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The ’pseudo-harmonic’ extension is an approximation to the common har-
monic extension for extending a function over a domain based on its trace along
the boundary of the domain. On a circle the two extension methods produce
identical results. We present explicit formulas for the computation of distance
functions and intersection points needed in the ’pseudo-harmonic’ extension on
a circle, a square, and a pentagon. While the harmonic extension needs the
solution of a Laplace problem for each new boundary function, the ’pseudo-
harmonic’ extension can reuse the distance functions and intersection points
for any piecewise continuous function defined on the boundary of the domain.

1 Introduction

Extension of a function over a domain based on its trace along the boundary of the domain
is a well studied problem. For a general domain Ω ∈ R

d, d = 2, 3, with f defined on ∂Ω,
a common method to find u over Ω such that u|∂Ω = f|∂Ω is to solve the Laplace problem:
Find u such that

−∆u = 0 in Ω,
u = f on ∂Ω.

(1.1)

This method is often referred to as the harmonic extension, and it is very robust with
respect to different domains Ω. Since the harmonic extension requires the solution of a
Laplace problem, we are interested in a more explicit extension method.

For convex domains with piecewise differentiable boundaries, Gordon and Wixom intro-
duced ’pseudo-harmonic’ extension in [4]. On a bounded and convex domain Ω ⊂ R

2 where
a function f is given on the boundary, the extension u of f to the domain Ω is defined as

u(ξ, η) =
1

2π

∫ 2π

0

[

d2(θ)

d1(θ)+d2(θ)
f(Q1(θ))+

d1(θ)

d1(θ)+d2(θ)
f(Q2(θ))

]

dθ, (1.2)
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(a) ’Pseudo-harmonic’ extension on a
bounded convex domain (taken from [4]).
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(b) Transfinite extension on the unit
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Figure 1: Boundary points of influence on an arbitrary point (ξ, η).

where Q1 and Q2 are the intersections between ∂Ω and the line through the point (ξ, η) at
inclination θ, and d1 and d2 are the distances from (ξ, η) to these intersection points; see
Figure 1(a) (taken from [4]). We use (ξ, η) as reference coordinates, since ’pseudo-harmonic’
extension, and other methods of extension, is often used to map a reference domain to a
generic domain, giving (x(ξ, η), y(ξ, η). If the domain Ω is a circle, and f is piecewise
continuous on its boundary, it is shown in [4] that the ’pseudo-harmonic’ extension is
equivalent to the harmonic extension found as the solution of the Laplace problem (1.1).
For non-circular domains, the ’pseudo-harmonic’ extension is an approximation to the
harmonic extension found on the given domain.

The ’pseudo-harmonic’ extension is well-defined both on domains with smooth bound-
aries, and on domains whose boundaries have corners. For comparison, the transfinite
extension method introduced by Gordon and Hall in [2, 3], only applies to curvilinear
quadrilateral domains. At each point (ξ, η), the ’pseudo-harmonic’ extension u(ξ, η) de-
fined in (1.2) depends on the value of f along the entire boundary of Ω, while the extension
defined through transfinite extension only depends on the eight boundary points indicated
in Figure 1(b).

The main difficulty in using the ’pseudo-harmonic’ extension is the computation of the
intersection points Q1 and Q2. For general domains this involves finding the roots of a
nonlinear equation. For simple domains however, the intersection points may be found
analytically, and in Section 2 we will show this for a circle. In Sections 3 and 4 we present
the same procedure for a square and a pentagon, both with sides of length one.

The extension u in (1.2) is equivalent to

u(ξ, η) =
1

π

∫ 2π

0

d2(θ)

d1(θ) + d2(θ)
f(Q1(θ))dθ, (1.3)

and following the discussion in [4] we evaluate the integral in (1.3) by a trapezoidal inte-
gration rule. For n equally spaced points θi = 2πi/n + θ̄, where θ̄ is an additive constant,
we get

u(ξ, η) ≈
2

n

n−1
∑

i=0

(
d2(θi)

d1(θi) + d2(θi)
)f(Q1(θi)). (1.4)

At each point (ξ, η) in Ω we thus have to find the distance functions d1(θi) and d2(θi) and
evaluate the boundary function at the intersection point Q1(θi) for n different values of θi.
We remark that the distance functions and the intersection points are independent of the
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Figure 2: Circle with radius one.

boundary function f , and for a different choice of f the distance functions and boundary
points are reused.

