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In this article we present a framework for line search methods for optimization
on smooth homogeneous manifolds, with particular emphasis to the Lie group
of real orthogonal matrices. We propose strategies of univariate descent (UVD)
methods. The advantages of this approach are that the optimization problem
on the manifold is broken down into one-dimensional optimization problems
and that each optimization step by itself involves little computation effort.

We apply the devised method to eigen-problems as well as to independent
component analysis, in order to assess its numerical features.

Keywords: Eigen-problems; Gradient-based optimization; Independent com-
ponent analysis; Retractions on manifolds; Signal processing; Smooth parame-
ters manifolds.

1 Introduction

In the present manuscript, we consider optimization problems of the type:

min
x∈M

φ(x) or max
x∈M

φ(x), (1)

where M is a Lie group or an homogeneous manifold, φ : M → R, is a cost function to

be minimized or an objective function to be maximized.

We will consider iterative methods to approximate optimum that have the form:

xk+1 = ϕxk
(±αkpk), k = 1, 2, 3, . . . , (2)

where Txk
M is the tangent space at xk of M, ϕxk

: Txk
M → M is a retraction map, αk a

real constant scalar and pk ∈ Txk
M a search direction. Retraction maps were introduced in

[33] and are particularly well-suited to describe numerical methods on manifolds [2, 7, 12, 1].

The definition of retraction will be recalled in the next section. Gradient and Newton

methods on Lie groups can be included in the general format (2). We will discuss classical

gradient methods on manifolds, and rational mechanics type methods previously studied

in [16].

We also propose a new class of univariate descent (UVD) methods. The advantages of

this approach are that the optimization problem on the manifold M is broken down into

one-dimensional optimization problems, and that each optimization step by itself involves

less burdensome computation effort than a multivariate optimization step.

The idea for these methods has been inspired by previous work on the approximation

of the matrix exponential [5], [6], and related methods for the numerical approximation of

differential equations on Lie groups and homogeneous manifolds [30].

As a useful case-study, we shall consider univariate descent methods on the compact

Stiefel manifold.

Similar, but different approaches related to the UVD method presented here, have been

previously considered in [25] and [36]. In these articles the classical Jacobi method for the
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diagonalization of matrices is generalized and analyzed in a Lie algebraic setting. These

approaches do not include the case of the symmetric eiganvalue problem, which can be

handled instead with the framework of the present paper.

The different descent methods are compared in the numerical experiments.

We will also discuss the application of the descent methods to a variety of problems in

statistical signal processing, giving a brief introduction to principal component analysis

and independent component analysis.

2 Descent methods based on retractions

2.1 Retraction maps on homogeneous manifolds

A retraction is a smooth map from the tangent bundle to the manifold, ϕ : TM → M.

Denote by ϕx its restriction to the fiber TxM (the tangent space at x), following [33] we

assume the following conditions are satisfied:

• The map ϕx is defined in some open ball B(0, rx) ⊂ TxM of radius rx about 0 ∈

TxM;

• The equality ϕx(v) = x holds if and only if v = 0 ∈ TxM;

• The equality ϕ′
x|0 = IdTxM holds.

Here, map ϕ′
x : TTxM → TM is the tangent of the map ϕx. We may identify TTxM

with TxM × TxM, and for each pair (u, v) we may fix the first factor, and get the map

ϕ′
x|u : TxM → Tx̄M where x̄ := ϕx(u).

The case of optimization on homogeneous manifolds is of particular interest. Let M

be a homogeneous manifold acted upon transitively by a Lie group G, with group action

Λ(g, x) = Λx(g). Let us also define:

ψ : g → G, ρx := (Λx ◦ ψ)′
∣

∣

0
, (3)

where g denotes the Lie algebra associated to the Lie group G. One can prove that if it

exists a linear map ax : TxM → g such that ρx ◦ ax = IdTxM then ϕx given by:

ϕx(v) := (Λx ◦ ψ ◦ ax)(v), (4)

is a retraction, [7]. Therefore, we can construct retractions using any coordinate map from

the Lie algebra g to the group G, as illustrated in the Figure 1. Also, we may define the

image of the tangent space under the map ax:

mx := ax(TxM) ⊂ g. (5)



g
ψ //

ρx

��

G

Λx

��
TxM

ax

OO

ϕx

// M

Figure 1: Construction of a retraction using a coordinate map from the algebra g.

The set mx is a linear subspace of the Lie algebra g. We will consider in the sequel different

instances of the method (2) on homogeneous manifolds by either choosing search directions

pk = ρxk
(v) with v ∈ g or taking directly pk ∈ Txk

M. The use of Lie group actions in the

context of integration methods for differential equations on homogeneous manifolds has

been introduced in [28], [29].

2.2 Univariate descent methods (UVD)

Let us consider the case of a homogeneous manifold acted upon by a group of dimension

d and a basis for the Lie algebra g given by E1, E2, . . . , Ed. Assume, for the sake of

simplicity, that we are solving a minimization problem on M. The homogeneous manifold

structure guarantees the transitivity of the Lie group action on M. Assume further that

the minimization problem has a solution on M and the minimum is attained in x∗ ∈ M.

Given x0 ∈ M, by the transitivity of Λ we know that it exists g ∈ G such that:

x∗ = Λ(g, x0).

If G is connected then any element in G can be written as a product of exponentials,

namely:

g = exp(v1) · · · exp(vm), v1, . . . , vm ∈ g

and therefore we have:

{v1, . . . , vm} = argmin

m ∈ N

w1, . . . , wm ∈ g

φ(Λx0
(exp(w1) · · · exp(wm))),

x∗ = Λx0
(exp(v1) · · · exp(vm)).

(6)

If each of the exponentials exp(wj) is in the neighborhood of the identity in G, we have:

exp(wj) = exp(γj
dEd) · · · exp(γj

1E1),

with γj
1, . . . γ

j
d, for j = 1, . . . ,m, being appropriate scalars, and in our examples, real

numbers. This can be assumed for example when x0 is sufficiently close to x∗. By substi-

tution in equation (6) this leads to a reformulation of the minimization problem on M, as

minimization problem in R
d·m.
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With this in mind, we discuss here iterative optimization methods searching for x∗

by minimizing separately in turn in the direction of each basis element in g. By using

the exponential as coordinate map and the Lie group action Λ on M, we can obtain an

algorithm of the form (2) as follows:

xk+1 = ϕxk
(−αkpk) = Λxk

(ψ(−αkEi)), (7)

where the step size schedule αk may be chosen according to the rule:

αk = argmin
α∈R

φ(Λxk
(ψ(−αEi)), (8)

with index i ∈ {1, . . . , d}. The search direction is here pk = ρxk
(Ei) for i ∈ {1, . . . , d}.

Assuming an ordering of the basis elements is established, we can perform a cyclic

selection of the index i by taking i = (kmod d) + 1. Alternatively, we could adopt a

random selection of the index i by randomly picking i within the set {1, . . . , d} with equal

probability.

As we will see in concrete examples, it might be advantageous to chose special orderings

of the basis elements in g. In fact, a possible convenient ordering is obtained by partitioning

the basis in subsets of generators of commutative sub-algebras of maximal dimension. A

complete discussion of the choice of an optimal ordering goes beyond the scope of the

present article and will be addressed in future work.

Summarizing, a possible optimization procedure might thus be cast in the following

framework:

set x0 ∈ M

for k = 0, 1, 2, . . . do

select Ei cyclically or randomly

find αk = argmin
α∈R

φ(Λxk
(ψ(−αEi)))

set xk+1 = Λxk
(ψ(−αkEi))

end for

The advantages of this approach are:

• The optimization problem on M is broken down in (at least d) optimization problems

in R which are allegedly easier to solve;

• Each step in the loop involves the computation of a term ψ(−αkEi) which is allegedly

easy to effect.

Example 2.1 In order to illustrate some of the features of the UVD method, we consider

the minimization on a two-dimensional torus T 2 = S1 × S1.



Here we denote with S1 the circle, i.e.

