numerical integration is to retain by a numerical discretization as
much as possible of the geometric structure of the exact solution. It is thus natural to
require that the L2-norm of the numerical solution, given by the exponential integrators
(5)–(6), to be preserved.

We will now give a complete characterization of the exponential integrators which con-
serve exactly quadratic invariants of the form ρ[u] = 〈u, u〉.

Proposition 3.1. Consider the class of problems u̇ = Lu + N(u) where iL is self-adjoint
and where ρ[u] = 〈u, u〉 is preserved. An exponential integrator with coefficient functions
arj(z) and br(z) of the exponential integrator will preserve ρ[u] for all problems in this
class if there are real numbers β1, . . . , βs such that

br(hL) = βr e(1−cr)hL, r = 1, . . . , s (14)

βjβr e(cj−cr)hL = βj ajr(hL) + βr a∗rj(hL), r, j = 1, . . . , s. (15)

Here a∗(hL) is the adjoint of a(hL).

Proof. We first calculate from (6) writing just br for br(hL) and using that ehL is unitary

〈u1, u1〉 = 〈u0, u0〉+ h
∑

r

(〈ehLu0, brNr〉+ 〈brNr, ehLu0〉) + h2
∑
r,j

〈brNr, bjNj〉

writing Nr = N(Ur) in (5) we substitute

ehLu0 = e(1−cr)hL Ur − h
∑

j

e(1−cr)hL arjNj

to obtain

ρ[u1]− ρ[u0] = 2 h
∑

r

Re 〈b∗r e(1−cr)hL Ur, Nr〉

+ h2
∑
r,j

〈(b∗jbr − b∗je
(1−cj)hLajr − a∗rje

−(1−cr)hLbr) Nr, Nj〉. (16)

Note that for the exact solutions it holds for any u that

d

dt
ρ[u] = 2Re 〈u, N(u)〉 = 0.

It easily follows from (16) that (14) and (15) imply ρ[u1] = ρ[u0].

Remarks:

1. To consider the converse of this result, one needs to look at the notion of irreducibility
for exponential integrators. If it can be asserted that each term must vanish in the
two sums of (16) then the conditions (14), (15) are also necessary.

2. For the symmetric midpoint exponential integrator, the double sum of (16) vanishes,
however the other one does not. Thus the numerical solution given by this method
will not preserve exactly the ρ[u] as we will see in Section 6
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3. The proof of Proposition 3.1 does not apply to the conservation of quadratic invariants
of the more general form 〈u, Cu〉. Indeed, to obtain the term 〈u0, u0〉, we have to
assume that (CehL)∗ = Ce−hL, which is, in general, not possible.

We note that the methods proposed by Lawson (see Section 2) actually satisfy (14),
(15) whenever αrj , βr, of the underlying Runge-Kutta scheme are chosen to satisfy the
conditions

βrβj = βj αjr + βr αrj , for r, j = 1, . . . , s.

In fact, the Lawson schemes can be interpreted as applying a classical Runge-Kutta scheme
to the differential equation resulting from the change of variables

y(t) = e(t−t0)Lv(t) ⇒ v′(t) = e−(t−t0)LN(e(t−t0)Lv(t)).

This observation suggests that one may in fact replace the transformation used in the
Lawson scheme by any unitary transformation and consider the integrator resulting from
applying a classical quadratic invariant preserving scheme to the transformed system. An
example of a transformation which could be used is the Cayley transform.

4 Symmetric projection algorithm

Following Hairer [10], one may perform a symmetric projection of the symmetric expo-
nential integrator onto the constraint manifold. Suppose a constraint map P : Rm → Rq

is given such that there are q preserved quantities Pk(u) = 0, k = 1, . . . , q. The idea is
to perturb the initial value u0 away from the constraint manifold, apply a step of a sym-
metric scheme and then project back in such a way that the three composed steps give a
symmetric map. Denoting by Φh the symmetric integrator, we have

ũ0 = u0 + P ′(u0)T µ

ũ1 = Φh(ũ0)

u1 = ũ1 + P ′(u1)T µ

where µ ∈ Rq is chosen such that P (u1) = 0. Here P ′(u) ∈ Rq×m is the Jacobian matrix
evaluated at the point u ∈ Rm. Considering the midpoint rule (11), (13) we write the
symmetric projection method on the form

