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electromagnetic scattering

Larisa Beilina, Marte P. Hatlo, Harald E. Krogstad

December 19, 2007

In this paper we derive an a posteriori error estimate and present two different
adaptive algorithms for an inverse electromagnetic scattering problem.

The inverse problem is formulated as an optimal control problem, where we
solve equations expressing stationarity of an associated Lagrangian. The a
posteriori error estimate for the Lagrangian couples residuals of the computed
solution to weights of the reconstruction. We show that the weights can be
obtained by solving an associated linearized problem for the Hessian of the
Lagrangian, which is used in the second algorithm, while in the first algorithm
we compute only the residuals. The performance of the adaptive finite element
method and the usefulness of the a posteriori error estimate are illustrated in
numerical examples.

1 Introduction

We apply the mesh-adaptive method, developed in [3], to an inverse electromagentic
scattering problem. The method is based on an a posteriori error estimate which couples
residuals of the computed solution to weights in the reconstruction. The new element
in the present work is the introduction of absorbing and mirror boundary conditions in
the formulation of the forward problem. Thus, the a posteriori error estimate for the
inverse problem is also new. The derivation of the a posteriori estimate for the error
in the Lagrangian follows the main approach to adaptive error control in computational
differential equations, presented in [2, 7] and references therein.

The inverse problem consists of reconstructing the unknown material variable, that is,
the dielectric permittivity, ε(x), from data measured on parts of the surface of the given
domain, given the wave input on other parts. By solving the wave equation with the same
input, the material variables are in principle obtained by fitting the computed solution
to the measured data. The problem is formulated as finding a stationary point of the
Lagrangian, involving the forward wave equation (the state equation), the backward wave
equation (the adjoint equation), and an equation expressing that the gradient with respect
to the parameter vanishes. The optimum is found in an iterative process solving the forward
and backward wave equations and updating the material coefficient for each step.

We present two different adaptive algorithms to solve the inverse problem. In the first
algorithm, the space-mesh adaptivity is based only on the computation of the residuals,
since they already give us enough information. The second algorithm is extended to include
computations of the weights. To compute the weights, we propose to solve a linerized
problem for the Hessian of the Lagrangian.
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Finally, numerical experiments where a periodic structure is reconstructed, show the
possibilities of using adaptive error control in computational inverse scattering.

2 Mathematical model

We shall restrict ourselves to the propagation of light in a mixed dielectric medium in a
bounded domain Ω ⊂ R

d, d = 2, 3, with boundary Γ, governed by Maxwell’s equations:

∂D

∂t
−∇×H = −J, in Ω× (0, T ],

∂B

∂t
+∇×E = 0, in Ω× (0, T ], (1)

∇ ·D = ρ, in Ω× (0, T ],

∇ ·B = 0, in Ω× (0, T ].

Here E(x, t) and H(x, t) are the electric and magnetic fields, whereas D(x, t) and B(x, t)
are the electric and magnetic inductions, respectively. We assume that the dielectric per-
mittivity, ε(x), is scalar and that the material is non-magnetic, so that µ(x) = 1. Then
D = εE and B = H. The current density, J , and charge density, ρ, are both assumed to
be zero.

By eliminating B andD from (1) we obtain two independent partial differential equations

ε
∂2E

∂t2
+∇× (∇×E) = 0,

∂2H

∂t2
+∇× (ε−1∇×H) = 0,

(2)

which may be solved imposing appropriate initial and boundary conditions.
For simplicity, we only consider the problem in terms of E(x, t). Taking into account

the vector identity ∇×∇× V = ∇(∇ · V )−4V , we obtain

ε
∂2E

∂t2
−∇ · (∇E) = 0, in Ω× (0, T ]. (3)

A similar equation is valid for H.
Let Γ1∪Γ2 ⊂ Γ and Γ3 = Γ\ Γ1∪Γ2, and consider the forward problem consisting of (3)

and the following initial and boundary conditions (Here and below, we denote Dv = ∂v
∂t

)

E(·, 0) = 0,
∂E

∂t
(·, 0) = 0, in Ω,

∂nE
∣∣
Γ1

= v1, on Γ1 × (0, t1],

∂nE
∣∣
Γ1

= DE, on Γ1 × (t1, T ],

∂nE
∣∣
Γ2

= DE, on Γ2 × (0, T ],

∂nE
∣∣
Γ3

= 0, on Γ3 × (0, T ],

(4)

Here v1 is a pulse emitted from Γ1, which propagates into Ω until t = t1. We use first
order absorbing boundary conditions, given in [6], on Γ1 × (t1, T ] and Γ2 × (0, T ]. At the
lateral boundaries Γ3 we use mirror boundary conditions.



Our goal is to solve the inverse problem for (3) and (4), or to find the material parameter
ε(x) from data at a finite set of observation points on Γ. The data are generated in exper-
iments where pulses are emitted from Γ1, backscattered by the material inhomogenities,
and recorded on parts of the boundary Γ.

In this paper, data are generated by computing the forward problem (3) and (4) for
given values of the parameters, and saving the solution on parts of the boundary. The
coefficients are then “forgotten” and the goal is to reconstruct the coefficients from the
computed boundary data.

3 A hybrid finite element/difference method

To solve equation (3)-(4) we use a hybrid FEM/FDM method developed in [5]. The
method uses continuous, piecewise linear finite elements in space and time on a partially
structured mesh in space. The computational space domain Ω is decomposed into a finite
element domain ΩFEM, with an unstructured mesh, and a finite difference domain ΩFDM,
with a structured mesh. Typically, ΩFEM covers only a small part of Ω. In ΩFDM we use
quadrilateral elements in R

2 and hexahedra in R
3. In ΩFEM we use a finite element mesh

Kh = {K} with elements K consisting of triangles in R
2 and tetrahedra in R

3. Let us
associate with Kh a mesh function hK = diam(K), ∀x ∈ K, representing the diameter of
the element K. For the time discretization, let Jk = {J} be a partition of the time interval
I = (0, T ] into time intervals J = (tk−1, tk] of uniform length τ = tk − tk−1.

We define the following L2 inner products and norm

(p, q) =

∫

Ω
pq dx, ((p, q)) =

∫

Ω

∫ T

0
pq dt dx, ‖p‖2 = ((p, p)).

