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CONVERGENCE OF STOCHASTIC RUNGE-KUTTA METHODS
THAT USE AN ITERATIVE SCHEME TO COMPUTE THEIR

INTERNAL STAGE VALUES

KRISTIAN DEBRABANT† AND ANNE KVÆRNØ‡

Abstract. In the last years, implicit SRK methods have been developed both for strong and
weak approximation. For these methods, the stage values are only given implicitly. However, in prac-
tice these implicit equations are solved by iterative schemes like simple iteration, modified Newton
iteration or full Newton iteration. We employ a unifying approach for the construction of stochastic
B-series which is valid both for Itô- and Stratonovich-SDEs and applicable both for weak and strong
convergence to analyze the order of the iterated Runge-Kutta method. Moreover, the analytical
techniques applied in this paper can be of use in many other similar contexts.
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functions, stochastic B-series
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1. Introduction. In many applications, e.g., in epidemiology and financial math-
ematics, taking stochastic effects into account when modeling dynamical systems often
leads to stochastic differential equations (SDEs). Therefore, in recent years, the de-
velopment of numerical methods for the approximation of SDEs has become a field of
increasing interest, see e.g [16, 22] and references therein. Many stochastic schemes
fall into the class of stochastic Runge-Kutta (SRK) methods. SRK methods have
been studied both for strong approximation [1, 10, 11, 16], where one is interested in
obtaining good pathwise solutions, and for weak approximation [7, 9, 16, 19, 21, 30],
which focuses on the expectation of functionals of solutions. For solving SDEs which
are stiff, implicit SRK methods have to be considered, which also has been done both
for strong [4, 11, 12] and weak [8, 12, 17] approximation. For these methods, the
stage values are only given implicitly. However, in practice these implicit equations
are solved by iterative schemes like simple iteration, modified Newton iteration or full
Newton iteration. For the numerical solution of ODEs such iterative schemes have
been studied by the means of B-series and rooted trees [13, 14] and it was shown that
certain growth functions defined on trees give a precise description of the development
of the iterations. The aim of the present paper is to do a similar analysis in the SDE
case. In particular, it will be shown that the growth functions describing the iterative
schemes are the same in the ODE and the SDE case.

Let (Ω,A,P) be a probability space. We denote by (X(t))t∈I the stochastic
process which is the solution of either a d-dimensional Itô or Stratonovich SDE defined
by

X(t) = x0 +
∫ t

t0

g0(X(s))ds+
m∑
l=1

∫ t

t0

gl(X(s)) ? dWl(s) (1.1)

with an m-dimensional Wiener process (W (t))t≥0 and I = [t0, T ]. The integral w.r.t.
the Wiener process has to be interpreted either as Itô integral with ?dWl(s) = dWl(s)
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2 K. DEBRABANT AND A. KVÆRNØ

or as Stratonovich integral with ?dWl(s) = ◦dWl(s). We assume that the Borel-
measurable coefficients gl : Rd → Rd are sufficiently differentiable and satisfy a
Lipschitz and a linear growth condition such that the Existence and Uniqueness The-
orem [15] applies. To simplify the presentation, we define W0(s) = s, so that (1.1)
can be written as

X(t) = x0 +
m∑
l=0

∫ t

t0

gl(X(s)) ? dWl(s). (1.2)

In the following we denote by Ξ a set of families of measurable mappings,

Ξ :=
{
{ϕ(h)}h≥0 : ϕ(h) : Ω → R is A− B-measurable ∀h ≥ 0

}
and by Ξ0 the subset of Ξ defined by

Ξ0 :=
{
{ϕ(h)}h≥0 ∈ Ξ : ϕ(0) ≡ 0

}
.

Let a discretization Ih = {t0, t1, . . . , tN} with t0 < t1 < . . . < tN = T of the time
interval I with step sizes hn = tn+1 − tn for n = 0, 1, . . . , N − 1 be given. Now, we
consider the general class of s-stage SRK methods given by Y0 = x0 and

Yn+1 = Yn +
m∑
l=0

M∑
ν=0

(z(l,ν)> ⊗ Id)gl(H(l,ν)) (1.3a)

for n = 0, 1, . . . , N − 1 with Yn = Y (tn), tn ∈ Ih, and

H(l,ν) = 1ls ⊗ Yn +
m∑
r=0

M∑
µ=0

(Z(l,ν)(r,µ) ⊗ Id)gr(H(r,µ)) (1.3b)

for l = 0, . . . ,m and ν = 0, . . . ,M with

gl(H(l,ν)) = (gl(H
(l,ν)
1 )>, . . . , gl(H(l,ν)

s )>)>

and

z(l,ν) ∈ Ξs0, Z(l,ν)(r,µ) ∈ Ξs,s0

for l, r = 0, . . . ,m, µ, ν = 0, . . . ,M .
The formulation (1.3) includes the classes of SRK methods considered in [4, 11,

18, 20, 27, 28, 29] as well as the SRK methods considered in [12, 16, 24] and defines
a d-dimensional approximation process Y with Yn = Y (tn).

Remark 1 (1.3) is equivalent to the class of SRK methods

Yi = yn +
m∑
l=0

s∑
j=1

Zlijgl(Yj), yn+1 = yn +
m∑
l=0

s∑
i=1

zligl(Yi)

defined by Burrage and Burrage:
⇒ Put M = 0 and choose the coefficients such that H(l,0)

i is independent of l. ⇐
Replace the stage index by a multi index, i. e.

Y(i,l,ν) = yn+
m∑
l=0

∑
(j,r,µ)

Z
(k)
(i,l,ν),(j,r,µ)gk(Y(j,r,µ)), yn+1 = yn+

m∑
l=0

∑
(i,l,ν)

z
(k)
(i,l,ν)gk(Y(i,l,ν))

(this means mMs stages) and set Z(r)
(i,l,ν),(j,r,µ) = Z

(l,ν)(r,µ)
i,j , z(l)

(i,l,ν) = z
(l,ν)
i and the

remaining coefficients to zero.