In [5], the ’pseudo-harmonic’ extension is compared with several other extension meth-
ods: the harmonic extension, a generalized version of the transfinite extension, and the
mean value extension [1]. A comparison is done regarding the ability to map a computa-
tional grid from a reference domain, e.g. a circle, a square, or a pentagon, to a generic,
but topologically similar domain. To map a computational grid from one domain to an-
other, the extensions x(ξ, η) and y(ξ, η) are computed separately by evaluating for example
the integral in (1.3) at each point (ξ, η) in the computational grid that is defined on the
reference domain.

2 Intersection points and distance functions on a circle

To find the intersection points and distance functions on the unit circle, we let (r, φ) denote
the polar coordinates of a given point X in the interior of the circle; see Figure 2. The
intersection point Q1(θ) corresponding to the point X is defined by the polar coordinates
(1, ω(θ)), where ω(θ) is the angle of Q1(θ) relative to the center of the circle. To find ω(θ),
we consider the triangle formed by OXQ1, where O is the center of the circle. The angle
between XO and XQ1 is φ+ π − θ. Basic trigonometry gives

ω(θ; r, φ) = θ − sin−1(r sin(φ+ π − θ)), (2.1)

where (θ; r, φ) indicates that for a given θ this is the angle corresponding to the point
X = (r, φ).

To find the distance functions d1 and d2 we letM denote the midpoint of the line between
Q1 and Q2; see Figure 2. The angle between the horizontal and the normal from the center
of the circle to this line is π/2 − θ. Thus the distance from M to X is

|MX| = r cos(φ− θ). (2.2)

We let ψ denote the angle between the lines OQ2 and OM . Since the radius of the circle
is one, the distance from M to Q2 is given by

|MQ2| = sin(ψ). (2.3)

3



θ

d1

ΓB

ΓR(ξ, η)

ΓL

ΓT

(a)

ΓB

θ
d1

ΓR

(ξ, η)

ΓL

ΓT

(b)

Figure 3: The intersected boundary line depends on both θ and (ξ, η).

One way to find ψ is to use that M is the midpoint of the line between Q1 and Q2. The
two triangles OMQ1 and OMQ2 are equal in shape, and we have ψ = ω(θ)+π/2− θ. We
insert the expression for ω(θ) found in (2.1), and after some rewriting we get

ψ = cos−1(r sin(φ+ π − θ)). (2.4)

Finally d1 = |MQ2| − |MX| and d2 = |MQ2| + |MX| gives

d1(θ; r, φ) = sin(cos−1(r sin(φ+ π − θ))) − r cos(φ− θ) (2.5)

d2(θ; r, φ) = sin(cos−1(r sin(φ+ π − θ))) + r cos(φ− θ). (2.6)

For a given boundary function f(ω), we insert (2.1), (2.5), and (2.6) in the trapezoidal
integration rule presented in (1.4) to find the extension of f(ω) to all points in the circle.

3 Intersection points and distance functions on a square

We now focus on the unit square, Ω = (0, 1)2, and denote its boundary lines by

ΓL : ξ = 0, η ∈ [0, 1],
ΓR : ξ = 1, η ∈ [0, 1],
ΓB : ξ ∈ [0, 1], η = 0,
ΓT : ξ ∈ [0, 1], η = 1.

(3.1)

For a given point (ξ, η) ∈ Ω and a given angle θ ∈ [0, 2π), the distance functions d1(θ; ξ, η)
and d2(θ; ξ, η) are found by determining which of the boundary lines are intersected. If
θ = 0 there is no doubt which boundary lines are intersected, and we obviously have
d1 = 1 − ξ and d2 = ξ. Similar expressions are also found for θ = π/2, π, and 3π/2.