We introduce the finite element trial space W v
h defined by :

W v
h := {v ∈W v

1 ∪W v
2 : v|K×J ∈ P1(K)× P1(J),∀K ∈ Kh,∀J ∈ Jk},

where

W v
1 := {v ∈ H1(Ω× J) : v(·, 0) = 0, ∂nv|Γ1

= v1, ∂nv|Γ2
= Dv, ∂nv|Γ3

= 0},
W v

2 := {v ∈ H1(Ω× J) : v(·, 0) = 0, ∂nv|Γ1
= ∂nv|Γ2

= Dv, ∂nv|Γ3
= 0}.

Here P1(K) and P1(J) are the set of linear functions on K and J , respectively.
Furthermore, the finite element space W λ

h for the costate λ, is defined by:

W λ
h := {λ ∈W λ

1 ∪W λ
2 : λ|K×J ∈ P1(K)× P1(J),∀K ∈ Kh,∀J ∈ Jk},

where

W λ
1 : = {λ ∈ H1(Ω× J) : λ(·, T ) = 0, ∂nλ|Γ1

= ∂nλ|Γ3
= 0, ∂nλ|Γ2

= Dλ},
W λ

2 : = {λ ∈ H1(Ω× J) : λ(·, T ) = 0, ∂nλ|Γ1
= ∂nλ|Γ2

= Dλ, ∂nλ|Γ3
= 0}.

The finite element method for (3)-(4) now reads: Find Eh ∈W v
h such that ∀λ̄ ∈W λ

h ,

− ((εDEh, Dλ̄)) + ((∇Eh,∇λ̄))

− ((DEh, λ̄))(t1 ,T ]×Γ1
− ((DEh, λ̄))(0,T ]×Γ2

= ((v1, λ̄))(0,t1 ]×Γ1
.

(5)

Here, the initial condition DE(0) = 0 is imposed in weak form through the variational
formulation.

Expanding E and λ in terms of the standard continuous piecewise linear functions ϕi(x)
in space and ψi(t) in time, and substituting this into (5), we obtain an explit scheme for
solving (5), see for example [3] where a similar system is obtained for an acoustic wave
equation with homogenous boundary conditions.
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4 The inverse problem

We formulate the inverse problem for (3) and (4) as follows: given the function ∂nE =
v1 on Γ1 × (0, t1], determine the coefficient ε(x) for x ∈ Ω, which minimizes the quantity

J(E, ε) =
1

2

∫ T

0

∫

Ω
(E − Ẽ)2δobs dxdt+

1

2
γ

∫

Ω
(ε− ε0)2 dx. (6)

Here Ẽ is the data observed at a finite set of points xobs, E satisfies (3) and (4) and thus
depends on ε. Moreover, δobs =

∑
δ(x− xobs) is a sum of delta-functions corresponding to

the observation points, γ is a regularization parameter, and ε0 is the initial guess value for
the parameter we want to reconstruct.

To solve this minimization problem, we introduce the Lagrangian

L(u) = J(E, ε) − ((εDE,Dλ)) + ((∇E,∇λ)) − ((DE,λ))(t1 ,T ]×Γ1

− ((DE,λ))(0,T ]×Γ2
− ((v1, λ))(0,t1 ]×Γ1

,
(7)

where u = (E, λ, ε), and search for a stationary point with respect to u, satisfying for all
ū = (Ē, λ̄, ε̄)

L′(u; ū) = 0, (8)

where L′ is the gradient of L. Equation (8) expresses that for all ū,

∂L(u)

∂λ
(λ̄) =− ((εDλ̄,DE)) + ((∇E,∇λ̄))− ((DE, λ̄))(t1 ,T ]×Γ1

− ((DE, λ̄))(0,T ]×Γ2
− ((2v1, λ̄))(0,t1 ]×Γ1

= 0,

∂L(u)

∂E
(Ē) =((E − Ẽ, Ē))δobs

− ((εDλ,DĒ)) + ((∇λ,∇Ē))

+ ((Dλ, Ē))[0,T )×Γ1
+ ((Dλ, Ē))[0,T )×Γ2

= 0,

∂L(u)

∂ε
(ε̄) =− ((DλDE, ε̄)) + γ(ε− ε0, ε̄) = 0.

(9)

The first equation in (9) is a weak form of the state equation (3) and (4), the second
equation is a weak form of the adjoint state equation,

ε
∂2λ

∂t2
−∇ · (∇λ) = −(E − Ẽ)δobs, x ∈ Ω, 0 ≤ t < T,

∂nλ = 0 on Γ1 × [0, t1),

∂nλ = Dλ on Γ1 × [0, T ),

∂nλ = Dλ on Γ2 × [0, T ),

∂nλ = 0 on Γ3 × [0, T ),

λ(·, T ) = Dλ(·, T ) = 0 in Ω,

(10)

and the last equation expresses stationarity with respect to the parameter ε.

5 A finite element method for inverse problem

To formulate a finite element method for (8) we introduce the finite element space Vh of
piecewise constants for the coefficient ε(x), defined by :

Vh := {v ∈ L2(Ω) : v ∈ P0(K),∀K ∈ Kh}.



Recalling the definitions of W v
h and W λ

h , related to the state E and the costate λ, and
defining Uh = W v

h ×W λ
h × Vh, we formulate the finite element method for (8) as: Find

uh ∈ Uh, such that
L′(uh; ū) = 0, ∀ū ∈ Uh. (11)

6 An a posteriori error estimate for the Lagrangian

Theorem 6.1. Let L(u) = L(E, λ, ε) be the Lagrangian as defined in (7), and let L(uh) =
L(Eh, λh, εh) be the approximation of L(u). Then the following representation holds for
the error e = L(u)− L(uh):

∣∣e
∣∣ ≤ ((RE1

, σλ))(0,t1 ]×Γ1
+ ((RE2

, σλ)) + ((RE3
, σλ))

+ ((RE4
, σλ))(t1 ,T ]×Γ1

+ ((RE5
, σλ))(0,T ]×Γ2

+ ((Rλ1
, σE))δobs

+ ((Rλ2
, σE)) + ((Rλ3

, σE))