CONVERGENCE OF ITERATED SRK METHODS 3

Application of an iterative scheme yields

H
(l,ν)
k+1 = 1ls ⊗ Yn +

m∑
r=0

M∑
µ=0

(
Z(l,ν)(r,µ) ⊗ Id

)
gr(H

(r,µ)
k )

+
m∑
r=0

M∑
µ=0

(
Z(l,ν)(r,µ) ⊗ Id

)
J

(r,µ)
k

(
H

(r,µ)
k+1 −H

(r,µ)
k

)
, (1.4a)

Yn+1,k = Yn +
m∑
l=0

M∑
ν=0

(z(l,ν)> ⊗ Id)gl(H
(l,ν)
k ) (1.4b)

with some approximation J (r,µ)
k to the Jacobian of gr(H

(r,µ)
k ) and a predictor H(l,ν)

0 .
In the following we assume that (1.4a) can be solved uniquely at least for small enough
hn.

Remark 2 If this iteration is performed for k = 0, . . . ,K, then in practice we take
yn+1 = yn+1,K and proceed to the next step, without calculating yn+1,k for k < K.

For the approximation J (r,µ)
k to the Jacobian of gr(H

(r,µ)
k ) there exist several common

choices. If we choose J (r,µ)
k to be the exact Jacobian g′r(H

(r,µ)
k ), then we obtain the

classical Newton iteration method for solving (1.3b), which is locally convergent of
order two and will be denoted in the following as full Newton iteration. If we choose
instead J

(r,µ)
k = Is ⊗ g′r(x0), then we obtain the so called modified Newton iteration

method, which is locally convergent of order one. Here, the J (r,µ)
k are independent

of the iteration number k and the stage values H(r,µ)
k . Thus their computation is

much cheaper and simpler than in the full Newton iteration case, and in Runge-Kutta
implementations this is the method which is usually chosen.
The third and simplest possibility is to choose J (r,µ)

k equal to zero. In this case we
don’t even have to solve a linear system for H(l,ν)

k+1 . This iteration method is called
simple iteration method or predictor corrector method. Its disadvantage is that for
stiff systems it requires very small step sizes to converge.
In the following, we will mainly consider these three iteration methods.

This paper is organized as follows. In Section 2 we recall the definitions of weak
and strong convergence, relate them to consistency and present some preliminary
results about stochastic B-series. In Section 3 we develop B-series representations
of the iterated solution for the three iteration schemes in consideration and give a
description via growth functions. These results are related to the order of convergence
of the overall scheme in Sections 4 and 5. Numerical examples in Section 6 finally
confirm our theoretical results.

2. Some notation, definitions and preliminary results. In this section
we introduce some necessary notation and provide a few definitions and preliminary
results that will be used later.

2.1. Convergence and consistency. Here we will give the definitions for both
weak and strong convergence and results which relate convergence to consistency.

Let ClP (Rd,Rd̂) denote the space of all g ∈ Cl(Rd,Rd̂) fulfilling a polynomial
growth condition [16].
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Definition 1 A time discrete approximation Y = (Y (t))t∈Ih
converges weakly with

order p to X as h→ 0 at time t ∈ Ih if for each f ∈ C2(p+1)
P (Rd,R) exist a constant

Cf and a finite δ0 > 0 such that

|E(f(Y (t)))− E(f(X(t)))| ≤ Cf h
p

holds for each h ∈ ]0, δ0[ .

Now, let lef (h; t, x) be the weak local error of the method starting at the point (t, x)
with respect to the functional f and step size h, i. e.

lef (h; t, x) = E
(
f(Y (t+ h))− f(X(t+ h))|Y (t) = X(t) = x

)
.

The following theorem due to Milstein [22], which holds also in the case of general
one step methods, shows that, as in the deterministic case, consistency implies con-
vergence:

Theorem 1 Suppose the following conditions hold:
• The coefficients gl are continuous, satisfy a Lipschitz condition and belong to
C

2(p+1)
P (Rd,Rd) for l = 0, . . . ,m.

• For sufficiently large r (see, e.g., [22] for details) the moments E(‖Y (tn)‖2r)
exist for tn ∈ Ih and are uniformly bounded with respect to N and n =
0, 1, . . . , N .

• Assume that for all f ∈ C
2(p+1)
P (Rd,R) there exists a K ∈ C0

P (Rd,R) such
that

|lef (h; t, x)| ≤ K(x)hp+1

is valid for x ∈ Rd and t, t+h ∈ Ih, i. e., the approximation is weak consistent
of order p.

Then the method (1.3) is convergent of order p in the sense of weak approximation.

Whereas weak approximation methods are used to estimate the expectation of func-
tionals of the solution, strong approximation methods approach the solution pathwise.

Definition 2 A time discrete approximation Y = (Y (t))t∈Ih
converges strongly re-

spectively in the mean square with order p to X as h→ 0 at time t ∈ Ih if there exist
a constant C and a finite δ0 > 0 such that

E ‖Y (t)−X(t)‖ ≤ C hp

respectively √
E(‖Y (t)−X(t)‖2) ≤ C hp

holds for each h ∈ ]0, δ0[ .

In this article we will consider convergence in the mean square sense. But as by
Jensen’s inequality we have

(E ‖Y (t)−X(t)‖)2 ≤ E(‖Y (t)−X(t)‖2),

mean square convergence implies strong convergence of the same order.
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Now, let lem(h; t, x) respectively lems(h; t, x) be the mean respectively mean
square local error of the method starting at the point (t, x) with respect to the step
size h, i. e.

lem(h; t, x) = E
(
Y (t+ h)−X(t+ h)|Y (t) = X(t) = x

)
,

lems(h; t, x) =
√

E
(
(Y (t+ h)−X(t+ h))2|Y (t) = X(t) = x

)
.

The following theorem due to Milstein [22] which holds also in the case of general one
step methods shows that in the mean square convergence case we obtain order p if the
mean local error is consistent of order p and the mean square local error is consistent
of order p− 1

2 .

Theorem 2 Suppose the following conditions hold:
• The coefficients gl are continuous and satisfy a Lipschitz and a linear growth

condition for l = 0, . . . ,m, and E(‖X(t0)‖2) <∞.
• There exists a constant K independent of h such that

|lem(h; t, x)| ≤ K
√

1 + ‖x‖2 hp1 , lems(h; t, x) ≤ K
√

1 + ‖x‖2 hp+
1
2

with p ≥ 0, p1 ≥ p + 1 is valid for x ∈ Rd and t, t + h ∈ Ih, i. e., the
approximation is consistent in the mean of order p1 − 1 ≥ p and in the mean
square of order p− 1

2 .
Then the SRK method (1.3) is convergent of order p in the sense of mean square
approximation.