S1 = {g · e1 | R2, g(α) ∈ SO(2)}, g(α) = exp(αE), E =

[

0 −1

1 0

]

, 0 ≤ α < 2π,

where e1 is the first canonical vector and SO(2) is the commutative Lie group of planar

rotations. Any element in T 2 is of the form

x0 ∈ T 2, x0 = (g(θ)e1, g(ϕ)e1), g(θ), g(ϕ) ∈ SO(2).

The Lie group acting on T 2 is SO(2)×SO(2), its corresponding Lie algebra is so(2)×so(2),

has dimension d = 2 and basis {(E,O), (O,E)}, where O is the zero element in so(2), and

E is the basis element in so(2). A parameterization of T 2 in R
3 in angular coordinates,

can be obtained applying the following mapping

(g(θ)e1, g(ϕ)e1) →















x = (1 + e
T
1 g(θ)e1) · e

T
1 g(ϕ)e1 = (1 + cos(θ)) cos(ϕ),

y = (1 + e
T
1 g(θ)e1) · e

T
2 g(ϕ)e1 = (1 + cos(θ)) sin(ϕ),

z = e
T
2 g(θ)e1 = sin(θ),

with 0 ≤ θ, ϕ < 2π. This is equivalent to the composition of two planar rotations and one

translation in R
3.

Assume the cost function we want to minimize is simply the distance from a fixed plane

in R
3, say y = 8. This gives

φ(g(θ)e1, g(ϕ)e1) = |(1 + cos(θ)) sin(ϕ) − 8|, (9)

and the minimum is attained in θ = 0 and ϕ = π/2. Denote with I the identity element

in SO(2). Using the chosen coordinate parameterization two iterations of the univariate

descent method, taking x0 as starting value, and minimizing first in the θ coordinate, are

given as follows

x1 = Λx0
((exp(α1E), I)) = (exp(α1E)g(θ0)e1, g(ϕ0)e1), θ1 = θ0 + α1,

x2 = Λx1
((I, exp(α2E))) = (g(θ1)e1, exp(α2E)g(ϕ0)e1), ϕ1 = ϕ0 + α2,

with α1 and α2 the optimal rotation angles, solution of the following univariate minimiza-

tion problems,

α1 = argmin
α∈R

φ((exp(αE)g(θ0)e1, g(ϕ0)e1)),

α2 = argmin
α∈R

φ((g(θ1)e1, exp(αE)g(ϕ0)e1)).

The results of applying the method with different starting values are reported in Table 1.

In this simple example the univariate descent method reaches the global minimum in two or

three iterations, except for pathological starting values such as sin(ϕ0) = 0 and cos(θ0) = 0.

2
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start optimizing with θ start optimizing with ϕ

Iteration sin(ϕ0) > 0 −1 ≤ sin(ϕ0) < 0 cos(θ0) > 0 −1 < cos(θ0) ≤ 0

1
θ1 = 0

ϕ1 = ϕ0

θ1 = π/2

ϕ1 = ϕ0

θ1 = θ0

ϕ1 = π/2

θ1 = θ0

ϕ1 = π/2

2
θ2 = 0

ϕ2 = π/2

θ2 = π/2

ϕ2 = π/2

θ2 = 0

ϕ2 = π/2

θ2 = 0

ϕ2 = π/2

3
θ3 = 0

ϕ3 = π/2

Table 1: UVD method for optimization on the torus.

The one-dimensional optimization problems to be solved at each step of the algorithm

depend on the choice of action and the type of coordinates. In the present paper, we will

always consider ψ to be the exponential map, and we will chose the basis Ei such that

exp(−αkEi) is easy to compute.

We list here some possible choices for the Lie group action. An obvious choice is to use

the transitive Lie group action Λ : G ×M → M inducing the structure of homogeneous

space on M, however other choices are possible. Let us consider the inner automorphism

of G,

Ig̃ : G→ G Ig̃(g) := g̃ · g · g̃−1.

By composition with Λ, we obtain another Lie group action on M, Λ̂ : G×M → M, such

that:

Λ̂(g, q) := Λ(Ig̃(g), q),

where g̃ is a fixed element in G. For g̃ = I (with I being the identity element in the Lie

group G) we obtain Λ̂ = Λ.

Example 2.2 As a useful case-study, let us consider univariate descent methods on the

Stiefel manifold.

The compact Stiefel manifold can be represented by the set of n × p matrices with or-

thonormal columns:

M = St(n, p) := {X ∈ R
n×p|XTX = Ip},

and has a homogeneous manifold structure induced by the action of the real orthogonal

group of G = O(n). In this case Λ : O(n) × St(n, p) → St(n, p) is given by simple matrix-

matrix multiplication, namely:

Λ(Q,X) = Q ·X, Q ∈ O(n), X ∈ St(n, p).



Another possible choice for the action is the following. Let us consider v0 ∈ R
n, such that

vT
0 v0 = 1 a fixed vector, and the Householder transformation, P0 = I − 2v0v

T
0 ∈ O(n), I

the n× n identity matrix, and P 2
0 = I. We can take:

Λ̂(Q,X) = IP0
(Q) ·X = P0QP0 ·X.

The dimension of the acting-group is d = n(n − 1)/2. Let us choose as a basis of the

algebra g = so(n) the set of matrices:

e1e
T
2 − e2e

T
1 , e1e

T
3 − e3e

T
1 , . . . , en−1e

T
n − ene

T
n−1, (10)

where the ei’s denote the canonical basis-vectors of R
n. As coordinate map, we select the

exponential map ψ := exp. Then, if we use the action Λ̂, the optimization algorithm (15)

reads:

xk+1 = P0exp(−αk(eie
T
j − eje

T
i ))P0 · xk. (11)

In this case, the solution of the univariate optimization problem:

αk = argmin
α∈R

φ(P0 exp(−α(eie
T
j − eje

T
i ))P0 · xk), (12)

as well as the computation of the retraction are very simple due to the choice of basis. By

setting P0 = I we the action simplifies to the case Λ̂ = Λ.

We will give details of how to solve the univariate optimization problems in the following

sections.

For the purpose of random basis elements selection, it is worth to explicitly write down

the relationship among the basis vectors:

E(i−1)n−i(i+1)/2+j = eie
T
j − eje

T
i , (13)

where it is easy to verify that (i− 1)n− i(i+ 1)/2 + j ∈ {1, . . . , d}. Therefore, a random

basis matrix may be picked up uniformly from the set of basis matrices by randomly

picking an index r ∈ {1, . . . , d} with equal probability for each value, by finding the

largest integer i ∈ {1, . . . , n − 1} such that (i − 1)(n − 1/2 − i/2) ≤ r and by setting

j = r − (i− 1)(n− 1/2 − i/2) + i.

In order to achieve a partition of the basis elements in subsets of commuting elements

we can proceed as follows. Consider the partition of the basis of so(n) into the subsets

corresponding to the set of indices:

Sl = {(i, i + l) | i = 1, . . . , n− l}, l = 1, . . . , n− 1.

Subdivide each of the sets Sl further into the two subsets Se
l and So

l such that Sl = Se
l ∪S

o
l

and Se
l ∩S

o
l = ∅, and each consisting of indices corresponding to commuting basis elements,

by taking:

Se
l = {(i, i + l)|i = 2k · l + 1, . . . , (2k + 1) · l, k = 0, . . . ,m1} ∪R

e
l ,

So
l = {(i, i + l)|i = (2k + 1) · l + 1, . . . , (2k + 2) · l, k = 0, . . . ,m2} ∪R

o
l ,
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with either n− l = (2m1 + 2) · l + r1, r1 < l, Re
l = ∅ and:

Ro
l = {(i, i + l)|i = (2m1 + 2) · l + 1, . . . , n− l},

or n− l = (2m2 + 2) · l + r2, r2 < l, Ro
l = ∅ and:

Re
l+1 = {(i, i + l)|i = (2m1 + 3) · l + 1, . . . , n− l}.

The above partition of the basis elements will be used in the numerical experiments. 2

2.3 Gradient-based methods (GRAD)

Let M be a Riemannian manifold with metric 〈·, ·〉 and φ : M → R be a smooth function.