+ ((Rλ4
, σE))(0,T ]×Γ1

+ ((Rλ5
, σE))(0,T ]×Γ2

+ ((Rε1 , σε)) + (Rε2 , σε),

(12)

where the residuals are defined by

RE1
= 2|v1|, RE2

= max
S⊂∂K

h−1
K

∣∣[∂sEh

]∣∣,

RE3
= εhτ

−1
∣∣[∂tEh

]∣∣, RE4
= RE5

= |DEh|,
Rλ1

= |Eh − Ẽ|, Rλ2
= max

S⊂∂K
h−1

K

∣∣[∂sλh

]∣∣,

Rλ3
= εhτ

−1
∣∣[∂tλh

]∣∣, Rλ4
= Rλ5

= |Dλh|,
Rε1 = |Dλh| · |DEh|, Rε2 = γ|εh − ε0|,

and the interpolation errors are

σλ = Cτ |[Dλh]|+ ChK |[∂nλh]| ,
σE = Cτ |[DEh]|+ ChK |[∂nEh]| ,
σε = C

∣∣[εh]
∣∣,

Here, [v] denotes the maximum of the modulus of a jump of v across the face of an
element K (or the boundary node of a time interval J), ∂sv denotes the normal derivative
of v across a side of K, ∂nv denotes the derivative of v in the outward normal of an element
K, [∂tv] is the maximum modulus of the jump of the time derivative of v across a boundary
node of J , C is interpolation constants of moderate size.

Proof. Throughout the proof, let C denote different constants of a moderate size.
As in [1], we use the fundamental theorem of calucus to write

e = L(v)− L(vh)

=

∫ 1

0

d

ds
L(vh + s(v − vh))ds

=

∫ 1

0
L′(vh + s(v − vh); v − vh)ds

= L′(vh; v − vh) +R,
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where R denotes a second order term. For full details of the arguments we refer to [1] and
[7].

Neglecting the term R, and using the Galerkin orthogonality (11) with the splitting

v − vh = (v − vI
h) + (vI

h − vh), (13)

where vI
h denotes an interpolant of v, leads to the following error representation:

e ≈ L′(vh; v − vI
h) = I1 + I2 + I3. (14)

Here

I1 =−
((
εhDEh, D(λ− λI

h)
))

+
((
∇Eh,∇(λ− λI

h)
))
−
((

2v1, λ− λI
h

))
(0,t1 ]×Γ1

−
((
DEh, λ− λI

h

))
(t1 ,T ]×Γ1

−
((
DEh, λ− λI

h

))
(0,T ]×Γ2

,

I2 =
((
Eh − Ẽ, E −EI

h

))
δobs

−
((
εhDλh, D(E −EI

h)
))

+
((
∇λh,∇(E −EI

h)
))

+
((
Dλh, E −EI

h

))
(0,T ]×Γ1

+
((
Dλh, E −EI

h

))
(0,T ]×Γ2

,

I3 =−
((
DλhDEh, ε− εIh

))
+ γ
(
εh − ε0, ε− εIh

)
,

To estimate I1, we integrate by parts in the first and second terms to obtain:
∣∣I1

∣∣ =
∣∣((εhD2Eh, λ− λI

h

))
−
((
4Eh, λ− λI

h

))

−
((

2v1, λ− λI
h

))
(0,t1 ]×Γ1

−
((
DEh, λ− λI

h

))
(t1,T ]×Γ1

−
((
DEh, λ− λI

h

))
(0,T ]×Γ2

−
∑

k

∫

Ω
εh
[
DEh(tk)

]
(λ− λI

h)(tk) dx

+
∑

K

∫ T

0

∫

∂K

∂nEh(λ− λI
h) dsdt

∣∣,

(15)

Here,
[
DEh(tk)

]
denote the jump of the derivative of Eh at time tk (see Figure 2), and

∂nEh denote the derivative of Eh in the outward normal direction n of the boundary ∂K
of element K.

Since Eh is a piecewise linear function, the terms D2Eh and 4Eh in (15) disappear, and
we get:

∣∣I1

∣∣ =
∣∣−
((

2v1, λ− λI
h

))
(0,t1]×Γ1

−
((
DEh, λ− λI

h

))
(t1,T ]×Γ1

−
((
DEh, λ− λI

h

))
(0,T ]×Γ2

−
∑

k

∫

Ω
εh
[
DEh(tk)

]
(λ− λI

h)(tk) dx

+
∑

K

∫ T

0

∫

∂K

∂nEh(λ− λI
h) dsdt

∣∣.

(16)

In the last term of equation (16) we sum over the element boundaries, where each interior
side S ∈ Sh occurs twice, see Figure 1. Denoting by ∂n±Eh the derivative of Eh in the
outward normal direction n± to element K±, and by ∂sEh the derivative of a function Eh

in one of the normal directions, n− and n+, of each side S, we can write
∑

K

∫

∂K

∂nEh(λ− λI
h) ds =

∑

S

∫

S

[
∂sEh

]
(λ− λI

h) ds, (17)



n
−

∂K+

∂K−

S

K−

S

n
+

K+

Figure 1: Two neighbouring elements K+ and K−, their boundaries, ∂K+ and ∂K−, and
the interior side S.

where the jump
[
∂sEh

]
is defined as

[∂sEh] = max
S∈∂K

{∂n+Eh, ∂n−Eh}.

We distribute each jump equally to the two sharing elements and return to a sum of the
element edges ∂K :

∑

S

∫

S

[∂sEh] (λ− λI
h) ds =

∑

K

1

2

∫

∂K

[
∂sEh

]
(λ− λI

h) ds. (18)

We multiply and divide by hK , formally set dx = hKds and replace the integrals over
the element boundaries ∂K by integrals over the elements K, to get:

∣∣∣∣∣
∑

K

1

2
h−1

K

∫

∂K

[
∂sEh

]
(λ− λI

h) hK ds

∣∣∣∣∣

≤ C
∫

Ω
max
S⊂∂K

h−1
K

∣∣[∂sEh

]∣∣∣∣λ− λI
h

∣∣ dx,
(19)

where
[
∂sEh

]∣∣
K

= maxS⊂∂K

[
∂sEh

]∣∣
S
.