For Stratonovich SDEs, this result is also obtained by Burrage and Burrage [2].

2.2. Stochastic B-series. In this section we will develop stochastic B-series for
the solution of (1.2) as well as for the numerical solution given by (1.3). B-series for
deterministic ODEs were introduced by Butcher [6]. Today such series appear as a
fundamental tool to do local error analysis on a wide range of problems. B-series for
SDEs have been developed by Burrage and Burrage [1, 2] to study strong convergence
in the Stratonovich case, by Komori, Mitsui and Sugiura [20] and Komori [18] to
study weak convergence in the Stratonovich case and by Rößler [25, 26] to study
weak convergence in both the Itô and the Stratonovich case. However, the distinction
between the Itô and the Stratonovich integrals only depends on the definition of
the integrals, not on how the B-series are constructed. Similarly, the distinction
between weak and strong convergence only depends on the definition of the local
error. Thus, we find it convenient to present a uniform and self-contained theory for
the construction of stochastic B-series. We will present results and proofs in a certain
detail, since some intermediate results will be used in later sections.

Following the idea of Burrage and Burrage we introduce the set of colored, rooted
trees related to the SDE (1.1), as well as the elementary differentials associated with
each of these trees.

Definition 3 (Trees) The set of m+ 1-colored, rooted trees

T = {∅} ∪ T0 ∪ T1 ∪ · · · ∪ Tm

is recursively defined as follows:
a) The graph •l = [∅]l with only one vertex of color l belongs to Tl.
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Let τ = [τ1, τ2, · · · , τκ]l be the tree formed by joining the subtrees τ1, τ2, · · · , τκ each
by a single branch to a common root of color l.
b) If τ1, τ2, · · · , τκ ∈ T then τ = [τ1, τ2, · · · , τκ]l ∈ Tl.

Thus, Tl is the set of trees with an l-colored root, and T is the union of these sets.

Definition 4 (Elementary differentials) For a tree τ ∈ T the elementary differ-
ential is a mapping F (τ) : Rd → Rd defined recursively by
a) F (∅)(x0) = x0,

b) F (•l)(x0) = gl(x0),

c) If τ = [τ1, τ2, · · · , τκ]l ∈ Tl then

F (τ)(x0) = g
(κ)
l (x0)

(
F (τ1)(x0), F (τ2)(x0), · · · , F (τκ)

)
.

As will be shown in the following, both the exact and the numerical solutions,
including the iterated solutions as we will see later, can formally be written in terms
of B-series.

Definition 5 (B-series) Given a mapping φ : T → Ξ satisfying

φ(∅)(h) ≡ 1 and φ(τ)(0) ≡ 0, ∀τ ∈ T\{∅}.

A (stochastic) B-series is then a formal series of the form

B(φ, x0;h) =
∑
τ∈T

α(τ) · φ(τ)(h) · F (τ)(x0),

where α : T → Q is given by

α(∅) = 1, α(•l) = 1, α(τ = [τ1, · · · , τκ]l) =
1

r1!r2! · · · rq!

κ∏
j=1

α(τj)

where r1, r2, · · · , rq count equal trees among τ1, τ2, · · · , τκ.

If φ : T → Ξs then B(φ, x0;h) = [B(φ1, x0;h), · · · , B(φs, x0;h)]>.
The next lemma proves that if Y (h) can be written as a B-series, then f(Y (h))

can be written as a similar series, where the sum is taken over trees with a root of
color f and subtrees in T . The lemma is fundamental for deriving B-series for the
exact and the numerical solution. It will also be used for deriving weak convergence
results.

Lemma 3 If Y (h) = B(φ, x0;h) is some B-series and f ∈ C∞(Rd,Rd̂) then f(Y (h))
can be written as a formal series of the form

f(Y (h)) =
∑
u∈Uf

β(u) · ψφ(u)(h) ·G(u)(x0) (2.1)

where Uf is a set of trees derived from T , by
a) [∅]f ∈ Uf , and if τ1, τ2, · · · , τκ ∈ T then [τ1, τ2, · · · , τκ]f ∈ Uf .
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b) G([∅]f )(x0) = f(x0) and
G(u = [τ1, · · · , τκ]f )(x0) = f (κ)(x0)

(
F (τ1)(x0), · · · , F (τκ)(x0)

)
.

c) β([∅]f ) = 1 and β(u = [τ1, · · · , τκ]f ) =
1

r1!r2! · · · rq!

κ∏
j=1

α(τj),

where r1, r2, · · · , rq count equal trees among τ1, τ2, · · · , τκ.

d) ψφ([∅]f )(h) ≡ 1 and ψφ(u = [τ1, · · · , τκ]f )(h) =
∏κ
j=1 φ(τj)(h).

Proof. Writing Y (h) as a B-series, we have

f(Y (h)) = f

(∑
τ∈T

α(τ) · φ(τ)(h) · F (τ)(x0)

)

=
∞∑
κ=0

1
κ!
f (κ)(x0)

 ∑
τ∈T\{∅}

α(τ) · φ(τ)(h) · F (τ)(x0)

κ

= f(x0) +
∞∑
κ=1

1
κ!

∑
{τ1,τ2,···τκ}∈T\{∅}

κ!
r1!r2! · · · rq!

·

 κ∏
j=1

α(τj) · φ(τj)(h)

 f (κ)(x0)
(
F (τ1)(x0), · · · , F (τκ)(x0)

)
.

where the last sum is taken over all possible unordered combinations of κ trees in T .
For each set of trees τ1, τ2, · · · , τκ ∈ T we assign a u = [τ1, τ2, · · · , τκ]f ∈ Uf . The
theorem is now proved by comparing term by term with (2.1).

Remark 3 E.g. in the definition of weak convergence, just f ∈ C
2(p+1)
P (Rd,R) is

required. Thus f(Y (h)) can only be written as a truncated B-series, with a remainder
term. However, to simplify the presentation in the following we assume that all
derivatives of f, g0, . . . , gl exist.