The optimization method based on gradient flow (written for the minimization problem

only, for the sake of easy reading) consists in setting up the differential equation on the

manifold:

ẋ(t) = −gradφ
(

x(t)
)

, (14)

with appropriate initial condition x(0) = x0 ∈ M. The equilibria of equation (14) are

the critical points of the function φ. For a complete overview see for example [23] and

references therein. In the above equation, the symbol gradφ denotes the Riemannian

gradient of the function φ with respect to the chosen metric. Namely, gradφ(x) ∈ TxM

and φ′|x (v) = 〈gradφ(x), v〉 for all v ∈ TxM. The solution of the above differential

equation on M may be locally expressed in terms of a curve on the tangent space Tx0
M

using a retraction and one has:

x(t) = ϕx0
(σ(t)).

By differentiating with respect to t one can find a differential equation for σ in Tx0
M,

which can be integrated with a forward-Euler time-stepping. The retraction is used then

for mapping the result from the tangent space to the manifold, see [8] for further details.

The resulting iterative method fits the format (2):

xk+1 = ϕxk
(−αkpk) = Λxk

(exp(αkaxk
(pk))), k = 0, 1, . . . . (15)

where αk is the time step of integration. Recall that axk
is a linear map axk

: Txk
M → g

such that ρxk
◦ axk

= IdTxk
M, with ρxk

:= (Λxk
◦ exp)′|0 .

The gradient-search direction is pk = gradφ(xk) and we assume an appropriate starting

point x0 is being selected. The easiest choice for αk is to take αk = h, ∀k, with h small

enough positive real value. However also in this case αk can be selected by solving the

following univariate optimization problem:

αk = argmin
α∈R

φ(ϕxk
(−αpk)). (16)



The solution of such univariate optimization problems has in general a higher computa-

tional complexity compared to (8).

In figure 2 we plot −gradφ, the negative gradient vector field for the cost function of

example 2.1. The Riemannian metric we used is,

〈(α1Ee1, β1Ee1), (α2Ee1, β2Ee1))〉 = α1α2 + β1β2,

and (α1Ee1, β1Ee1) ∈ T(e1,e1)T
2. At the point p0 = (g(θ0)e1, g(ϕ0)e1) ∈ T 2 = S1 × S1

the gradient vector field can be represented by:

(γ ·E · g(θ0)e1, δ ·E · g(ϕ0)e1),

where γ and δ are real values given by,

γ = −C · sin(θ0) sin(ϕ0), δ = C · (1 + cos(θ0)) cos(ϕ0),

and

C = 2((1 + cos(θ0) sin(ϕ0) − 8).

The vector field −gradφ points towards the two minima of the cost function, (9). Whether

the gradient method is converging to the local or global minimum depends on the initial

value and on the step size schedule. For example if we fix h = 0.01 and consider (θ0 =

π/4 + 0.1, ϕ0 = 3
2π) as starting value the gradient method will converge to the local

minimum (θ = π, ϕ = 3
2π), but if we take (θ0 = π/4 + 0.1, ϕ0 = 3

2π + 0.2), with the same

step size, the iteration will converge to the global minimum (θ = 0, ϕ = 1
2π).

Experiments implementing the variable step size selection according to (16) on this

example, show no improvement of the convergence of the gradient method unless the uni-

variate minimization problem (16) is solved very accurately. In this example the univariate

descent method performs better then the gradient method, we conjecture that this is due

to the commutativity of SO(2).

For the case of the Stiefel manifold, example 2.2, we consider the Reimannian metric

〈V,W 〉 := 1
2tr(V TW ) with V,W ∈ TXSt(n, p), and the gradient vector field is:

gradφ =

(

(

∂φ

∂X

)

XT −X

(

∂φ

∂X

)T
)

·X, (17)

Therefore, the optimization algorithm in the tangent space formulation reads:



























Gk =
(

∂φ
∂X

)
∣

∣

∣

Xk

,

Ak = aXk
(−gradφ(Xk)) = −(GkX

T
k −XkG

T
k )

Xk+1 = exp(hAk)Xk,

k = 1, 2, 3, . . . ,

(18)
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Figure 2: The gradient vector field of the cost function φ((g(θ)e1, g(ϕ)e1) = (1+e
T
1 g(θ)e1)·

e
T
2 g(ϕ)e1 − 8)2 on the torus. The vector field points towards the two minima,

the global minimum is marked with a black spot in the middle of the picture.

with initial guess X0 ∈ St(n, p) arbitrarily selected (a typical choice would be X0 = In×p)

and step size h ∈ R appropriately selected.

It is worth noting that, in the above equations, the action of the orthogonal group on

the Stiefel manifold may be conveniently computed by:

Xk+1 = [Xk, X
⊥
k ]exp

(

−h

[

Ck − CT
k −RT

k

Rk 0p

])

[Xk, X
⊥
k ]TXk, (19)

where matrices C,R ∈ R
p×p are defined Ck := XT

k Gk and Gk − XkCk =: X⊥
k Rk. This

formula requires computing an orthogonal complement X⊥
k ∈ St(n, p) of the matrix Xk

(namely, [Xk X
⊥
k ] ∈ St(n, 2p)). In this way, it is necessary to exponentiate skew-symmetric

matrices of dimension 2p × 2p instead of matrices of size n × n. The computational cost

of the exponentiation amounts to 9np2 + np+ O(p3) flops.

2.4 Rational-mechanics-type methods (MEC)

For the special case of optimization on the Stiefel manifold or on the orthogonal group a

second class of decent algorithms which can be cast in the presented framework arises from

the numerical approximation of rational-mechanics-type equations.

Let us consider S∗ = {[mi,±wi]} to be a rigid system of 2p masses mi with positions

wi ∈ R
n, i = 1, 2, . . . , p. The masses rotate in a viscous liquid around a mass-center.

In the hypothesis that all masses are equal and unitary, namely mi = 1, the equations



describing the dynamics of such system are [15, 16]:

{

Ẇ = HW, P = −µHW,

Ḣ = 1
4

[

(F + P )W T −W (F + P )T
]

.
(20)

The matrix W lays on the orthogonal group O(n) (for p = n) or on the Stiefel manifold

St(n, p) (for p < n) and denotes the set of masses positions, F ∈ R
n×p denotes the set of

active forces that make the system move, H ∈ so(n) denotes the angular velocity tensor.

The constant µ > 0 denotes a viscosity parameter and P ∈ R
n×n denotes the viscosity

resistance. The active forces are generated by a potential energy field, namely:

F := −
∂U

∂W
, (21)

with U = U(W ) denoting a potential energy function. The equilibria of the mechanical

systems S∗ coincide to the local minima of the potential U . In the optimization context,

the potential energy function can be assumed as a cost function to be minimized or as

an objective function to be maximized. In this case, the mechanical system state W (t)

asymptotically approaches the solution of the optimization problem as the system tends

to minimize its potential energy function.

When n � p, equations (20) may be reformulated in a more convenient framework by

using the tangent space TW St(n, p), as shown in [4]. The tangent-space formulation of

the equations is profitable if such differential equations are integrated numerically in order

to gain numerical efficiency. It has been observed (see, e.g., [17, 34]) that certain classes

of signal processing problems involve rectangular matrices whose p/n ratio is quite low.

An integration method that takes into account such observation might achieve moderate

computational complexity. In particular, equations (20) may be rewritten as:

Ẇ = V, V̇ = g(V,W ), (22)

where V ∈ TWSt(n, p) is a system velocity vector and g : TW St(n, p) × St(n, p) →

TWSt(n, p), defined as:



























V := (GW T −WGT )W,

g(V,W ) := (LW T −WLT )W + (GW T −WGT )V,

G := V −W (W TV/2 + S),

L := F − µV.

(23)

In the above equations, the matrix S ∈ R
p×p may be arbitrarily selected, for example

taking S = 0p. The matrix G ∈ R
n×p. The matrix L ∈ R

n×p represents the set of

effective forces, namely the active forces deflated from the viscous braking forces.

As H(t) and V (t) evolve on linear spaces, the differential equations describing their dy-

namics may be solved by a classical forward Euler time-stepping. Conversely, the dynamics
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of the matrix W is approximated with a retraction based Euler method, as was done for

the case of the gradient method.