In a similar way we can estimate the jump in time in (16) by multiplying and dividing
by τ :

∣∣∣∣∣
∑

k

∫

Ω
εh [DEh(tk)] (λ− λI

h)(tk) dx

∣∣∣∣∣

≤
∑

k

∫

Ω
εhτ
−1
∣∣ [DEh(tk)]

∣∣∣∣(λ− λI
h)(tk)

∣∣ τdx

≤C
∑

k

∫

Jk

∫

Ω
εhτ
−1
∣∣[∂tkEh

]∣∣∣∣λ− λI
h

∣∣ dxdt

=C
((
εhτ
−1
∣∣[∂tEh

]∣∣,
∣∣(λ− λI

h)
∣∣ )).

(20)

Here, we have defined [∂tkEh] as the greatest of the two jumps on the interval (tk, tk+1]:

[∂tkEh] = max
k

([DEh(tk)] , [DEh(tk+1)]) ,

[∂tEh] = [∂tkEh] on Jk.
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f−(tk)

ttk−1 tk+1
J− J+

tk

[

f(tk)
]

[

f(tk+1)
]

[

f(tk−1)
]

f+(tk)

Figure 2: The jump of a function f on the time mesth.

where [DEh(tk)] = DE+
h (tk)−DE−h (tk). The time jumps are illustrated in Figure 2.

We substitute the expressions (19) and (20) in (16), to get:
∣∣I1

∣∣ ≤
((

2
∣∣v1

∣∣,
∣∣λ− λI

h

∣∣))
(0,t1]×Γ1

−
((∣∣DEh

∣∣,
∣∣λ− λI

h

∣∣))
(t1 ,T ]×Γ1

−
((∣∣DEh

∣∣,
∣∣λ− λI

h

∣∣))
(0,T ]×Γ2

+ C
((

max
S⊂∂K

h−1
K

∣∣[∂sEh

]∣∣,
∣∣λ− λI

h

∣∣ ))

+ C
((
εhτ
−1
∣∣[∂tEh

]∣∣,
∣∣λ− λI

h

∣∣ )).

Next, we use the following standard interpolation estimate

|λ− λI
h| ≤ C(τ2|D2λ|+ h2

K |D2
xλ|), (21)

where we approximate the second derivative in time as

D2λ =
∂2λ

∂t2
=
∂(Dλ)

∂t
≈
(
Dλ
)+ −

(
Dλ
)−

τ
=

[
Dλh

]

τ
.

Here (·)+ and (·)− reperesents values on two neighbouring intervals J+ and J−, see Figure
2. In the same way we approximate the second derivative in space:

D2
xλ ≈

[
∂nλh

]

h
.

Substituting both expressions above in (21), we obtain
∣∣λ− λI

h

∣∣ ≤ C
(
τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣) (22)

and the estimate for I1 reduces to
∣∣I1

∣∣ ≤C
((

2
∣∣v1

∣∣, τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣))
(0,t1]×Γ1

−C
((∣∣DEh

∣∣, τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣))
(t1,T ]×Γ1

−C
((∣∣DEh

∣∣, τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣))
(0,T ]×Γ2

+C
((

max
S⊂∂K

h−1
k

∣∣[∂sEh

]∣∣, τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣))

+C
((
εhτ
−1
∣∣[∂tEh

]∣∣, τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣)).



We estimate I2 similarly as I1. First, we integrate by parts to obtain
∣∣I2

∣∣ ≤
∣∣((Eh − Ẽ, E −EI

h

))
δobs

+
((
εhD

2λh, E −EI
h

))

−
((
4λh, E −EI

h

))
+
((
Dλh, E −EI

h

))
(0,T ]×Γ1

+
((
Dλh, E −EI

h

))
(0,T ]×Γ2

∣∣

+ C
((

max
S⊂∂K

h−1
K

∣∣[∂sλh

]∣∣,
∣∣E −EI

h

∣∣ ))

+ C
((
εhτ
−1
∣∣[∂tλh

]∣∣,
∣∣E −EI

h

∣∣ )).
Since λh is piecewice linear, the terms with 4λh and D2λh will disappear:

∣∣I2

∣∣ ≤
((∣∣Eh − Ẽ

∣∣,
∣∣E −EI

h

∣∣))
δobs

+
((∣∣Dλh

∣∣,
∣∣E −EI

h

∣∣))
(0,T ]×Γ1

+
((∣∣Dλh

∣∣,
∣∣E −EI

h

∣∣))
(0,T ]×Γ2

+ C
((

max
S⊂∂K

h−1
K

∣∣[∂sλh

]∣∣,
∣∣E −EI

h

∣∣))

+ C
((
εhτ
−1
∣∣[∂tλh

]∣∣,
∣∣E −EI

h

∣∣)).
Next, we use the same kind of interpolation estimate for |E −E I

h| as we found for |λ− λI
h|

in equation (22), to get:
∣∣I2

∣∣ ≤C
((∣∣Eh − Ẽ

∣∣, τ
∣∣ [DEh]

∣∣+ hK

∣∣ [∂nEh]
∣∣))

δobs

+C
((∣∣Dλh

∣∣, τ
∣∣ [DEh]

∣∣+ hK

∣∣ [∂nEh]
∣∣))

(0,T ]×Γ1

+C
((∣∣Dλh

∣∣, τ
∣∣ [DEh]

∣∣+ hK

∣∣ [∂nEh]
∣∣))

(0,T ]×Γ2

+C
((

max
S⊂∂K

h−1
K

∣∣[∂sλh

]∣∣, τ
∣∣ [DEh]

∣∣+ hK

∣∣ [∂nEh]
∣∣))

+C
((
εhτ
−1
∣∣[∂tλh

]∣∣, τ
∣∣ [DEh]

∣∣+ hK

∣∣ [∂nEh]
∣∣)).

To estimate I3 we use the following approximation estimate for ε− εIh:

|ε− εIh| ≤ ChKDxε ≤ ChK

∣∣∣∣
[εh]

hK

∣∣∣∣ ≤ C|[εh]|,

and we end up with
∣∣I3

∣∣ ≤
((
|Dλh| |DEh| ,

∣∣[εh]
∣∣ ))+ γ(

∣∣εh − ε0
∣∣,
∣∣[εh]

∣∣ ),

which complets the proof.