We will also need the following result:

Lemma 4 If Y (h) = B(φY , x0;h) and Z(h) = B(φZ , x0;h) and f ∈ C∞(Rd,Rd̂)
then

f ′(Y (h))B(Z(h)) =
∑
u∈Uf

β(u) ·Υ(u)(h) ·G(u)(x0)

with

Υ([∅]f )(h) ≡ 0, Υ([u = [τ1, · · · , τκ]f )(h) =
κ∑
i=1

 κ∏
j=1
j 6=i

φY (τj)(h)

φZ(τi)(h)

with β(u) and G(u)(x0) given by Lemma 3.

The proof is similar to the deterministic case, see [23].
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When Lemma 3 is applied to the functions gl on the right hand side of (1.1) we
get the following result: If Y (h) = B(φ, x0;h) then

gl(Y (h)) =
∑
τ∈Tl

α(τ) · φ′l(τ)(h) · F (τ)(x0) (2.2)

in which

φ′l(τ)(h) =


1 if τ = •l,
κ∏
j=1

φ(τj)(h) if τ = [τ1, · · · , τκ]l ∈ Tl.

By induction on τ , we deduce the following result, giving the B-series of the exact
solution of (1.1):

Theorem 5 The solution X(t0 + h) of (1.1) can be written as a B-series B(ϕ, x0;h)
with

ϕ(∅)(h) ≡ 1, ϕ(•l)(h) = Wl(h), ϕ(τ = [τ1, · · · , τκ]l)(h) =
∫ h

0

κ∏
j=1

ϕ(τj)(s) ? dWl(s).

This is proved for the Stratonovich case in [2, 18], but will also apply to the Itô case.
The definition of the order of the tree, ρ(τ), is motivated by the fact that EWl(h)2 = h
for l ≥ 1 and W0(h) = h:

Definition 6 (Order) The order of a tree τ ∈ T is defined by

ρ(∅) = 0, ρ([τ1, . . . , τκ]f ) =
κ∑
i=1

ρ(τi)

and

ρ(τ = [τ1, . . . , τκ]l) =
κ∑
i=1

ρ(τi) +

{
1 for l = 0,
1
2 otherwise.

The following result is similar to results given in [1].

Theorem 6 If the coefficients Z(l,ν),(r,µ) ∈ Ξs,s0 and z(l,ν) ∈ Ξs0 then the numerical
solution Y1 as well as the stage values can be written in terms of B-series

H(l,ν) = B(Φ(l,ν), x0;h), Y1 = B(Φ, x0;h)

for all l, ν, with

Φ(l,ν)(∅)(h) ≡ 1ls, Φ(l,ν)(•r)(h) =
M∑
µ=0

Z(l,ν)(r,µ)1ls, (2.3a)

Φ(l,ν)(τ = [τ1, · · · , τκ]r)(h) =
M∑
µ=0

Z(l,ν)(r,µ)
κ∏
j=1

Φ(r,µ)(τj)(h) (2.3b)
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and

Φ(∅)(h) ≡ 1, Φ(•l)(h) =
M∑
ν=0

z(l,ν)1ls, (2.4a)

Φ(τ = [τ1, · · · , τκ]l)(h) =
M∑
ν=0

z(l,ν)
κ∏
j=1

Φ(l,ν)(τj)(h). (2.4b)

Proof. Write H(l,ν) as a B-series, that is

H(l,ν) =
∑
τ∈T

α(τ)
(
Φ(l,ν)(h)⊗ Id

)
(1ls ⊗ F (τ)(x0)) .

Use the definition of the method (1.3) together with (2.2) to obtain

H(l,ν) = 1ls ⊗ x0 +
m∑
r=0

M∑
µ=0

∑
τ∈Tr

α(τ)
((
Z(l,ν)(r,µ) · (Φ(r,µ))′r(τ)(h)

)
⊗ Id

)
(1ls ⊗ F (τ)(x0))

with (Φ(r,µ))′r(τ)(h) =
(
(Φ(r,µ)

1 )′r(τ)(h), . . . , (Φ
(r,µ)
s )′r(τ)(h)

)>
. Comparing term by

term gives the relations (2.3). The proof of (2.4) is similar.
To decide the weak order we will also need the B-series of the function f , evaluated

at the exact and the numerical solution. From Theorem 5, Theorem 6 and Lemma 3
we obtain

f(X(t0 + h)) =
∑
u∈Uf

β(u) · ψϕ(u)(h) ·G(u)(x0),

f(Y1) =
∑
u∈Uf

β(u) · ψΦ(u)(h) ·G(u)(x0),

with

ψϕ([∅]f )(h) ≡ 1, ψϕ(u = [τ1, · · · , τκ]f )(h) =
κ∏
j=1

ϕ(τj)(h)

and

ψΦ([∅]f )(h) ≡ 1, ψΦ(u = [τ1, · · · , τκ]f )(h) =
κ∏
j=1

Φ(τj)(h).

So, for the weak local error it follows

lef (h; t, x) =
∑
u∈Uf

β(u) · E [ψΦ(u)(h)− ψϕ(u)(h)] ·G(u)(x).

For the mean respectively mean square local error we obtain from Theorem 5 and
Theorem 6

lems(h; t, x) =
√

E
(∑
τ∈T

α(τ) · (Φ(τ)(h)− ϕ(τ)(h)) · F (τ)(x)
)2
,

lem(h; t, x) =
∑
τ∈T

α(τ) · E
(
Φ(τ)(h)− ϕ(τ)(h)

)
· F (τ)(x).
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With all the B-series in place, we can now present the order conditions for the weak
and strong convergence, for both the Itô and the Stratonovich case. We have weak
consistency of order p if and only if

EψΦ(u)(h) = Eψϕ(u)(h) ∀u ∈ Uf with ρ(u) ≤ p+
1
2
, (2.5)

where ρ(u = [τ1, · · · , τκ]f ) =
∑κ
j=1 ρ(τj), and mean square global order p if

Φ(τ)(h) = ϕ(τ)(h) ∀τ ∈ T with ρ(τ) ≤ p, (2.6)

EΦ(τ)(h) = Eϕ(τ)(h) ∀τ ∈ T with ρ(τ) = p+
1
2

(2.7)

and all elementary differentials F (τ) fulfill a linear growth condition. Instead of the
last requirement it is also enough to claim that there exists a constant C such that
‖g′j(y)‖ ≤ C ∀y ∈ Rm, j = 0, . . . ,M (which implies the global Lipschitz condition)
and all necessary partial derivatives exist [2].