The MEC optimization algorithm, written in the original Lie algebra formulation, reads:


































Hk+1 = Hk + h((Fk + Pk)W
T
k −Wk(Fk + Pk)

T ),

Pk = −µHkWk,

Fk = F (Wk),

Wk+1 = exp(hHk)Wk,

k = 1, 2, 3, . . . ,

(24)

with W0 ∈ St(n, p) and H0 ∈ so(n) arbitrarily selected (a typical choice would be W0 =

In×p and H0 = 0n). Here, search direction Hk is selected in the Lie algebra as an approxi-

mation of the differential equation for H. As a consequence the computation of the action

exp(hHk)Wk involves the exponentiation of n × n matrices and requires at least O(n2p)

floating-point operations. In the above equations, the parameter h ∈ R denotes a con-

stant step-size. Instead, the MEC optimization algorithm in the tangent space formulation

reads:


























Vk+1 = Vk + hg(Vk,Wk),

Gk = Vk − 1
2Wk(W

T
k Vk),

Wk+1 = exp(h(GkW
T
k −WkG

T
k ))Wk,

k = 1, 2, 3, . . . ,

(25)

with W0 ∈ St(n, p) and V0 ∈ TW0
St(n, p) arbitrarily selected (a typical choice would be

W0 = In×p and V0 = 0n×p). In the above equations, the parameter h ∈ R denotes again a

constant step-size.

In this case, as in the previous section, we can make use of the formula (19) for the

computation of the action of the orthogonal group on the Stiefel manifold. The total

computational cost of one step of the algorithm amounts to 21np2 + 6np+ O(p3) flops.

3 Signal processing applications

The general optimization problem (1) arises in several applied fields ranging from engi-

neering to applied physics and neurophysiology. Some specific exemplary applied topics

that can be addressed under the above general settings are principal component/subspace

analysis, eigenvalue and generalized eigenvalue problems, optimal linear compression, noise

reduction and signal representation [11, 14, 35, 37]; neural independent component analysis,

blind source separation and blind signal processing [15, 17]; minimal linear system real-

ization from noise-injection measured data and invariant subspace computation [13, 26],

linear programming and sequential quadratic programming [3, 13], analysis of natural

three-dimensional movement [38], synthesis of digital filters [21], physics of bulk materials

[13] and reduced-rank Wiener filtering [34].



An interesting example of a problem that can be tackled via statistical signal processing

is the cocktail-party problem. Let us suppose two signals x1(t) and x2(t) were recorded

from two different positions in a room where two speakers are talking in. Each recorded

signal is a linear mixture of the voices of two speakers s1(t) and s2(t), namely:

x1(t) = a1,1s1(t) + a1,2s2(t),

x2(t) = a2,1s1(t) + a2,2s2(t),

where the four coefficients ai,j ∈ R denote the mixing proportions. The cocktail party

problem consists in estimating signals s1(t) and s2(t) from the only knowledge of their

mixtures x1(t) and x2(t). The main assumption on the source signals is that s1(t) and

s2(t) are statistically independent. A known method to solve this problem is to invoke a

statistical signal processing technique termed Independent Component Analysis (ICA). A

possible way to interpret ICA as an optimization problem is the following: After mixing,

the independent signals s1(t) and s2(t) result in signals x1(t) and x2(t) that are statistically

dependent, therefore, a way of estimating the independent sources is to minimize a criterion

function that is able to tell how much dependent two (or more) signals are. As it can be

shown, it is always possible to hypothesize that the coefficients ai,j possess some constraints,

such as that they form a 2× 2 orthogonal matrix, therefore the estimation of independent

components may be cast as an optimization problem of the kind (1), where the parameter

manifold is the Lie group of real orthogonal matrices. The general ICA setting is explained

in section 3.2.

3.1 Application to principal component analysis

Data reduction techniques are statistical signal processing methods that aim at providing

efficient representations of data. A well-known data compression technique consists in

mapping an high-dimensional data space into a lower dimensional representation space

by means of a linear transformation. It requires the computation of the data covariance

matrix and then the application of a numerical procedure to extract its eigenvalues and

the corresponding eigenvectors. Compression is then obtained by the use of the only

eigenvectors associated with the most significant eigenvalues as a new basis.

In particular, Principal Component Analysis (PCA) is a second-order adaptive statistical

data processing technique that helps removing the second-order correlation among given

random signals. Let us consider the stationary multivariate random process x(t) ∈ R
n and

suppose its covariance matrix A = E[(x−E[x])(x−E[x])]T ] exists bounded. If A ∈ R
n×n

is not diagonal, then the components of x(t) are statistically correlated. Such second-order

redundancy may be partially (or completely) removed by computing a linear operator

F ∈ R
n×p such that the new random signal defined by y(t) := F T (x(t) − E[x]) ∈ R

p

has uncorrelated components, with p ≤ n properly selected. Any covariance matrix is

13



symmetric (semi) positive-definite, therefore the operator F is known to be the matrix

formed by the eigenvectors of the matrix A corresponding to its largest eigenvalues and

F ∈ St(n, p) (see, e.g., the recent tutorials [11, 19]). The component signals of y(t)

are termed principal components of the signal x(t), whose relevance is proportional to the

corresponding eigenvalues σ2
i = E[y2

i ] which are supposed here to be arranged in descending

order (σ2
i ≥ σ2

i+1).

The data-stream y(t), thus, represents a compressed version of the data stream x(t).

After the reduced-size data have been processed (i.e. stored, transmitted), they need to be

recovered, that is, they need to be brought back to the original structure. However, the

principal-component-based data-reduction technique is not lossless, thus only an approx-

imation x̂(t) ∈ R
n of the original data-stream may be recovered. As F is a tall-skinny

orthogonal operator, an approximation of x(t) is given by x̂(t) = Fy(t) + E[x]: Such

approximate data-stream minimizes the reconstruction error E[||x − x̂||22], which equals
∑p

i=n+1 σ
2
i .

In the above equations, symbol E[·] denotes statistical expectation. For a scalar or

a vector-valued random variable x ∈ R
n endowed with a probability density function

px : x ∈ R
n → px(x) ∈ R, the expectation of a function β : Rn → R is defined as:

E[β] :=

∫

Rn

β(x)px(x)dnx. (26)

Under the hypothesis that the signals whose expectation is to be computed are ergodic,

the actual expectation (ensemble average) may be replaced by temporal-average on the

basis of the available signals samples, namely:

E[β] ≈
1

T

T
∑

t=1

β(x(t)). (27)

In the following, we shall consider the problem of PCA computation as tackled by the

UVD as well as MEC optimization techniques.

3.1.1 Principal component analysis by the univariate descent method

In the context of univariate descent methods, the problem of principal component analysis

reduces to the computation of eigenpairs of the symmetric positive-definite signal covari-

ance matrix. To compute p eigenpairs of a n × n symmetric and positive-definite matrix

Ã, we consider the maximization of the function:

φ(X) =
1

2
trace(XT ÃX), (28)

on the Stiefel manifold St(n, p) 3 X. Let us get into the details of the application of the

univariate descent algorithm (11) along with the univariate-optimization problem (12).



For the particular choice of basis in so(n) the exponentials exp(α(eie
T
j − eje

T
i )), with

α ∈ [0 2π], are Givens rotators, i.e. the matrices:

Gij(α) := I + [ei, ej ]

[

cos(α) − 1 − sin(α)

sin(α) cos(α) − 1

]

[ei, ej ]
T ,

where I is the n× n identity matrix.

By denoting withXk ∈ St(n, p) the sequence of putative solutions, the univariate-descent

algorithm (11) becomes:

Xk+1 = P0Gi,j(αk)P0 ·Xk, k = 0, 1, 2, . . . , (29)

with X0 arbitrarily selected in St(n, p) and P0 = I − 2v0v
T
0 and Householder transfor-

mation not depending on α. Each univariate-optimization problem (12) is modified ac-

cordingly so that we are looking for the appropriate angle α that maximizes the quantity

φ(α) := φ(P0GijP0(α)Q) for a given Q ∈ St(n, p) and a selected Givens rotator Gij(·).