7 A posteriori error estimation for parameter identification

Following [4] we present a more general a posteriori estimate for the error in the recon-
structed parameter. We first note that

L′(u; ũ)− L′(uh; ũ) =

∫ 1

0

d

ds
L′(us+ (1− s)uh; ũ)ds

=

∫ 1

0
L′′(us+ (1− s)uh;u− uh, ũ)ds

= L′′(uh;u− uh, ũ) +R,

9



where R is a second order remainder and L′′(uh; ·, ·) is the Hessian of the Lagrangian. Since
L′(u; ũ) = 0, we get

−L′′(uh;u− uh, ũ) = L′(uh; ũ) +R.

Next, we can use the Galerkin orthogonality (11) with the splitting ũ − ũh = (ũ − ũI
h) +

(ũI
h − ũh), where ũI

h ∈ Uh denotes an interpolant of ũ, to get the following equation

−L′′(uh;u− uh, ũ) = L′(uh; ũ− ũI
h) +R. (23)

In our case the dual problem is defined as

−L′′(uh;u− uh, ũ) = (ψ, u − uh), (24)

where ψ is a given data. Neglecting the term R in (23), and comparing (23) with (24), we
get

(ψ, u− uh) ≈ L′(uh; ũ− ũI
h). (25)

From this estimate we observe that the form of the error for a parameter identification is
similar to the error in the Lagrangian, if the weight u is replaced by ũ.

We can choose u− uh = ū in (24) and the dual problem can be written as

−L′′(uh; ū, ũ) = (ψ, ū). (26)

We conclude that for an appropriate choice of the data, ψ, in the dual problem, we can
solve (26) approximately for ũ and thus get values of the error for ū.

8 The Hessian of the Lagrangian

In Section 7 we presented an a posteriori error estimate for identification of the parameter.
In this section we derive an approximation of the strong form of the dual problem (26),
which can be used to calculate the weights for the problem (3)-(4).

The Hessian of the Lagrangian (7) takes the following form

L′′(u; ū, ũ) = L′′E(u; ū, Ẽ) + L′′λ(u; ū, λ̃) + L′′ε (u; ū, ε̃), (27)

where

L′′E(u; ū, Ẽ) = −((εDλ̄,DẼ)) + ((∇Ẽ,∇λ̄)) + ((Ẽ, Ē))δobs
− ((DẼDλ, ε̄))

− ((DẼ, λ̄))[0,T )×Γ1
− ((DẼ, λ̄))[0,T )×Γ2

,

L′′λ(u; ū, λ̃) = −((εDĒ,Dλ̃)) + ((∇λ̃,∇Ē))− ((v1, λ̃))(0,t1 ]×Γ1
− ((DEDλ̃, ε̄))

− ((Dλ̃, Ē))(t1 ,T ]×Γ1
− ((Dλ̃, Ē))(0,T ]×Γ2

,

L′′ε (u; ū, ε̃) = −((DEDλ̄, ε̃))− ((DλDĒ, ε̃)) + γ(ε̄, ε̃).

Here we have used the boundary conditions ∂nλ = Dλ, ∂nλ̃ = Dλ̃, ∂nλ̄ = Dλ̄ on Γ1 ∪
Γ2 × [0, T ), and ∂nE = ∂nĒ = ∂nẼ = v1|(0,t1 ]×Γ1

, ∂nE = DE, ∂nĒ = DĒ, ∂nẼ = DẼ on
Γ1 × (t1, T ] and Γ2 × (0, T ], respectively.

Then the dual problem (26) takes the following strong form

ε
∂2λ̃

∂t2
−∇ · (∇λ̃) + Ẽδobs

+ ε̃
∂2λ

∂t2
−Dλ̃(t1,T )×Γ1

−Dλ̃(0,T )×Γ2
= ψ1,

ε
∂2Ẽ

∂t2
−∇ · (1

ε
∇Ẽ) + ε̃

∂2E

∂t2
− v1|(0,t1 ]×Γ1

−DẼ(t1 ,T )×Γ1
−DẼ(0,T )×Γ2

= ψ2,

−
∫ T

0
DλDẼdt−

∫ T

0
Dλ̃DEdt+ γ1ε̃ = ψ3,

(28)



with initial and boundary conditions. Our goal is to solve the system (28) with an already
known approximation to the final solution u, computed using the adaptive Algorithm 2 in
Section 9, and find ũ = (Ẽ, λ̃, ε̃). We assume that the solution of the adjoint problem, λ,
will be small after the final optimization iteration, and we can neglect all terms involving
λ to get the following approximated problem

ε
∂2λ̃

∂t2
−∇ · (∇λ̃) + Ẽδobs

−Dλ̃(t1,T )×Γ1
−Dλ̃(0,T )×Γ2

= ψ1,

ε
∂2Ẽ

∂t2
−∇ · (∇Ẽ) + ε̃

∂2E

∂t2
− v1|(0,t1]×Γ1

−DẼ(t1,T )×Γ1
−DẼ(0,T )×Γ2

= ψ2,

−
∫ T

0
Dλ̃DEdt+ γε̃ = ψ3.

(29)

As already mentioned in [4], the stability properties of this system is an open problem.

9 Adaptive algorithms for the inverse problem

In this section we present two different adaptive algorithms for solution of the inverse
problem presented in Section 4. In Algorithm 1, the refinement is based on computions of
the residuals for the parameter, since they already give a good indication where to refine
the mesh. The interpolation errors, and thus the exact value of the computational error in
the reconstructed parameter, can be obtained by computing the Hessian of the Lagrangian
using equation (29) as shown in Algorithm 2.

As we see from (12), the error in the Lagrangian consists of integrals in space and time of
the different residuals multiplied by the interpolation errors. Thus, to estimate the error in
the Lagrangian we need to compute the approximated values of (Eh, λh, εh) together with
residuals and interpolation errors. Since we want to control the error in the reconstructed
parameter, εh, we limit the computations to Rε1 and Rε2 , and neglect to compute the other
residuals in the a posteriori estimate (12). The a posteriori error in step 5 of Algorithm 1
is thus calculated as

e(x) ≈
∫ T

0
Rα1

(x, t) dt+Rα2
(x) . (30)

9.1 Algorithm 1

0. Choose an initial mesh Kh and an initial time partition J0 of the time interval (0, T ].
Start with an initial guess ε0, and compute the sequence of εn in the following steps:

1. Compute the solution En of the forward problem (3)-(4) on Kh and Jk, with ε(x) =
ε(n).

2. Compute the solution λn of the adjoint problem (10) on Kh and Jk.

3. Update the parameter ε on Kh and Jk using the quasi-Newton method

εn+1 = εn + αnHngn,

where Hn is an approximate Hessian, computed using the usual BFGS update for-
mula for the Hessian, see [8]. Furthermore, gn is the gradient of the Lagrangian (7)
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with respect to the parameter ε,

gn = −
∫ T

0
DλnDEndt+ γ(εn − ε0), (31)

where α is the step length in the parameter upgrade computed using an one-dimensional
search algorithm [9].