For other angles the boundary lines intersected will depend on the point (ξ, η) as well.
To illustrate this we consider θ ∈ (0, π/2). In Figures 3(a) and 3(b) we see that different
boundary lines are intersected for different choices of (ξ, η). In Figure 3(a) we intersect
ΓR, and get the distance function

d1 =
1 − ξ

cos(θ)
, (3.2)

while we in Figure 3(b) intersect ΓT , and get the distance function

d1 =
1 − η

sin(θ)
. (3.3)



k d1(θ; ξ, η) d2(θ; ξ, η)

1 min
{

1−ξ
cos(θ) ,

1−η
sin(θ)

}

min
{

ξ
cos(θ) ,

η
sin(θ)

}

2 min
{

ξ
cos(π−θ) ,

1−η
sin(θ)

}

min
{

1−ξ
cos(π−θ) ,

η
sin(θ)

}

3 min
{

ξ
cos(θ−π) ,

η
sin(θ−π)

}

min
{

1−ξ
cos(θ−π) ,

1−η
sin(θ−π)

}

4 min
{

1−ξ
cos(2π−θ) ,

η
sin(2π−θ)

}

min
{

ξ
cos(2π−θ) ,

1−η
sin(2π−θ)

}

Table 1: The distance functions d1(θ; ξ, η) and d2(θ; ξ, η) on the unit square found for
different choices of the inclination angle θ. The angle is given by (k − 1)π/2 <
θ < kπ/2.

To identify the correct distance function for any point in Ω, we simply let

d1 = min

{

1 − ξ

cos(θ)
,

1 − η

sin(θ)

}

. (3.4)

This expression holds for all (ξ, η) ∈ Ω and θ ∈ (0, π/2), since a line crossing either ΓR or
ΓT will cross the extension of the other boundary line outside Ω. The minimum of these
two distances will then be the distance to the boundary of Ω.

The distance function d2 is found by tracing the line through (ξ, η) with inclination θ
in the direction π + θ, and for θ ∈ (0, π/2) it will intersect either ΓL or ΓB. Based on the
same arguments as for d1, the distance d2 is given by

d2 = min

{

ξ

sin(θ)
,

η

cos(θ)

}

. (3.5)

A similar procedure is used to find the distance functions for (k − 1)π/2 < θ < kπ/2,
k = 2, 3, and 4. For k = 2 the line with inclination θ ∈ (π/2, π) will cross either ΓT or
ΓL, for k = 3 the line with inclination θ ∈ (π, 3π/2) will cross either ΓL or ΓB, and for
k = 4 the line with inclination θ ∈ (3π/2, 2π) will cross either ΓB or ΓR. The resulting
distance functions are presented in Table 1. Once the distance functions are found, the
interpolation points Q1 and Q2 are given by

Q1 = (ξ + d1 cos(θ), η + d1 sin(θ)),
Q2 = (ξ − d2 cos(θ), η − d2 sin(θ)).

(3.6)

To illustrate, we show in Figure 4 how the ’pseudo-harmonic’ extension extends a func-
tion f given by a parabolic profile on each side of the square (0, 1)2.

4 Intersection points and distance functions on a pentagon

On the uniform pentagon we proceed in the same way as for the unit square, but now
the process is more involved. Depending on the choice of the inclination angle θ, the line
from any given point (ξ, η) ∈ Ω (where Ω now is the uniform pentagon) has two or three
boundary lines as candidates for intersection. To see this we use Figures 5(a) and 5(b).
The boundary lines of Ω are denoted in a counterclockwise manner by ΓA,ΓB ,ΓC ,ΓD,
and ΓE, where ΓA is the bottom horizontal line, and the length of each side is set to 1.
Furthermore, the corner between ΓA and ΓE has coordinates (0, 0). For 0 ≤ θ < π/5, only
the boundary lines ΓB and ΓC are eligible for intersection by the line through a point (ξ, η)
with inclination θ; see Figure 5(a). Which of the two lines is intersected, is determined
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Figure 4: Extension of a parabolic profile.
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Figure 5: The number of possible boundary lines to intersect depends on θ. The intersected
boundary line depends on both θ and (ξ, η).