U − e
hL
2 (u0 + P ′(u0)T µ)− h

2
φ1(

hL

2
) N(U) = 0

u1 − e
hL
2 U − h

2
φ1(

hL

2
) N(U)− P ′(u1)T µ = 0

P (u1) = 0

This is now a coupled system of 2m + q equations F (Y ) = 0 for the unknowns Y =
(U, u1, µ). Thus it seems that the situation with respect to computational complexity has
deteriorated considerably. However, we may approximate the Jacobian matrix of F by the
matrix

J =

 Im 0 −ehL/2 P ′(u0)T

−ehL/2 Im − P ′′(u1, µ) −P ′(u1)T

0 P ′(u1) 0


Here Im is the m × m identity matrix and P ′′(u, µ) is the Jacobian matrix of P ′(u)T µ
with respect to u. If one only projects onto the density constraint, this matrix is simply a



scalar times Im. In the case of projection onto both the density and the energy constraint
one may replace this second derivative matrix with a simple linearization, disregarding the
contributions due to the nonlinear map N . As a result the submatrix corresponding to
the four left uppermost blocks of J , becomes easy to invert. Thus the kth iterate for the
increment of the Lagrange multiplier µ can be calculated efficiently by means of a Schur
complement formula, followed by a sequential calculation of the iterate for U and u1.

5 Implementation issues

One needs to solve the equation

U = g(U) := e
hL
2 u0 +

h

2
ϕ1(

hL

2
) N(U) (17)

with respect to U . One may apply fixed point iteration directly to (17), to obtain approx-
imations U [k] to U

U [k+1] = e
hL
2 U0 +

h

2
ϕ1(

hL

2
) N(U [k]).

By defining the iteration error e[k] = U [k] − U one gets the recursion

e[k+1] =
h

2
ϕ1(

hL

2
)
(

N(U [k])−N(U)
)
≈ h

2
ϕ1(

hL

2
) N ′(U) e[k].

The derivative map N ′(U) can be bounded in a strip containing the solution and the bound
is obtained independently of the dimension of the discretized system. Using the discrete
Fourier transformation, ϕ1(hL

2 ) is a diagonal matrix whose norm is bounded by 1.
In order to further improve the convergence properties, one may consider the exact

Newton iteration for solving (17)

U [k+1] = U [k] −
[
I − g′(U [k])

]−1
r[k], r[k] = U [k] − g(U [k]).

Noting that g(U) = O(h) we can approximate[
I − g′(U [k])

]−1
≈ I + g′(U [k])

and thus obtain the iteration

U [k+1] = g(U [k])− g′(U [k]) r[k].

In the cubic Schrödinger equation one has N(u) = −iλ|u|2 u which leads to

N ′(u) v = −iλ
(
2 |u|2 v + u2 v

)
.

Using a pseudospectral discretization, we replace N(u) by the function

N̂(û) = F(N(F−1(û)))

and the derivative map is

N̂ ′(û)v̂ = F
(
N ′(F−1û) F−1v̂

)
.

Note however that when N̂ ′(Û [k]) r̂[k] is required, one has already computed U [k] = F−1Û [k]

as a part of the residual calculation, and thus only two additional Fourier transforms are
required for this modification. More advanced algorithms for approximating the Newton
iteration map could of course be devised, for instance by Krylov subspace techniques.

7



6 Numerical experiments

We illustrate the results of the preceding sections with some numerical experiments. In this
section, we will present some results on the cubic Schrödinger equation (1) setting d = 1
and λ = −1, with periodic boundary conditions, integrated from 0 to T . We consider a
pseudospectral space discretization and two different choices for the initial condition. The
first is

u(x, 0) = 1/(1 + sin(x)2), (18)

whereas the second is
u(x, 0) =

√
8/ cosh(2x)e2ix, (19)

a soliton solution. The initial data (19) require smaller time steps than (18). In these
experiments we always choose a pseudospectral discretization in space with M = 512
Fourier modes. The stepsizes h we use always satisfy hM2 � 1 meaning that we operate
far away from the regime of explicit integrators.