4. Stop computing ε if the gradient gn < η; if not set n = n+ 1 and go to step 1. Here,
η is the tolerance in the quasi-Newton update.

5. Compute the residuals, Rε1 , Rε2 and refine the mesh in all points where

∫ T

0
Rα1

(x, t) dt+Rα2
(x) < tol (32)

is violated. Here tol is a tolerance chosen by the user.

6. Construct a new mesh Kh and a new time partition Jk. Return to step 1 and perform
all the steps of the optimization algorithm on the new mesh.

9.2 Algorithm 2

0. Choose an initial mesh Kh and an initial time partition J0 of the time interval (0, T ].
Start with an initial guess ε0, and compute a sequence of εn in the following steps:

1. Compute the solution En of the forward problem (3)-(4) on Kh and Jk with ε(x) =
ε(n).

2. Compute the solution λn of the adjoint problem (10) on Kh and Jk.

3. Update the parameter ε on Kh and Jk using the quasi-Newton method

εn+1 = εn + αnHngn,

where Hn is an approximate Hessian, and gn is the gradient of the Lagrangian (7)
with respect to the parameter ε, as in equation (31).

4. Stop if the gradient gn < η; if not, set n = n + 1 and go to step 1. Here, η is the
tolerance in the quasi-Newton update.

5. Compute the residuals, Rε1 and Rε2 , in (25).

6. Compute the weight σε̃ in the a posteriori error estimate, (25), by solving equation
(29), using the following iterative procedure:

6.1. From the last equation in (29), update ε̃ as

ε̃m+1 = ε̃m + α̃(ψ3 +

∫ T

0
Dλ̃mDEhdt− γε̃m), (33)

where α̃ > 0 is the step length.

6.2. Solve the second equation in (29) and find Ẽ.

6.3. Solve the first equation in (29) and find λ̃.



(a) Ωl (b) Ωh (c) ΩFEM

Figure 3: We show the square lattice of a crystal where the material to be reconstructed is a square lattice of
columns.

(a) ΩFDM (b) Ω = ΩFEM ∪ ΩFDM (c) ΩFEM

Figure 4: The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is applied, and a mesh
(c), where we use FEM, with a thin overlapping of structured elements.

6.4. Compute (33) until ||ε̃m+1− ε̃m|| < eps, where eps > 0 is a tolerance, otherwise;
choose ε̃m = ε̃m+1 and return to 6.1.

7. Compute the value of the error in the reconstructed parameter ε using (25) as

error = ((Rε1 , σε̃)) + (Rε2 , σε̃),

where σε̃ = C
∣∣[ε̃h]

∣∣, on the mesh Kh.

8. Refine all elements where |error| > tol. Here tol is a tolerance chosen by the user.

9. Construct a new mesh Kh and a new time partition Jk. Return to step 1 and perform
all steps of the optimization algorithm on the new mesh.

10 Numerical Results

In this section we present several numerical examples to show the performance of the
adaptive hybrid method and the usefulness of the a posteriori error estimate (12).

The computational domain, Ω = ΩFEM ∪ ΩFDM , is set as Ω = [−4.0, 4.0] × [−5.0, 5.0].
Next, Ω is split into a finite element domain ΩFEM = [−3.0, 3.0] × [−3.0, 3.0] with an
unstructured mesh and a surrounding domain ΩFDM with a structured mesh, see Fig. 4.
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opt.it. 625 nodes 809 nodes 1263 nodes 2225 nodes
1 0.0118349 0.0108764 0.0108764 0.010476
2 0.0095824 0.00987447 0.00965067 0.00954041
3 0.00822312 0.00709372 0.00558728 0.00769998
4 0.00748565 0.00318215 0.00273809 0.00313069
5 0.00619674 0.00291434
6 0.00528474
7 0.00471419
8 0.00354939

Table 1: ||E − Eobs||L2 on the four adaptively refined meshes in the reconstruction of the lower squares. The
number of stored corrections in the quasi-Newton method is m = 15. The computations was performed
with noise level σ = 0 and regularization parameter γ = 0.1.

Between ΩFEM and ΩFDM there is a thin overlap. The space mesh consists of triangles
in ΩFEM , and squares in ΩFDM . In ΩFDM and the overlapping region, the mesh size is
h = 0.25 and h = 0.125, in Example 1 and Example 2, respectively. We apply the hybrid
finite element/difference method presented in [5] where finite elements are used in ΩFEM

and finite differences in ΩFDM . At the top and bottom boundaries of Ω we use first-order
absorbing boundary conditions [6]. At the lateral boundaries, mirror boundary conditions
allow us to assume an infinite space-periodic structure in the lateral direction.

For simplicity, we assume that ε = 1 in ΩFDM . Thus, we only need to reconstruct the
electric permittivity ε in ΩFEM .

First, we present tests where we reconstruct the parameter ε inside the domains Ωl and
Ωh, see Fig. 3-a), b), respectively. Then we present results from the reconstruction of the
structure given in Fig. 3-c).

10.1 Example 1

We start to test the adaptive finite element/difference method on the reconstruction of
the structures given in Fig. 3a) and 3 b), where our goal is to find the parameter ε in the
domains Ωl and Ωh, respectively.