by both θ and (ξ, η). For π/5 ≤ θ < 2π/5 both ΓB , ΓC , and ΓD are possible intersection
candidates; see Figure 5(b). Continuing in this fashion, we consider 10 different cases,
given by

(k − 1)π/5 ≤ θ < kπ/5, k = 1, ..., 10, (4.1)

where θ = kπ/5 corresponds to lines parallel to one of the boundary lines.
The distance from any point (ξ, η) to the extended boundary line ΓB is, for θ ∈ [0, 2π/5),

given by

d1 =

(

1 − ξ +
η

tan(2π/5)

)

sin(3π/5)

sin(2π/5 − θ)
. (4.2)

Similarly, the distance to the extended boundary line ΓC is, for θ ∈ [0, 4π/5), given by

d1 =

(

ξt − ξ +
ηt − η

tan(π/5)

)

sin(π/5)

sin(4π/5 − θ)
, (4.3)

where (ξt, ηt) = (0.5, sin(2π/5) + sin(π/5)) is the corner between ΓC and ΓD. The mini-
mum of these two distances gives the correct distance corresponding to Figure 5(a), where
θ ∈ [0, π/5). In Tables 2 and 3 we present the distance functions on the uniform pentagon
for the different intervals of the inclination angle θ given in (4.1).

We recall that the distance functions are independent of the boundary function in (1.3).
Once the distance functions are defined, the extension of any piecewise continuous bound-
ary function is rapid.

As for the unit square, the interpolation points Q1 and Q2 are given by

Q1 = (ξ + d1 cos(θ), η + d1 sin(θ)),
Q2 = (ξ − d2 cos(θ), η − d2 sin(θ)).

(4.4)
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k d1(θ; ξ, η)

1 min
{(

1 − ξ + η
tan(2π/5)

)

sin(3π/5)
sin(2π/5−θ) ,

(

ξt − ξ + ηt−η
tan(π/5)

)

sin(π/5)
sin(4π/5−θ)

}

2 min
{(

1 − ξ + η
tan(2π/5)

)

sin(3π/5)
sin(2π/5−θ) ,

(

ξt − ξ + ηt−η
tan(π/5)

)

sin(π/5)
sin(4π/5−θ) ,

(

ηt − η + ξ−ξt

tan(π/2−π/5)

)

sin(π/2+π/5)
sin(θ−π/5)

}

3 min
{(

ξt−ξ+
ηt−η

tan(π/5)

)

sin(π/5)
sin(4π/5−θ) ,

(

ηt−η+ ξ−ξt

tan(π/2−π/5)

)

sin(π/2+π/5)
sin(θ−π/5)

}

4 min
{(

ξt−ξ+
ηt−η

tan(π/5)

)

sin(π/5)
sin(4π/5−θ) ,

(

ηt−η+ ξ−ξt

tan(π/2−π/5)

)

sin(π/2+π/5)
sin(θ−π/5) ,

(

ξ + η
tan(2π/5)

)

sin(3π/5)
sin(θ−3π/5)

}

5 min
{(

ηt − η + ξ−ξt

tan(π/2−π/5)

)

sin(π/2+π/5)
sin(θ−π/5) ,

(

ξ + η
tan(2π/5)

)

sin(3π/5)
sin(θ−3π/5)

}

6 min
{(

ηt − η + ξ−ξt

tan(π/2−π/5)

)

sin(π/2+π/5)
sin(θ−π/5) ,

(

ξ + η
tan(2π/5)

)

sin(3π/5)
sin(θ−3π/5) ,

η
sin(θ−π)

}

7 min
{(

ξ + η
tan(2π/5)

)

sin(3π/5)
sin(θ−3π/5) ,

η
sin(θ−π)