3. B-series of the iterated solution and growth functions. In this section
we will discuss how the iterated solution defined in (1.4) can be written in terms of
B-series, that is

H
(l,ν)
k = B(Φ(l,ν)

k , x0;h) and Y1,k = B(Φk, x0;h).

For notational convenience, in the following the h-dependency of the weight functions
will be suppressed, so Φ(τ)(h) will be written as Φ(τ). Further, all results are valid
for all l = 0, · · · ,m and ν = 0, · · · ,M . Assume that the predictor can be written as
a B-series,

H
(l,ν)
0 = B(Φ(l,ν)

0 , x0;h),

satisfying Φ(l,ν)
0 (∅) = 1ls. The most common situation is the use of the trivial predictor

H(l,ν) = 1ls ⊗ x0, for which Φ(l,ν)
0 (∅) = 1ls and Φ(l,ν)

0 (τ) = 0 otherwise.
The iteration schemes we discuss here only differ in the choice of J (r,µ)

k in (1.4).
For all schemes, the following lemma applies. The proof follows directly from Lemma
3.

Lemma 7 If H(l,ν)
k = B(Φ(l,ν)

k , x0;h) then Y1,k = B(Φk, x0;h) with

Φk(∅) ≡ 1, Φk(•l) =
M∑
ν=0

zl,ν1ls, Φk(τ = [τ1, · · · , τκ]l) =
M∑
ν=0

z(l,ν)
κ∏
j=1

Φ(l,ν)
k (τj).

Further,

f(Y1,k) =
∑
u∈Uf

β(u) · ψΦk
(u) ·G(u)(x0)

with

ψΦk
([∅]f ) = 1, ψΦk

(u = [τ1, · · · , τκ]f ) =
κ∏
j=1

Φk(τj),

where β(u) and G(u)(x0) are given in Lemma 3.
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We are now ready to study each of the iteration schemes. In each case, we will first
find the recurrence formula for Φ(l,ν)

k (τ). From this we define a growth function g(τ):

Definition 7 (Growth function) A growth function g : T → N is a function satis-
fying

Φ(l,ν)
k (τ) = Φ(l,ν)(τ), ∀τ ∈ T, g(τ) ≤ k

⇒ Φ(l,ν)
k+1 (τ) = Φ(l,ν)(τ), ∀τ ∈ T, g(τ) ≤ k + 1,

(3.1)

for all k ≥ 0.

This result should be sharp in the sense that in general there exists τ 6= ∅ with
Φ(l,ν)

0 (τ) 6= Φ(l,ν)(τ) and Φ(l,ν)
k (τ) 6= Φ(l,ν)(τ) when k < g(τ). From Lemma 7 we

also have

Φk(τ) = Φ(τ) ∀τ = [τ1, · · · , τκ]l ∈ T, g′(τ) =
κ

max
j=1

g(τi) ≤ k,

ψΦk
(u) = ψΦ(τ) ∀u = [τ1, · · · , τκ]f ∈ Uf , g′(u) =

κ
max
j=1

g′(τi) ≤ k.
(3.2)

The growth functions give a precise description of the development of the iterations.
As we will see, the growth functions are exactly the same as in the deterministic case,
see [13, 14]. However, to get applicable results, we will at the end need the relation
between the growth functions and the order. Further, we will also take advantage of
the fact that EΦ(τ) = 0 and EψΦ(u) = 0 for some trees. These aspects are discussed
in the next sections.

The simple iteration. Simple iterations are described by (1.4a) with J (r,µ)
k = 0,

that is

H
(l,ν)
k+1 = 1ls ⊗ x0 +

m∑
r=0

M∑
µ=0

(
Z(l,ν)(r,µ) ⊗ Id

)
gr(H

(r,µ)
k ). (3.3)

By (2.2) and Theorem 6 we easily get the next two results:

Lemma 8 If H(l,ν)
0 = B(Φ(l,ν)

0 , x0;h) then H
(l,ν)
k = B(Φ(l,ν)

k , x0;h), where

Φ(l,ν)
k+1 (∅) ≡ 1ls, Φ(l,ν)

k+1 (τ = [τ1, · · · , τκ]r) =
M∑
µ=0

Z(l,ν)(r,µ)
κ∏
j=1

Φ(r,µ)
k (τj).

The corresponding growth function is given by

h(∅) = 0, h([τ1, . . . , τκ]l) = 1 +
κ

max
j=1

h(τj).

The function h(τ) is the height of τ , that is the maximum number of nodes along one
branch. The functions h′(τ) and h′(u) are defined by (3.2), with g replaced by h.
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The modified Newton iteration. In this subsection, we consider the modified
Newton iteration (1.4a) with J

(r,µ)
k = Is ⊗ g′r(x0). The B-series for H(l,ν)

k and the
corresponding growth function can now be described by the following lemma:

Lemma 9 If H(l,ν)
0 = B(Φ(l,ν)

0 , x0;h) then H
(l,ν)
k = B(Φ(l,ν)

k , x0;h) with

Φ(l,ν)
k+1 (∅) ≡ 1ls,

Φ(l,ν)
k+1 (τ) =



M∑
µ=0

Z(l,ν)(r,µ)
κ∏
j=1

Φ(r,µ)
k (τj) if τ = [τ1, · · · , τκ]r ∈ T and κ ≥ 2,

M∑
µ=0

Z(l,ν)(r,µ)Φ(r,µ)
k+1 (τ1) if τ = [τ1]r ∈ T.

(3.4)

The corresponding growth function is given by

r(∅) = 0, r(•l) = 1, r(τ = [τ1, · · · , τκ]l) =

r(τ1) if κ = 1,
1 +

κ
max
j=1

r(τj) if κ ≥ 2.