To generate data at the observation points, we solve the forward problem (3)-(4) with a
plane wave pulse given as

∂nE
∣∣
Γ1

= ((sin (ωt− π/2) + 1)/10), 0 ≤ t ≤ 2π

ω
= t1. (34)

The field initiates at the boundary Γ1, in our examples this boundary represents the top
boundary of the computational domain, and propagates in normal direction n into Ω.The
trace of the forward problem is measured at the observation points, placed on the lower
boundary of the computational domain ΩFEM . On Γ1 × (t1, T ] and Γ2 × (0, T ] we use
first order absorbing boundary conditions, [6]. Here, T = 10.0 and the exact value of the
parameter is ε = 4.0 inside the square lattices and ε = 1.0 everywhere else. Since an
explicit scheme, [3], is used to solve the forward and adjoint problems, we choose a time
step τ according to the Courant-Friedrich’s-Levy (CFL) stability condition to provide a
stable time discretization.

We start Algorithm 1 in Section 9 with initial guess for the parameter being ε = 1.0 at
all points in the computational domain ΩFEM and with regularization parameter γ = 0.1.

To reconstruct the lower and upper squares in ΩFEM , computations were performed
on the four adaptively refined meshes shown in Fig. 5-a)-d) and Fig. 6-a)-d), respectively.
The meshes was refined by computing the residual in the reconstructed parameter ε using
Algorithm 1.



a) 625 nodes b) 809 nodes c) 1263 nodes d) 2225 nodes
1152 elements 1520 elements 2428 elements 4352 elements

e) 8 Q.N. it. f) 4 Q.N. it. g) 5 Q.N. it. h) 6 Q.N.it.
625 nodes 809 nodes 1263 nodes 2225 nodes

Figure 5: a)-d) Adaptively refined meshes in the reconstruction of the lower square lattices; e)-h) Reconstructed
parameter ε(x) on the correspondingly refined meshes at the final optimization iteration computed with
ω = 25 and noise level 5% in the observed data.

a) 625 nodes b) 844 nodes c) 1592 nodes d) 1945 nodes
1152 elements 1590 elements 3086 elements 3792 elements

e) 9 Q.N. it. f) 10 Q.N. it. g) 10 Q.N. it. h) 10 Q.N.it.
625 nodes 844 nodes 1592 nodes 1945 nodes

Figure 6: a)-d) Adaptively refined meshes in the reconstruction of the upper square lattices; e)-h) Reconstructed
parameter ε(x) on the correspondingly refined meshes at the final optimization iteration computed with
ω = 25 and noise level 5% in the observed data.
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σ, γ 10−5 10−4 10−3 10−2 10−1

0 0.00630036 0.00630536 0.00475773 0.0046071 0.00313069
1 0.00650122 0.00642409 0.00489691 0.00425432 0.00317147
3 0.00671315 0.00644934 0.00572624 0.00427946 0.00317955
5 0.0068622 0.00661597 0.00639352 0.00428971 0.00318703
7 0.00731985 0.00598225 0.00631647 0.00462458 0.00312281
10 0.00672832 0.00618862 0.00673036 0.00467998 0.00331152
20 0.00702925 0.00696454 0.00640261 0.00448304 0.0037926

Table 2: ||E−Eobs||L2 for the best reconstruction of the lower squares. We present results for the different noise
levels σ and regularization parameters γ.

σ, γ 10−5 10−4 10−3 10−2 10−1

0 0.00548847 0.00549544 0.00549544 0.00512397 0.00340977
1 0.00547518 0.00549755 0.00489691 0.0055677 0.00345097
3 0.00545709 0.00550747 0.00572624 0.0055182 0.0040041
5 0.00548414 0.00548424 0.00639352 0.0055076 0.00357293
7 0.00544183 0.00544645 0.00631647 0.00552189 0.00353966
10 0.00543398 0.00548045 0.00673036 0.00552947 0.00430008
20 0.00561054 0.00561999 0.00640261 0.00566159 0.00386997

Table 3: ||E−Eobs||L2 for the best reconstruction of the upper squares. We present results for the different noise
levels σ and regularization parameters γ.

Table 1 shows the computed L2-norms of E − Eobs for the best reconstruction of the
parameter ε in the lower squares, with ω = 25 in (34). We present the norms on the
different adaptively refined meshes at each optimization iteration as long as the norms
decrease. The computational tests show that the best results are obtained on the finest
mesh, where ||E − Eobs||L2 is reduced by approximately a factor of four between the first
and last optimization iterations.

We performed the tests again, adding relative noise to the observed data. The data with
relative disturbation, or noise, Eσ, is computed by adding a relative error to the computed
data Eobs using the expression

Eσ = Eobs + α(Emax −Emin)σ/100. (35)

Here, α is a random number on the interval [−1; 1], Emax and Emin are the maximal and
minimal values of the computed data Eobs, and σ is the noise in percents.

Using the results in Tables 2 and 3 we can conclude that we still have a good reconstruc-
tion of the parameter ε, whene noise is added. These results are confirmed in Fig. 5-e)-h)
and Fig. 6-e)-h) where we show the parameter field ε(x), at the final optimization itera-
tion, computed with ω = 25 and noise level 5% in the observed data. We see that although
the qualitative reconstruction on the coarse grid already allows the recovery of the location
of the squares from the limited boundary data, the quantitative reconstruction becomes
acceptable only on the refined grids.

Fig. 7 presents the different L2-norms in space of the reconstruction of the lower squares
of the adjoint problem solution λh over the time interval (0, 10.0]. We show the norms in
the different optimization iterations on the mesh with 2225 nodes without and with adding
7% noise in the data. We observe that the norms decreases with an increasing number of
optimization iterations as it should. We also note that the behavior of the adjoint problem
solution is stable to small perturbations in the data. Fig. 8 shows the similar results for
the reconstruction of the upper squares.
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Figure 7: L2-norms in space of the adjoint problem solution λh in reconstruction of the lower columns in square
lattice on different optimization iterations. Here the x-axis denotes time steps on (0, 10.0).
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Figure 8: L2-norms in space of the adjoint problem solution λh in the reconstruction of the upper columns in the
square lattice on different optimization iterations. Here the x-axis denotes time steps on (0, 10.0).
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a) 6082 elements b) 8806 elements c) 10854 elements d) 18346 elements

e) 6082 elements f) 8806 elements g) 10854 elements h) 18346 elements
αmax = 1.8804 αmax = 2.2325 αmax = 2.1135 αmax = 2.7559

i) 6082 elements j) 8806 elements k) 10854 elements l) 18346 elements
αmax = 1.7045 αmax = 1.8998 αmax = 1.8966 αmax = 4.0

Figure 9: a)-d) Adaptively refined meshes ; Reconstructed parameter ε(x), indicating domains with a given pa-
rameter value: e)-h) in Test 1, i)-l) in Test 2. Here, red color corresponds to the maximum parameter
value on the corresponding meshes, and blue color - to the minimum.