In the following we plot the error of the numerical methods in the preservation of the
discretized invariants corresponding to (2) and (3),

ρ∆x[U ] =
2π

M

M∑
k=1

|Uk|2,

and

H∆x[U ] =
πλ

2M

M∑
k=1

|Uk|4 +
M

4π

M∑
k=1

|Uk+1 − Uk|2,

respectively. The considered numerical schemes are:

1. The symmetric midpoint exponential integrator (11)–(12) of the second section (SM-
EXP). This method is symmetric but does not preserve quadratic invariants.

2. The one-stage Lawson scheme (L1) with coefficients

a11(z) = 1/2, b1(z) = ez/2, and c1 = 1/2.

A symmetric and quadratic invariant preserving method.

3. The symmetrically projected midpoint exponential integrator, with projection on
the density constraint (SPMEXP-D), and with projection on both the density and
energy constraint (SPMEXP-DE). The constraint map P of section 4 in this case is
P (U) = ρ∆x[U ]− ρ∆x[U0] for (SPMEXP-D), and

P (U) =
[

ρ∆x[U ]− ρ∆x[U0]
H∆x[U ]−H∆x[U0]

]
,

for (SPMEXP-DE). The method (SPMEXP-D) preserves exactly the discrete den-
sity, and the method (SPMEXP-DE) preserves exactly both the discrete density and
the discrete energy.



4. The Pseudo-Steady-State-Approximation (PASSA) scheme (see [3] and references
therein). This exponential type method is a standard scheme in the chemistry liter-
ature, has order two and is not symmetric.

5. A relaxation scheme proposed by Besse in [4] (B).

6. The multisymplectic concatenated midpoint rule also known as the Preissman box
scheme (MULTI). See Islas, Karpeev and Schober [12] for a thorough discussion of
this method applied to the cubic Schrödinger equation (see also [5]).

Figure 1 shows the error in the discretized energy and density along the numerical
solution given by (SMEXP), (L1) and (PASSA) obtained with a constant step size h = 0.1
for the first choice of initial value, the interval of integration is [0, 500].
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Figure 1: Density (left column) and energy along (SMEXP), (L1) and (PASSA) (from the
top to the bottom) for the initial condition (18). Number of Fourier modes M = 512, time
step 0.1.

As predicted by Proposition 3.1, the Lawson scheme preserves exactly the discretized
density, which is not the case for the symmetric exponential integrator. This last scheme
seems, however, to have good conservation properties.

For the soliton solution we have to use a smaller step size. Figure 2 shows as before
energy and density error for the second choice of initial value and with h = 0.025, the
interval of integration is [0, 500].

It has to be noted, that once again, the symmetric exponential integrator performs better
than the other two schemes.

In Figure 3 and Figure 4 we plot the results for the conservative methods. In both exper-
iments we integrated on the time interval [0, 50], with time step h = 0.025, for the initial
condition (18), and with h = 0.0125 for the initial condition (19). The experiments confirm
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Figure 2: Density (left column) and energy along (SMEXP), (L1) and (PASSA) (from the
top to the bottom) for the initial condition (19). Number of Fourier modes M = 512, time
step 0.025.

the good conservation properties of the methods. In particular the method (SPMEXP-D)
which performs the symmetric projection only for the density, conserves very well also the
energy. In fact the error is about of the same size as the energy error obtained with the
multisymplectic method (MULTI) and with the method (B).

Performing experiments with different sizes of M , the number of Fourier modes in the
space discretization, and fixed time step h = 0.025, we also observed that the number of it-
erations needed to achieve convergence in the Newton iteration for the methods (SMEXP),
(SPMEXP-D) and (SPMEXP-DE), remains nearly unchanged.

We have presented a new class of exponential integrators which have favourable geo-
metric properties. The cost of this added quality is that the schemes are implicit in the
nonlinear function N(u). Each iteration needed for solving the resulting nonlinear system
of equations costs approximately the same as a low order explicit exponential integrator.
The number of iterations needed seems to depend only on the (local) Lipschitz constant of
N(u) and the stepsize, and not on the space discretization parameter. So far, tests have
been conducted only with one stage schemes of order two, and only with the most common
coefficient functions a(z) and b(z). The preliminary tests are promising, but it remains to
try out and analyse schemes of higher order and to take advantage of the ample freedom
available in choosing coefficient functions of the schemes.
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