The function r(τ) is one plus the maximum number of ramifications along any branch
of the tree.

Proof. The iteration scheme (1.4a) can be rewritten in B-series notation as∑
τ∈T

α(τ) · Φ(l,ν)
k+1 (τ)⊗ F (τ)(x0) = 1l⊗x0+

m∑
r=0

∑
τ∈Tr

α(τ) ·

(
M∑
µ=0

Z(l,ν)(r,µ)(Φ(r,µ)
k )′r(τ)

)
⊗ F (τ)(x0) (3.5)

+
m∑
r=0

∑
τ1∈Tr

α(τ1) ·

(
M∑
µ=0

Z(l,ν)(r,µ)
(
Φ(r,µ)
k+1 (τ1)− Φ(r,µ)

k (τ1)
))

⊗ (g′r(x0)F (τ1)(x0)),

where we have used (2.2). Clearly, Φ(l,ν)
k+1 (∅) ≡ 1ls for all k ≥ 0 and

Φ(l,ν)
k+1 (•r) =

M∑
µ=0

Z(l,ν)(r,µ)1ls,

proving the lemma for τ = •r = [∅]r. Next, let τ = [τ1]r, where τ1 6= ∅. Then
F (τ)(x0) = g′r(x0)F (τ1). Comparing equal terms on both sides of the equation, using
α(τ) = α(τ1), we get

Φ(l,ν)
k+1 (τ) =

M∑
µ=0

Z(l,ν)(r,µ)
(
(Φ(r,µ)

k )′r(τ) + Φ(r,µ)
k+1 (τ1)− Φ(r,µ)

k (τ1)
)
.

Since (Φ(r,µ)
k )′r(τ) = Φ(r,µ)

k (τ1) the lemma is proved for all τ = [τ1]r. For τ =
[τ1, · · · , τκ]r with κ ≥ 2 the last sum of (3.5) contributes nothing, thus

Φ(l,ν)
k+1 (τ) =

M∑
µ=0

Z(l,ν)(r,µ)(Φ(r,µ)
k )′r(τ)
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which concludes the proof of (3.4).
The second statement of the lemma is obviously true for τ = ∅. Let τ be any tree

satisfying r(τ) ≤ k + 1. Then either τ = [τ1]l with r(τ1) ≤ k + 1 or τ = [τ1, · · · , τκ]l
with κ ≥ 2 and r(τi) ≤ k. In the latter case, we have by the hypothesis, by (3.4) and
Theorem 6 that

Φ(l,ν)
k+1 (τ) =

M∑
µ=0

Z(l,ν)(r,µ)
κ∏
j=1

Φ(r,µ)(τj) = Φ(l,ν)(τ).

In the first case, it follows easily by induction on τ that Φ(l,ν)
k+1 (τ) = Φ(l,ν)(τ) since

Φ(l,ν)
k+1 (τ) =

M∑
µ=0

Z(l,ν)(r,µ)Φ(r,µ)
k+1 (τ1).

The full Newton iteration. In this subsection, we consider the full Newton
iteration (1.4a) with

J
(r,µ)
k = g′r(H

(r,µ)
k ).

It follows that the B-series for H(l,ν)
k and the corresponding growth function satisfy

Lemma 10 If H(l,ν)
0 = B(Φ(l,ν)

0 , x0;h) then H
(l,ν)
k = B(Φ(l,ν)

k , x0;h) with

Φ(l,ν)
k+1 (∅) ≡ 1ls,

Φ(l,ν)
k+1 (τ) =

M∑
µ=0

Z(l,ν)(r,µ)
κ∏
j=1

Φ(r,µ)
k (τj)

+
M∑
µ=0

Z(l,ν)(r,µ)
κ∑
i=1

 κ∏
j=1
j 6=i

Φ(r,µ)
k (τj)

(Φ(r,µ)
k+1 (τi)− Φ(r,µ)

k (τi)
) (3.6)

where τ = [τ1, . . . , τκ]r and the rightmost
∏

is taken to be 1ls if κ = 1. The corre-
sponding growth function is given by

d(∅) = 0, d(•l) = 1,

d(τ = [τ1, · · · , τκ]l) =

{
maxκj=1 d(τj) if γ = 1,
maxκj=1 d(τj) + 1 if γ ≥ 2,

where γ is the number of subtrees in τ satisfying d(τi) = maxκj=1 d(τj).

The function d is called the doubling index of τ .
Proof. Using (2.2) and Lemma 4 the scheme (1.4a) can be written as∑

τ∈T
α(τ) · Φ(l,ν)

k+1 (τ)⊗ F (τ)(x0) = 1l⊗x0+

m∑
r=0

∑
τ∈Tr

α(τ) ·

(
M∑
µ=0

Z(l,ν)(r,µ)(Φ(r,µ)
k )′r(τ)

)
⊗ F (τ)(x0) (3.7)

+
m∑
r=0

∑
u∈Ugr

β(u) ·

(
M∑
µ=0

Z(l,ν)(r,µ)Υ(r,µ)
k (u)

)
⊗G(u)(x0),
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where

Υ(r,µ)
k (u = [τ1, . . . , τκ]gr ) =

κ∑
i=1

 κ∏
j=1
j 6=i

Φ(r,µ)
k (τj)

(Φ(r,µ)
k+1 (τi)− Φ(r,µ)

k (τi)
)
.