In the present setting, the criterion function to optimize φ(α) is quadratic in the matrix

P0Gij(α)P0Q and thus it is expressible as a quadratic form in the quantities cosα and

sinα. Its optimum might thus be easily gotten numerically. In fact, in this case, it is easily

found that:

φ(α) = a sin2 α+ b cos2 α+ c sinα+ d cosα+ e sinα cosα+ f, (30)

φ′(α) = (a− b) sin(2α) + e cos(2α) + c cosα− d sinα, (31)

where a, b, c, d, e and f are coefficients depending on indices i and j and on the matrices

A = P0ÃP0 and R := P0QQ
TP0. Such coefficients are defined as:















































a := 1
2(AjjRii − 2AijRij +AiiRjj),

b := 1
2(AiiRii + 2AijRij +AjjRjj),

c := (RA)ij − (RA)ji −Aij(Rii −Rjj) −Rij(Ajj −Aii),

d := (RA)ii + (RA)jj −AiiRii − 2AijRij −AjjRjj,

e := Aij(Rii −Rjj) +Rij(Ajj −Aii),

f := 1
2trace(RA) − (RA)ii − (RA)jj + b.

(32)

(In the above equations, notation Ars(α) denotes the (r, s)th entry of the matrix A.)

As it is readily seen, some terms in the expressions of the coefficients repeat, and only

a few entries of matrices R and RA are actually used at each iteration, therefore it is not

necessary to explicitly form the two matrix products.

The Householder matrix P0 might be set equal to the identity or chosen in other appro-

priate ways. A possible choice is to take P0 different from the identity in the first n − 1

steps of the algorithm so to reduce Ã to tridiagonal form, i.e. requiring after n− 1 steps

that

A = P
(n−1)
0 · · ·P

(1)
0 ÃP

(1)
0 · · ·P

(n−1)
0

15



0 2 4 6
−0.5

0

0.5

φ’
(α

)

α
0 2 4 6

8.2

8.4

8.6

8.8

9

9.2

φ(
α)

α

Figure 3: Shape of functions φ(α) and φ′(α) on a randomly generated matrix A. In this

example: n = 10, p = 3 and the rotator G24(α) was used. The matrix Q was

also randomly generated in St(10, 3). The asterisk on the left-hand panel marks

the approximate maximum, while the asterisk on the right-hand panel marks the

approximate location of the corresponding zero.

is tridiagonal, see [22] for details. This operation introduces some extra computations in

the algorithm, but has the advantage of leading to a simplification of the formulae (32), as

well as improving the convergence of the method.

To look for the absolute maximum (or minimum) of the function φ(α) we consider the

following strategies:

• Find the zeros of φ′(α) by transforming the problem into a complex polynomial

equation of degree 4, via the substitutions sin(α) = eiα−e−iα

2i and cos(α) = eiα+e−iα

2 .

• Sample the function φ(α) on equally-spaced values of the parameter α in the interval

[0 2π] and pick the value corresponding to the largest function value found. As the

function to optimize is smooth, a good approximation of the actual maximum is

expected to be reached.

• Sample the function φ′(α) on equally-spaced values of the parameter α in the interval

[0 2π] and pick the values that are closer to 0. The found values need to be tested as

they might correspond to local maxima/minima or saddle points, unless the function

φ′′(α) is computed as well.

• The second method above, with zooming maximum search. This method consists in

a loose partitioning of the interval [0 2π] and in a fine repartitioning of sub-intervals

around a point of interest, until no meaningful changes of φ are observed.

Figure 3 displays an exemplary shape of functions φ(α) and φ′(α) on a randomly generated

matrix A. The maximum as well as the zero-crossing point where found numerically by

using the second method above.



In order to assess the UVD algorithm for PCA, the matrix to be decomposed may

be generated as A = V DV T , where V ∈ O(n) and D ∈ R
n×n diagonal, with posi-

tive entries ordered in ascending order. In this way, a PCA X ∈ St(n, p) is such that

φ? := φ(X) =
∑p

i=1D
ii. Figure 4 displays a run on a randomly generated matrix A,

both with cyclically and randomly selected algebra basis elements. In both cases, the it-

eration stops when the absolute mismatch |φ − φ?| becomes smaller than 10−3 or when

the number of iterations exceeds 500. As it is readily observed, in this simulation both
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Cyclic selection of the base elements
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Random selection of the base elements

Figure 4: A run on a randomly generated matrix A. In this example: n = 10, p = 3. The

matrix Q was randomly generated in St(10, 3). The left-hand panel shows the

behavior of the algorithm when the basis elements for the algebra are cyclically

selected, while the right-hand panel shows the behavior of the algorithm when

the basis elements for the algebra are randomly selected. Solid-line: Value of

φ during iteration. Dashed-line: Value of φ?. (Principal component analysis

experiment.)

the UVD algorithm that makes use of cyclic basis elements selection and the UVD al-

gorithm that makes use of random basis elements selection terminate iteration because

the exit condition |φ − φ?| < 10−3 is met. However, in the shown simulation, the first

algorithm runs for 270 iterations while the second one runs through 399 iterations. While,

for a given problem and with given initial conditions, the first algorithm runs on a fixed

amount of iterations, the second one depends on random fluctuations in the algebra and

thus it might run even faster or slower: Its velocity of convergence is thus unpredictable.

Figure 5 displays the empirical distribution of the number of iterations to converge to

the UVD with randomly selected algebra basis elements on 500 independent trials for the

same eigenpair-computation problem. The empirical mean value is about 273 iterations

with standard deviation 95. The mean convergence velocity of the UVD algorithm with

randomly selected algebra basis elements, thus, equals the velocity of the UVD algorithm

that makes use of cyclic basis elements selection. It should be noted, however, that in the

4.4% of the cases, the algorithm does not appear to converge within the maximum allotted
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Figure 5: Empirical distribution of the number of iterations to converge of the UVD al-

gorithm with randomly selected algebra basis elements. (Principal component

analysis experiment.)

number of iterations. Because of these findings, we shall not be using the the UVD al-

gorithm with randomly selected algebra basis elements any more for principal component

analysis purpose.

In Table 2 we present a comparison of the performance of three differernt UVD methods,

in the case p = n − 1. The considered methods are UVD with cyclic selection of the

basis elements, UVD (toral) with ordering of the basis elements in maximal commutative

subalgebras (as described at the end of subsection 2.2), and UVD (Householder) based

on the use of Householder transformations to achieve a tridiagonal form and with cyclic

selection of the basis elements. We report the CPU times and the number of Givens

rotations required by the methods to achieve convergence. The iteration stops when the

error is smaller than 10−3. The results indicate the superiority of UVD (toral). These

results are still preliminary and must be further investigated. In the next sections only the

method UVD (cyclic) will be used in the experiments.

3.1.2 Principal component analysis by the rational-mechanics-type method

In order to employ the MEC method to computing the p largest eigenvalues of a symmetric

positive-definite n × n matrix A, it is necessary to properly choose a potential energy

function for the abstract mechanical system. In this case, the potential energy function is:

U(W ) = −
1

2
trace(W TAW ), (33)

which gives rise to the forcing term F = AW .



Experiment Method CPU time Rotations

n = 10, p = 9 UVD (cyclic) 0.0596 166

n = 10, p = 9 UVD (toral) 0.0386 109

n = 10, p = 9 UVD (Householder) 0.0572 114

n = 20, p = 19 UVD (cyclic) 0.1805 417

n = 20, p = 19 UVD (toral) 0.0575 157

n = 20, p = 19 UVD (Householder) 0.6114 1285

n = 30, p = 29 UVD (cyclic) 0.2617 681

n = 30, p = 29 UVD (toral) 0.1070 264

n = 30, p = 29 UVD (Householder) 0.5061 954

Table 2: Comparison of different UVD methods: UVD (cyclic), UVD (toral), UVD (House-

holder). The iteration stops when the error is less then 10−3. (Principal compo-

nent analysis: n × n random symmetric matrix, p = n − 1 number of computed

eigenpairs.)

The matrix A was generated as A = V DV T , where V ∈ O(n) and D ∈ R
n×n diagonal,

with positive entries ordered in ascending order. In this way, a PCA W ∈ St(n, p) is such

that U? := U(W ) = − 1
2

∑p
i=1D

ii. Figure 6 displays a run on a randomly generated matrix

A, both with MEC in the Lie-algebra and in the tangent-space formulations. In both cases,

iteration stops when the absolute mismatch |U − U ?| becomes smaller than 10−3 or when

the number of iterations exceeds 120. Algorithms’ parameters were chosen as: h = 0.1

and µ = 1. As it is readily observed, both MEC versions terminate iteration because the

exiting condition |U − U ?| < 10−3 is met.