10.2 Example 2

Now we seek to reconstruct the structure of the two-dimensional crystal given in Fig. 3-c).
The electric field (34) initiates at the top boundary of the computational domain ΩFDM

and propagates in normal direction n into Ω, with ω = 6. As in Example 1, we use first
order boundary conditions on Γ1 × (t1, T ] and Γ2 × (0, T ].

First we performed tests where the trace of the forward problem is measured at ob-
servation points only on the lower boundary, and then, tests where the reflected trace is
measured both on the lower and top boundaries of the computational domain ΩFEM .

To achieve better results in the reconstruction, we performed tests letting the incoming
wave from the top boundary of ΩFDM be equal to the reflected non-plane wave measured
on the lower boundary of ΩFDM . Thus, to generate data at the observation points, we
first solve the forward problem (3)-(4) with a plane wave (34) in the time interval t =
(0, T ] with the exact value of the parameter being ε = 4.0 inside the square lattices and
ε = 1.0 everywhere else, and registered the values of the solution of the forward problem
at the lower boundary of ΩFDM . Then, using these registered values, a non-plane wave
is initialized, starting at t = T and ending at t = 2T . Again, a time step τ is chosen
according to CFL stability condition.
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Figure 10: ||E − Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 0, 1, 3
and 5% and with regularization parameter γ = 0.01. Here the x-axis denotes number of optimization
iterations.
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Figure 11: ||E−Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 0, 7 and
10% and with regularization parameter γ = 0.01. Here the x-axis denotes number of optimization
iterations.
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Figure 12: ||E − Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 0%,
and with regularization parameters γ = 0.1, 0.01, 0.001, 0.0001, Here the x-axis denotes number of
optimization iterations.
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Figure 13: ||E − Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 3%,
and with regularization parameters γ = 0.1, 0.01, 0.001, 0.0001, Here the x-axis denotes number of
optimization iterations.
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Figure 14: ||E − Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 0, 1, 3
and 5% and with regularization parameter γ = 0.01. Here the x-axis denotes number of optimization
iterations.
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Figure 15: ||E−Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 0, 7 and
10% and with regularization parameter γ = 0.01. Here the x-axis denotes number of optimization
iterations.
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Figure 16: ||E − Eobs|| on adaptively refined meshes. We show computational results with noise level σ = 1%
and with regularization parameters γ = 0.1, 0.01, 0.001, 0.0001. Here the x-axis denotes number of
optimization iterations.
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Figure 17: ||E − Eobs|| on adaptively refined meshes. We show computations: on a) with noise level σ =
0% and with regularization parameter γ = 0.01 for Test 1; on b) with noise level σ = 1% and
with regularization parameter γ = 0.01 for Test 2. Here the x-axis denotes number of optimization
iterations.



10.2.1 Test1

First we performed the tests where the trace of the incoming wave was measured at the
observation points at the lower boundary of ΩFEM in the time interval (0, T ], and then at
the observation points at the top boundary in the time interval (T, 2T ].

In Fig. 10-11 we present a comparison of the computed L2-norms, ||E − Eobs||L2
, de-

pending on the relative noise σ on the different adaptively refined meshes. The norms
are plotted as long as they decrease. The relative noise σ in the data is computed using
expression (35). From these results we conclude that the reconstruction is stable with
small values of the noise (see Fig. 10), and unstable when adding more than 5% noise to
the data (Fig. 11).

In Fig. 12-13 we show a comparison of the computed L2-norms, ||E−Eobs||L2
, depending

on the different regularization parameters γ. We see that we obtain the smallest value of
||E − Eobs||L2

with the regularization parameter γ = 0.01, while choosing γ = 0.1 is too
large and involve too much regularization. The computational tests show that the best
results are obtained on the finest mesh, where ||E−Eobs||L2 is reduced by approximately a
factor of seven between the first and last optimization iterations. Fig. 9-e)-h) correspond
to Fig. 17-a) and show the reconstructed parameter field ε(x) at the final optimization
iteration.

10.2.2 Test2

The tests described in this section, was performed by measuring the trace of the incoming
wave at the observation points on both the lower and upper boundaries of the computa-
tional domain ΩFEM . Thus, we have twice as much information than in the previous test,
and we expect to get a more quantitative reconstruction of the structure.

In Fig. 14-15 we present a comparison of the computed L2-norms, ||E − Eobs||L2
, de-

pending on the relative noise σ on the different adaptively refined meshes. The norms
are plotted as long as they decrease. The relative noise, σ, in the data is computed using
expression (35). From these results we conclude that the reconstruction is stable on the
two, three and four times refined meshes, even when 10% noise is added to the data.

In Fig. 16 we show a comparison of the computed L2-norms, ||E−Eobs||L2
, depending on

the different regularization parameters γ. We see that the smallest value of ||E −Eobs||L2

is obtained with regularization parameter γ = 0.01, while γ = 0.1 is again too large and
involve too much regularization. The computational tests show that the best results are
obtained on the finest mesh, where ||E − Eobs||L2 is reduced by approximately a factor
of seven between the first and last optimization iterations, see Fig. 17-b). Fig. 9-i)-l)
correspond to Fig. 17-b), and show the reconstructed parameter field ε(x) at the final
optimization iteration.

11 Conclusions and Remarks

We have devised an explicit, adaptive hybrid FEM/FDM method for inverse electromag-
netic scattering. The method is hybrid in the sense that different numerical methods, finite
elements and finite differences, are used in different parts of the computational domain.
We derived an a posteriori estimate for the error in the Lagrangian in the case when we
have first order absorbing [6] and mirror boundary conditions in the formulation of the
forward problem. The adaptivity is based on a posteriori error estimates for the associ-
ated Lagrangian in the form of space-time integrals of the residuals multiplied by the dual
weights. In future work we plan to determine the error in the reconstructed parameter
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numerically, by solving an associated problem for the Hessian of the Lagrangian. We il-
lustrated the usefulness of the adaptive error control on an inverse scattering problem for
recovering the electric permittivity from boundary measured data.
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