From the definition of F (τ), G(u = [τ1, · · · , τκ]gr )(x0) = F (τ = [τ1, · · · , τκ]r)(x0).
The sum over all u ∈ Ugr can be replaced by the sum over all τ ∈ Tr, and the
result is proved. Next, we will prove that d(τ) satisfies the implication (3.1) given
in Definition 7. We will do so by induction on n(τ), the number of nodes in τ . Since
∅ is the only tree satisfying n(τ) = 0, and Φ(r,µ)

k+1 (∅) = Φ(r,µ)(∅) ≡ 1ls, the conclusion
of (3.1) is true for all τ ∈ T with n(τ) = 0. Let n̄ ≥ 1 and assume by the induction
hypothesis that the conclusion of (3.1) holds for any tree satisfying d(τ) ≤ k + 1 and
n(τ) < n̄. We will show that Φ(r,µ)

k+1 (τ̄) = Φ(r,µ)(τ̄) for all τ̄ satisfying d(τ̄)≤k+ 1 and
n(τ̄) ≤ n̄. Let τ̄ = [τ1, · · · , τκ]l where n(τj) < n̄ for j = 1, · · · , κ. Since d(τ̄) ≤ k + 1
there is at most one subtree τj satisfying d(τj) = k + 1, let us for simplicity assume
this to be the last one. Thus d(τj) ≤ k for j = 1, · · · , κ−1 and d(τκ) ≤ k + 1.
Consequently, Φ(r,µ)

k (τj) = Φ(r,µ)(τj), j = 1, · · · , κ − 1 by the hypothesis of (3.1),
and Φ(r,µ)

k+1 (τj) = Φ(r,µ)(τj), j = 1, · · · , κ by the induction hypothesis. By (3.6) and
Theorem 6,

Φ(l,ν)
k+1 (τ̄) =

M∑
µ=0

Z(l,ν)(r,µ)
κ∏
j=1

Φ(r,µ)
k (τj)

+
M∑
µ=0

κ∑
i=1

Z(l,ν)(r,µ)

 κ∏
j=1
j 6=i

Φ(r,µ)
k (τj)

(Φ(r,µ)
k+1 (τi)− Φ(r,µ)

k (τi)
)

=
M∑
µ=0

Z(l,ν)(r,µ)

κ−1∏
j=1

Φ(r,µ)
k (τj)

Φ(r,µ)
k (τκ)

+
M∑
µ=0

Z(l,ν)(r,µ)

κ−1∏
j=1

Φ(r,µ)(τj)

(Φ(r,µ)(τκ)− Φ(r,µ)
k (τκ)

)
= Φ(l,ν)(τ̄),

completing the induction proof.

4. General convergence results for iterated methods. Now we will relate
the results of the previous section to the order of the overall scheme. In the following,
we assume that the predictors satisfy the conditions

Φ(l,ν)
0 (τ) = Φ(l,ν)(τ) ∀τ ∈ T with g(τ) ≤ G0,

Φ(l,ν)
0 (τ) ∈ {Φ(l,ν)(τ), 0} ∀τ ∈ T with g(τ) ≤ Ĝ0,

(4.1)

where G0 and Ĝ0 are chosen as large as possible. In particular, the trivial predictor
satisfies G0 = 0 while Ĝ0 = ∞. We assume further that in analogy to (3.1) we have

Φ(l,ν)
k (τ) ∈ {Φ(l,ν)(τ), 0}, ∀τ ∈ T, g(τ) ≤ k

⇒ Φ(l,ν)
k+1 (τ) ∈ {Φ(l,ν)(τ), 0}, ∀τ ∈ T, g(τ) ≤ k + 1,

(4.2)
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for all k ≥ 0. By Lemmata 8, 9, and 10 this is guaranteed for the iteration schemes
considered here.

It follows from (3.1), (3.2) and (4.2) that

Φk(τ) = Φ(τ) ∀τ ∈ T with g′(τ) ≤ G0 + k,

Φk(τ) ∈ {Φ(τ), 0} ∀τ ∈ T with g′(τ) ≤ Ĝ0 + k
(4.3)

as well as

ψΦk
(u) = ψΦ(u) ∀u ∈ Uf with g′(u) ≤ G0 + k,

ψΦk
(τ) ∈ {ψΦ(u), 0} ∀u ∈ Uf with g′(u) ≤ Ĝ0 + k.

(4.4)

The next step is to establish the relation between the order and the growth func-
tion of a tree. We have chosen to do so by some maximum height functions, given
by

GT (q) = max
τ∈T

{g′(τ) : ρ(τ) ≤ q} , GT,ϕ(q) = max
τ∈T

{g′(τ) : Eϕ(τ) 6= 0, ρ(τ) ≤ q} ,

GUf
(q) = max

u∈Uf

{g′(u) : ρ(u) ≤ q} , GUf ,ψϕ(q) = max
u∈Uf

{g′(u) : Eψϕ(u) 6= 0, ρ(u) ≤ q} .

(4.5)
Note that the definition relates to the weights of the exact, not the numerical, solution.
We are now ready to establish results on weak and strong convergence for the iterated
solution.

Weak convergence. Let p be the weak order of the underlying scheme. The
weak order of the iterated solution after k iterations is min(qk, p) if

EψΦk
(u) = EψΦ(u) ∀u ∈ Uf , ρ(u) ≤ qk +

1
2
.

If qk ≤ p we can take advantage of the fact that EψΦ(u) = Eψϕ(u) = 0 for some u,
and thereby relax the conditions to

ψΦk
(u) = ψϕ(u) ∀u ∈ Uf with Eψϕ(u) 6= 0,

ψΦk
(u) ∈ {ψϕ(u), 0} ∀u ∈ Uf with Eψϕ(u) = 0.

(4.6)

By (4.4), this is fulfilled for all u of order ρ(u) ≤ min (qk, p) if

GUf ,Ψϕ(qk +
1
2
) ≤ G0 + k and GUf

(qk +
1
2
) ≤ Ĝ0 + k.

The results can then be summarized in the following Theorem:

Theorem 11 The iterated method is of weak order qk ≤ p after

max{GUf ,ψϕ(qk +
1
2
)− G0,GUf

(qk +
1
2
)− Ĝ0}

iterations.
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Strong convergence. The strong convergence case can be treated similarly. Let
p now be the mean square order of the underlying method. The iterated solution is
of order min(p, qk) if for all qk ≤ p

Φk(τ) = Φ(τ) ∀τ ∈ T with ρ(τ) ≤ qk,

EΦk(τ) = EΦ(τ) ∀τ ∈ T with ρ(τ) = qk +
1
2
.

(4.7)

According to (4.3) these are satisfied if all the conditions

GT (qk) ≤ G0 + k,

GT (qk +
1
2
) ≤ Ĝ0 + k,

GT,ϕ(qk +
1
2
) ≤ G0 + k

are satisfied. We can summarize this by:

Theorem 12 The iterated method is of mean square order qk ≤ p after

max
{

max
{
GT (qk),GT,ϕ(qk +

1
2
)
}
− G0,GT (qk +

1
2
)− Ĝ0

}
iterations.