3.1.3 Comparisons on principal component analysis problem

We may compare the performances of the UVD method based on cyclic selection of basis

elements with the performances of the MEC method (both in the algebra-based and on

the tangent-space-based versions) as well as the performances of the GRAD method on

principal component analysis with varying problem sizes. As performance indices, we may

consider the total floating points operations requires by the algorithms to run and the

discrepancy between the final value of the criterion function and the optimal value of the

criterion function. Algorithms’ parameters were chosen as: h = 0.1 and µ = 1. The

termination criterion for all the algorithms is that the absolute error becomes smaller than

10−3. The obtained results are summarized in the Table 3, which illustrate the numerical

behavior of the four considered algorithms in terms of slops, absolute estimation error and

number of iterations to converge. For the UVD method, the total number of iterations
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Figure 6: A run on a randomly generated matrix A. In this example: n = 10, p = 3.

The left-hand panel shows the behavior of the MEC algorithm in the Lie-algebra

formulation, while the right-hand panel shows the behavior of the MEC algo-

rithm in the tangent-space formulation. Solid-line: Value of potential U during

iteration. Dashed-line: Value of U ?. (Principal component analysis experiment.)

was divided by the basis dimension (d) in order to show a fair comparison: Every step

of the other three methods is equivalent to d steps of the UVD method. Figure 7 shows

a run on a random matrix A of the four considered algorithms for n = 10 and p = 8,

while Figure 8 graphically shows a computational-complexity/performance comparison for

the same matrix A. It is worth recalling that the adaptation parameter of the gradient

method must be chosen ad hoc to get convergence, while in UVD method there is no

adaptation parameter. The results show that the UVD method is competitive with the

other methods in terms of global computational complexity, for low-dimensional PCA

problems and when p < n, while for large-dimensional problems the MEC algorithms may

be more advantageous than UVD and GRAD algorithms.

3.2 Application to independent component analysis

Independent component analysis is a well-established statistical signal/data processing

technique that aims at decomposing a set of multivariate random signals into a basis of

statistically independent streams with the minimal loss of information content. The main

recognized purposes of ICA are:

• Linear blind source separation: In this case the aim is to recover a number of statis-

tically independent signals from their unknown linear mixtures, under simple consis-

tency conditions. The typical consistency conditions on the unknown sources are: 1)

each source signal is an independent identically distributed (IID) stationary random

process; 2) the source signals are statistically independent at any time; 3) at most

one among the source signals has Gaussian distribution. These requirements ensure

the existence and uniqueness of the solution to the blind separation problem (but for
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Experiment Method Flops Error Iterations

n = 10, p = 8 GRAD 1,882,936 0.9771 × 10−3 42

n = 10, p = 8 UVD (cyclic) 444,600 0.7341 × 10−3 4

n = 10, p = 8 MEC (algebra) 2,016,264 0.9744 × 10−3 89

n = 10, p = 8 MEC (tangent) 5,337,714 0.9168 × 10−3 98

n = 20, p = 16 GRAD 17, 614, 650 0.9694 × 10−3 50

n = 20, p = 16 UVD (cyclic) 16,295,160 0.1856 × 10−3 6

n = 20, p = 16 MEC (algebra) 17, 662, 442 0.9016 × 10−3 106

n = 20, p = 16 MEC (tangent) 45, 216, 610 0.9449 × 10−3 106

n = 30, p = 4 GRAD 4,338,915 0.9729 × 10−3 215

n = 30, p = 4 UVD (cyclic) 21,083,580 0.8941 × 10−3 6

n = 30, p = 4 MEC (algebra) 100,224,060 0.9808 × 10−3 151

n = 30, p = 4 MEC (tangent) 6,772,741 0.9571 × 10−3 151

n = 30, p = 24 GRAD 171,366,945 0.9713 × 10−3 145

n = 30, p = 24 UVD (cyclic) 178,672,770 0.3468 × 10−3 9

n = 30, p = 24 MEC (algebra) 82,517,198 0.9247 × 10−3 151

n = 30, p = 24 MEC (tangent) 215,866,643 0.9313 × 10−3 151

Table 3: Comparison of UVD method based on cyclic selection of basis elements, MEC

method (both in the algebra-based and on the tangent-space-based versions) and

GRAD method. (Principal component analysis: n×n random symmetric matrix,

p number of computed eigenpairs.)

ordering, sign, and power scaling);

• Data representation and visualization: High-dimensionality data/signals are difficult

to handle and to visualize, but often contain significant redundancies. Such obser-

vation suggests the usefulness of designing signal processing algorithms that would

be capable of finding a suitable lower-dimensionality representation of the signals

at hand by reducing their statistical dependencies. In this context, independent

component analysis technique may discover a linear projection of the data into a

low-dimensional basis of statistically independent signals, that carry on no mutual

information, thus providing a parsimonious maximally-informative representation of

the original data.

As mentioned in the introduction to this section, the classical example used to informally

explain the blind separation problem is the “cocktail party” scenario. An example that helps

clarifying the concept low-dimensional data representation might arise in the analysis of

vibrating machines: A rotating machine is equipped with a number of accelerometers that



measure its vibration intensities. We recognize that the recorded accelerometer signals are

originated by many vibrating parts, whose number exceeds the number of accelerometers,

which in turn might exceed the number of reasonable signals we can process for fault testing.

By seeking for a compact representation of the measured data by the ICA technique, the

obtained basis of independent signals capture the information on the complex vibrations

of a small number of virtual oscillators whose linear superposition generate the observed

data.

In symbols, the involved quantities in the signal model are:

• The unknown source signal stream s(t) := [s1(t), . . . , sp(t)]
T ;

• The unknown mixing matrix A ∈ R
n×p;

• The observable signal stream x(t) := [x1(t), . . . , xn(t)]T given by x(t) = As(t).

Typically, it holds n > p, namely, the number of observations exceeds the number of

actual sources. Also, a typical assumption is that the source signals are spatially white,

that means E[ssT ] = Ip. The aim of independent component analysis is to find estimates

y(t) of signals in s(t) by constructing a de-mixing matrix W ∈ R
n×p and by computing

y(t) := W Tx(t). As the involved quantities are unknown, the only way to tackle the

problem at hand is to invoke statistical signal processing methods, that is, to formulate

the problem of finding a de-mixing matrix W as an optimization problem on homogeneous

manifolds.

The geometrical structure of the parameter space in ICA comes from a signal pre-

processing step termed signal whitening, that is operated on the observable signal x(t) →

x̃(t) ∈ R
p, in such a way that the components of the signal x̃(t) are uncorrelated and

have variances equal to 1, namely E[x̃x̃T ] = Ip [10]. This also means that redundant

observations are eliminated and the ICA problem is brought back to the smallest dimension

p. A possible way to pre-whiten the signals and to remove the redundant dimensions in

the data is to use eigenvalue decomposition, namely to compute E[xxT ] = V DV T , with

V ∈ St(n, p) and D ∈ R
p×p diagonal invertible. Then pre-whitening is obtained as:

x̃(t) := D− 1

2V Tx(t). (34)

Pre-whitening the observable signals implies x̃(t) = D−1/2V TAs(t) =: Ãs(t), where E[x̃x̃T ] =

ÃE[ssT ]ÃT = ÃÃT = Ip. Consequently, any ICA problem may be reduced to an orthog-

onal ICA problem, where the mixing matrix is orthogonal and, as a consequence, the

de-mixing matrix should be orthogonal as well. After observable signal pre-whitening, the

de-mixing matrix may be searched for such as it solves the optimization problem:

max
W∈O(p)

φ(W ). (35)
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In the ICA context, the criterion function φ(W ) is termed discriminant constrast [10]. The

contrast φ(W ) actually depends on the statistics of the signals obtained by the separation

rule y(t) := W T x̃(t).