}

8 min
{(

ξ+ η
tan(2π/5)

)

sin(3π/5)
sin(θ−3π/5) ,

(

1−ξ+ η
tan(2π/5)

)

sin(3π/5)
sin(θ−7π/5) ,

η
sin(θ−π)

}

9 min
{(

1 − ξ + η
tan(2π/5)

)

sin(3π/5)
sin(θ−7π/5) ,

η
sin(θ−π)

}

10 min
{(

1 − ξ + η
tan(2π/5)

)

sin(3π/5)
sin(θ−7π/5) ,

(

ξt − ξ + ηt−η
tan(π/5)

)

sin(π/5)
sin(θ−9π/5) ,

η
sin(θ−π)

}

Table 2: The distance function d1(θ; ξ, η) on the uniform pentagon found for different in-
tervals of the inclination angle θ. The inclination angle is given by (k − 1)π/5 ≤
θ < kπ/5.



k d2(θ; ξ, η)

1 min
{(

ξ + η
tan(2π/5)

)

sin(2π/5)
sin(3π/5−θ) ,

(

ηt − η + ξ−ξt

tan(π/2−π/5)

)

sin(π/2−π/5)
sin(π/5−θ) ,

η
sin(θ)

}

2 min
{(

ξ + η
tan(2π/5)

)

sin(2π/5)
sin(3π/5−θ) ,

η
sin(θ)

}

3 min
{(

ξ+ η
tan(2π/5)

)

sin(2π/5)
sin(3π/5−θ) ,

(

η− ξ−1
tan(π/2−2π/5)

)

sin(2π/5+π/2)
sin(θ−2π/5) ,

η
sin(θ)

}

4 min
{(

η − ξ−1
tan(π/2−2π/5)

)

sin(2π/5+π/2)
sin(θ−2π/5) ,

η
sin(θ)

}

5 min
{(

η − ξ−1
tan(π/2−2π/5)

)

sin(2π/5+π/2)
sin(θ−2π/5) ,

(

ξt−ξ + ηt−η
tan(π/5)

)

sin(4π/5)
sin(θ−4π/5) ,

η
sin(θ)

}

6 min
{(

η − ξ−1
tan(π/2−2π/5)

)

sin(2π/5+π/2)
sin(θ−2π/5) ,

(

ξt−ξ + ηt−η
tan(π/5)

)

sin(4π/5)
sin(θ−4π/5)

}

7 min
{(

η − ξ−1
tan(π/2−2π/5)

)

sin(2π/5+π/2)
sin(θ−2π/5) ,

(

ξt−ξ + ηt−η
tan(π/5)

)

sin(4π/5)
sin(θ−4π/5) ,

(

ηt − η + ξ−ξt

tan(π/2−π/5)

)

sin(π/2+π/5)
sin(θ−6π/5)

}

8 min
{(

ξt−ξ+
ηt−η

tan(π/5)

)

sin(4π/5)
sin(θ−4π/5) ,

(

ηt−η+ ξ−ξt

tan(π/2−π/5)

)

sin(π/2+π/5)
sin(θ−6π/5)

}

9 min
{(

ξt−ξ+
ηt−η

tan(π/5)

)

sin(4π/5)
sin(θ−4π/5) ,

(

ηt−η+ ξ−ξt

tan(π/2−π/5)

)

sin(π/2+π/5)
sin(θ−6π/5) ,

(

ξ + η
tan(2π/5)

)

sin(3π/5)
sin(θ−8π/5)

}

10 min
{(

ηt − η + ξ−ξt

tan(π/2−π/5)

)

sin(π/2+π/5)
sin(θ−6π/5) ,

(

ξ + η
tan(2π/5)

)

sin(3π/5)
sin(θ−8π/5)

}

Table 3: The distance function d2(θ; ξ, η) on the uniform pentagon found for different in-
tervals of the inclination angle θ. The inclination angle is given by (k − 1)π/5 ≤
θ < kπ/5.
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