As explained, after pre-whitening, the number of projected-observations in the signal

x̃(t) equals the number of sources. However, in some applications it is known that not

all the source signals are useful, therefore, it is sensible to analyze only a few of them.

This may be the case in antenna array processing (e.g., in synthetic aperture radar (SAR)

imagery processing, [18]) or in non-destructive evaluation of metallic slabs by exploiting

the eddy-current-phenomenon (ECT-NDE testing, [20]). In these cases, if we denote by

p� p the actual number of independent components that are sought for, the appropriate

way to cast optimization problem for ICA is:

max
W∈St(n,p)

φ(W ), with p� p. (36)

Typically, in SAR as well as in ECT-NDE applications, we set p = 1.

The optimization principles (35) and (36) may be presented within a unified framework,

namely:

max
W∈St(p,p)

φ(W ), with p ≤ p, y(t) := W T x̃(t). (37)

The matrix Π := W TD−1/2V TA is termed separation product and at optimum is should

be a scaled version of a permutation matrix, so that s(t) ≈ y(t) = Wx̃(t), as the basic

theory of ICA ensures optimizing contrast functions yields independent components up to

possible reordering, scaling and sign switching. The definition of the separation product Π

allows us to define an optimization performance index, termed inter-channel interference

(ICI), as:

ICI :=
1

p
‖ΠΠT − diag(ΠΠT )‖F, (38)

where ‖ · ‖F denotes the Frobenius matrix norm.

3.2.1 Independent component analysis by non-Gaussianity optimization

As a possible principle for reconstruction, the maximization or minimization of non-

Gaussianity is viable. It is based on the notion that the sum of independent random

variables has distribution closer to Gaussian than the distributions of the original random

variables. A measure of non-Gaussianity is the kurtosis, defined for a scalar signal z ∈ R

as:

kurt(z) := E[z4] − 3E2[z2]. (39)

If the random signal z has unitary variance, then the kurtosis computes as kurt(z) = E[z 4]−

3. Maximizing or minimizing kurtosis is thus a possible way of estimating independent

components from their linear mixtures [10, 27]. For unit-variance components, this amounts



at maximizing or minimizing the fourth-order moment of the reconstructed signals. This

method is readily applicable when:

• All the p source signals in a mixture x(t) are super-Gaussian (namely, all the sources

have positive kurtosis), possibly with the exception of one source signal, which is

Gaussian (namely, it has zero kurtosis): In this case, the contrast function may be

defined as φ(W ) := 1
4

∑p
i=1 kurt(wT

i x̃);

• All the source signals in a mixture are sub-Gaussian (namely, all the sources have

negative kurtosis), possibly with the exception of one source signal, which is Gaussian:

In this case, the contrast function may be defined as φ(W ) := − 1
4

∑p
i=1 kurt(wT

i x̃);

Both the contrast functions above are to be maximized under the constraint W ∈ St(p, p).

In the context of independent component analysis by non-Gaussianity optimization, both

full-rank analysis (namely, p = p) and reduced-rank analysis (namely, p� p) are of use. In

the latter case, the most kurtotic components are extracted from the observations (namely,

the components exhibiting the largest absolute kurtosis are extracted from the observed

mixture).

3.2.2 Non-negative independent component analysis

We now add the technical hypothesis that the sources do not have degenerate (i.e., point-

mass-like) joint probability density function. Under this hypothesis, an interesting variant

of standard ICA may be invoked when the additional knowledge on the non-negativity of

the source signals is considered. In some signal processing setting, it is known a priori

that the source signals to be recovered have non-negative values [31, 32]. This is the case,

for instance, in image processing, where the values of the luminance or the intensity of the

color in the proper channel are normally expressed by non-negative integer values. Another

interesting potential application is spectral un-mixing in remote sensing [24]. In hyper-

spectral imagery, pixels are a mixture of more than one distinct substance. In fact, this

may happen if the spatial resolution of a sensor is so low that diverse materials can occupy a

single pixel, as well as when distinct materials are combined into a homogeneous mixture.

Spectral de-mixing is the procedure with which the measured spectrum is decomposed

into a set of component spectra and a set of corresponding abundances, that indicate

the proportion of each component present in the pixels. The theoretical foundations of

so-termed non-negative independent component analysis were stated in [31].

Under the hypotheses motivated in [31], a way to perform non-negative independent

component analysis is to construct a cost function φ(W ) that is identically zero if and

only if the components of y(t) are non-negative with probability 1. The criterion function
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proposed in [32] gives thus rise to the contrast:

φ(W ) := −
1

2
E[‖x̃−Wρ(W T x̃)‖2

2], (40)

where ‖ · ‖2 denotes the standard L2 vector norm and the function ρ : R → R
+
0 is defined

as:

ρ(u) :=

{

u, if u ≥ 0,

0, otherwise,
(41)

and it is supposed to act component-wise on vectors. From the definition (40), it is clear

that when all the network output signals have positive values, it result φ = 0, otherwise

φ 6= 0. In this case, performing ICA may thus be accomplished by maximizing the criterion

function φ over the orthogonal group of matrices.

3.2.3 Independent component analysis by the univariate descent method

In the case of independent component analysis by kurtosis optimization, it is necessary

to express the criterion function φ(W ) in closed form for univariate optimization purpose.

Likewise for the PCA case, we identify the initial point with W0 and hypothesize to move

to the point Gij(α)W0. Therefore, the optimal value of α such that φ(α) := φ(Gij(α)W0)

is maximized/minimize is to be sought for.

Let us define the signal y0(t) := W T
0 x̃(t) ∈ R

p, whose components are hereafter denoted

by y0,r(t). Straightforward computations show that:

φ(α) = a(sin4 α+ cos4 α) + b sin(4α) + c sin2(2α) + d, (42)

where coefficients a, b, c and d were found to be:



























a := ±1
4(E[y4

0,i] +E[y4
0,j]),

b := ±1
4(E[y3

0,iy0,j] −E[y0,iy
3
0,j]),

c := ±3
4E[y2

0,iy
2
0,j],

d := ±1
4

∑

r 6=i,j kurt(y0,r) ∓
3
2 .

(43)

The sign depends on whether the kurtoses of the sources is known to be positive or negative.

The constant term d in the expression (42) is quite burdensome to compute and does not

affect the maximization of the contrast function φ(α): Its computation may therefore be

dispensed of.

Figure 9 shows four grey-level pictures, taken as exemplary source signals, along with

their kurtoses, which are all negative. The sources were mixed by a random matrix A of

size 4 × 4 and were then subjected to pre-whitening: Figure 10 shows the shape of the

contrast function φ(α) = φ(Gij(α)W0) as in (42) for W0 = I4, for two pairs of indices (i, j)

in the ranges i ∈ {1, 2, 3} and j ∈ {i+ 1, . . . , 4}.



Kurtosis = −0.71038 Kurtosis = −1.0049

Kurtosis = −1.9703 Kurtosis = −1.0042

Figure 9: Four grey-level 128 × 128 pixels pictures along with their kurtoses. If regarded

as source signals, these are sub-Gaussian sources. (Kurtosis-based independent

component analysis experiment.)
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Figure 10: Shape of the contrast function (42) for W0 = I4 for two pairs of indices (i, j),

after the sources of Figure 9 were mixed by a 4 × 4 random matrix A and

after pre-whitening. The asterisks denote the maximum values of the function

(42) computed numerically. (Kurtosis-based independent component analysis

problem.)
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In the case of non-negative independent component analysis, the contrast function cannot

be easily written in closed form due to the presence of the non-linear function ρ in it. It is

first worth noting that, thanks to the condition W ∈ O(p), the contrast function (40) may

be readily rewritten in terms of the signal y(t) = W T x̃(t) as φ(W ) = − 1
2E[‖y − ρ(y)‖2

2].

This observation turns out to be profitable when writing the explicit expression of the

criterion φ(α) = φ(Gij(α)W0). By defining again the auxiliary signal y0(t) := W T
0 x̃(t) ∈

R
p, we get:

φ(α) =
1

2

∑

r 6=i,j

E[y0,rρ(−y0,r)] +

1

2
E[(y0,i cosα+ y0,j sinα)ρ(−y0,i cosα− y0,j sinα)] +

1

2
E[(−y0,i sinα+ y0,j cosα)ρ(y0,i sinα+ y0,j cosα)]. (44)

The constant term
∑

r 6=i,j E[y0,rρ(−y0,r)] in the expression (44) is burdensome to compute

and does not affect the maximization of the contrast function φ(α), therefore, its computa-

tion may be dispensed of, in practice. Therefore, we may define the lifted NNICA criterion

and compute its first order derivative:

φ`(α) :=
1

2
E[(y0,i cosα+ y0,j sinα)ρ(−y0,i cosα− y0,j sinα)] +

1

2
E[(−y0,i sinα+ y0,j cosα)ρ(y0,i sinα− y0,j cosα)], (45)

φ′`(α) = E[(−y0,i sinα+ y0,j cosα)ρ(−y0,i cosα− y0,j sinα)] +

−E[(y0,i cosα+ y0,j sinα)ρ(y0,i sinα− y0,j cosα)]. (46)

As an exemplary instance, Figure 11 shows the shape of the contrast function φ(α) =

φ(Gij(α)W0) as in (45) for W0 = I4, for two pairs of indices (i, j). The Figure also shows

the shape of the derivative φ′(α) as computed in (46).

The strategy of choice to compute the maximum of the univariate lifted contrast function

for every pair of indices (i, j) in a numerically cheap way is:

1. Sample coarsely the univariate contrast function (45) in the interval [0 2π]. Such first

sampling has the purpose of determining a value of the angle α close to the point of

maximum;

2. Use a numerical algorithm to find the zero of function (46) close to the value of

the angle α determined with the previous operation (e.g., by a MATLAB’s built-in

root-finder primitive).

As an example of behavior of the UVD method in the context of ICA, Figure 12 shows

the result of a run of UVD method to optimize the non-negative ICA criterion as well as

the kurtosis-based criterion. The algorithms converge steadily. As it might be expected,
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Figure 11: Shape of the lifted contrast function (45) and its derivative derivative (46) for

W0 = I4 for two pairs of indices (i, j), after the sources of Figure 9 were mixed

by a 4 × 4 random matrix A and after pre-whitening. The asterisks denote

the maximum values of the function (45) computed numerically. (Non-negative

independent component analysis problem.)
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(UVD-NNICA) as well as the kurtosis-based criterion (UVD-KURTICA).
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the method based on non-negativity minimization exhibits better component analysis ca-

pability, as it is based on a a priori knowledge about the sources, while this is not the case

for the kurtosis-based method. However, the latter method exhibits quicker convergence.

3.2.4 Independent component analysis by the rational-mechanics-type method

In order to formulate a kurtosis-based ICA or a NNICA procedure within the rational-

mechanics settings, it is necessary to compute the expression of the active forces in these

two cases.

In the case of independent component analysis by kurtosis optimization, it is worth re-

calling that a contrast function is intended to be maximized, while the mechanical system’s

potential energy minimizes according to system’s dynamics. Therefore, according to the

cases considered in the section 3.2.1:

• All the p source signals in a mixture x(t) are super-Gaussian (possibly with the

exception of a source signal which is allowed to be Gaussian): In this case, the

potential energy function may be selected as U(W ) := − 1
4(
∑p

i=1E[(wT
i x̃)

4] − 3p)

and thus the active-force-matrix writes thus F = E[x̃(x̃TW )3], where (·)3 is meant

to act component-wise;

• All the p source signals in a mixture x(t) are sub-Gaussian (possibly with the excep-

tion of a source signal which is allowed to be Gaussian): In this case, the potential

energy function may be selected as U(W ) := 1
4(
∑p

i=1 E[(wT
i x̃)

4]−3p) and the forcing

term writes thus F = −E[x̃(x̃TW )3].

In the case of non-negative independent component analysis, according to the contents

of section 3.2.2, the potential energy function should be chosen as U(W ) := 1
2E[‖x̃ −

Wρ(W T x̃)‖2
2], which gives rise to the forcing term F = −E[x̃ρ(x̃TW )].

As an example of behavior of the MEC method in the context of ICA, Figure 13 shows

the result of a run of MEC method to optimize the non-negative ICA criterion as well as

the kurtosis-based criterion. The MEC algorithm is considered again in both Lie-algebra

and tangent-space formulation. In the case of kurtosis-based ICA, the learning parameters

were chosen as h = 0.1 and µ = 1. In such case, the algorithms converge steadily. In the

non-negative ICA case, the learning parameters were chosen as h = 0.5 and µ = 1. Despite

a larger learning step size was selected, the algorithm converges very slowly in this case.

3.2.5 Comparisons on independent component analysis problem

In the present section, comparative results among the GRAD, UVD and MECs algorithms

are illustrated and discussed separately for the non-negative ICA and the kurtosis-based

ICA. The algorithms were implemented in MATLAB 6.5, which does not implement flops
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Figure 13: Result of a run of MEC method to optimize the non-negative ICA criterion

(MEC-NNICA) as well as the kurtosis-based criterion (MEC-KURTICA). The

MEC algorithm is tested in both Lie-algebra and tangent-space formulation.

count, therefore, the computational complexity of the developed algorithms was presented

in terms of CPU run-time. As shown in the previous sections, when the ICA algorithms

converge properly they reach values of the ICI index below the −100 dB, therefore, as exit

criterion for the iteration we choose the threshold of −100 dB, while a maximum number

of 100 iterations was allowed for each algorithm.

The first set of results pertains to the non-negative ICA case. Figure 14 illustrates the

results obtained on a mixture of the four digital images (as explained in section ) by running

the algorithms GRAD (with step-size h = 0.5), UVD, MEC in the Lie-algebra formulation

(with parameters h = 0.5 and µ = 1) and MEC in the tangent-space formulation (with

parameters h = 0.5 and µ = 1). The results illustrated in the Figure show that, among the

four considered algorithms, the UVD is the only one that converges within 100 iterations

(actually, it converges in 6 iterations). The simulations however show that the UVD

method is the most expensive one among the four considered methods, due to the needed

zero-finding sub-procedure.

The second set of results pertains to the kurtosis-based ICA case. The Figure 15 il-

lustrates the results obtained by running the algorithms GRAD (with step-size h = 0.5),

UVD, MEC in the Lie-algebra formulation (with parameters h = 0.5 and µ = 1) and MEC

in the tangent-space formulation (with parameters h = 0.5 and µ = 1). The obtained nu-
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Figure 14: Computational-complexity/performance comparison of GRAD, UVD, MEC (al-

gebra) and MEC (tangent). (Non-negative independent component analysis.)

1 2 3 4
0

2

4

6

8

10

12

14

Algorithm

Ite
ra

tio
ns

 to
 c

on
ve

rg
e

1−UVD, 2−MEC(a), 3−MEC(t), 4−GRAD

1 2 3 4
−120

−100

−80

−60

−40

−20

0

Algorithm

S
ep

ar
at

io
n 

in
de

x 
IC

I [
dB

]

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Algorithm

E
la

ps
ed

 r
un

−
tim

e 
(s

ec
.s

)

Figure 15: Computational-complexity/performance comparison of GRAD, UVD, MEC (al-

gebra) and MEC (tangent). (Kurtosis-based independent component analysis

experiment.)



merical results show that all the four considered algorithms converge within 100 iterations.

The simulations show that the UVD method is the most convenient one among the four

considered algorithms as well as the fastest one in terms of iterations to converge.

4 Conclusions

In this paper we have presented a framework for descent methods on homogeneous man-

ifolds based on the use of retraction maps and Lie group actions. Within this framework

we presented a new class of univariate descent methods (UVD) optimizing in turn in the

direction of each of the basis elements of the Lie algebra. The methods require a very

moderate computational burden per step and show good performance in eigenvalue prob-

lems and signal processing applications. The study of these methods is still preliminary

and deserves further attention.

Gradient type methods on manifolds can be also included in the considered framework

and are compared to the univariate descent methods. We showed that in some cases it

might be convenient to formulate the descent methods using tangent space parametrisations

as this might lead to considerable gain in the computational complexity. Retraction maps

are particularly well-suited for this task.

The methods discussed in the paper have been applied to a variety of problems in

statistical signal processing.
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