5. Growth functions and order. In this section we will discuss the relation
between the order of trees and the growth functions defined in section 3. Let us start
with the lemma:

Lemma 13 For k ≥ 1,

h′(τ) = k ⇒ ρ(τ) ≥ k

2
+

1
2
,

r′(τ) = k ⇒ ρ(τ) ≥ k,

d′(τ) = k ⇒ ρ(τ) ≥ 2k−1.

The same result is valid for h′(u), r′(u) and g′(u).

Proof. Let Th,k, Tr,k and Td,k be sets of trees of minimal order satisfying h(τ) = k
∀τ ∈ Th,k, r(τ) = k ∀τ ∈ Tr,k and d(τ) = k ∀τ ∈ Td,k, and denote this minimal order
by ρh,k, ρr,k and ρd,k. Minimal order trees are build up only by stochastic nodes. It
follows immediately that Th,1 = Tr,1 = Td,1 = {•l : l ≥ 1}. Since ρ(•l) = 1/2 for
l ≥ 1, the results are proved for k = 1. It is easy to show by induction on k that

Th,k = {[τ ]l : τ ∈ Th,k−1, l ≥ 1}, ρh,k = ρh,k−1 +
1
2

=
k

2
,

Tr,k = {[•l1 , τ ]l2 : τ ∈ Tr,k−1, l1, l2 ≥ 1}, ρr,k = ρr,k−1 + 1 = k − 1
2
,

Td,k = {[τ1, τ2]l : τ1, τ2 ∈ Td,k−1, l ≥ 1}, ρd,k = 2ρd,k−1 +
1
2

= 2k−1 − 1
2
.

(5.1)

For each g being either h, r or d, the minimal order trees satisfying g′(τ ′g,k) = k,
g′(ug,k) = k are τ ′g,k = [τg,k]l with τg,k ∈ Tg,k and l ≥ 1, and ug,k = [τ ′g,k]f . Both are
of order ρ(τg,k) + 1/2.

Let GT (q) and GUf
(q) be defined by (4.5). Then it holds
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Corollary 14 For q ≥ 1
2 we have

GT (q) = GUf
(q) =


2q − 1 for simple iterations,
bqc for modified Newton iterations,
blog2(q)c+ 1 for full Newton iterations.

Proof. The minimal order trees are also the maximum height/ramification num-
ber/doubling index trees, in the sense that as long as ρ(τ ′g,k) ≤ q < ρ(τ ′g,k+1) there
are no trees of order q for which the growth function can exceed k.

Let TS ⊂ T and USf ⊂ Uf be the set of trees with an even number of each kind
of stochastic nodes. Further, let T I ⊂ T0 and U If ⊂ Uf be the set of trees constructed
from the root (•0 or •f ), by a finite number of steps of the form
i) add one deterministic node, or
ii) add two equal stochastic nodes, neither of them being a father of the other.
Clearly T I⊂TS and U If⊂USf . From [5, 25] we have

Eϕ(τ) = 0 if τ 6∈

{
TS in the Stratonovich case,
T I in the Itô case,

Eψϕ(u) = 0 if u 6∈

{
USf in the Stratonovich case,
U If in the Itô case.

(5.2)

Considering only trees for which Eϕ or Eψϕ are different from zero, we get

Lemma 15 For k ≥ 1,

h′(τ) = k ⇒ ρ(τ) ≥

{
pk+1

2 q if τ ∈ TS ,
k + 1 if τ ∈ T I ,

r′(τ) = k ⇒ ρ(τ) ≥

{
k if τ ∈ TS ,
k + 1 if τ ∈ T I ,

d′(τ) = k ⇒ ρ(τ) ≥

{
2k−1 if τ ∈ TS ,
2k−1 + 1 if τ ∈ T I .

This result is also valid for h′(u), r′(u) and g′(u), with T · replaced by U ·
f .

Proof. In the Stratonovich case, we only consider trees of integer order, which
immediately gives the results. In the Itô case, let τg,k, τ ′g,k be the minimal order
trees used in the proof of Lemma 13. Unfortunately τ ′g,k has a stochastic root, so
τ ′g,k 6∈ T I , and there are no trees τ ∈ T I of order ρ(τg,k) + 1/2 satisfying g′(τ) = k.
When g is either r or d then the tree [τg, •l]0 ∈ T I if all the stochastic nodes are of
color l ≥ 1. The order of this tree is ρ(τg)+3/2, proving the result for r′(τ) and d′(τ).
Let τ̂ ′h,k ∈ T I be a tree of minimal order satisfying h′(τ̂ ′h,k) = k. Clearly, τ̂ ′h,1 can be
either [•0]0 or [•l, •l]0 with l ≥ 1, both of order 2. From the construction of trees in
T I it is clear that the height of the tree can only be increased by one for each order,
thus ρ(τ̂ ′h,k) = k + 1. The result for U If follows immediately.

Let GT,ϕ(q) and GUf ,ψϕ
(q) be given by (4.5). Then the analogue of Corollary 14

is
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Stratonovich Itô
strong/weak appr. weak appr. strong appr.

p simple mod. full simple mod. full simple mod. full
1
2 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1
1 1

2 3 2 2 1 1 1 2 1 1
2 3 2 2 1 1 1 3 2 2
2 1

2 5 3 2 2 2 1 4 2 2
3 5 3 2 2 2 1 5 3 2

Table 5.1
Number of iterations needed to achieve order p when using the simple, modified or full Newton

iteration scheme in the Itô or Stratonovich case for strong or weak approximation.

Corollary 16 For q ≥ 1
2 we have in the Stratonovich case

GT,ϕ(q) = GUf ,ψϕ(q) =


max{0, 2bqc − 1} for simple iterations,
bqc for modified Newton iterations,
blog2(q)c+ 1 for full Newton iterations

and in the Itô case

GT,ϕ(q) = GUf ,ψϕ
(q) =


max{0, bqc − 1} for simple iterations,
max{0, bqc − 1} for modified Newton iterations,
max{0, blog2(q)c} for full Newton iterations.

For the trivial predictor, Table 5.1 gives the number of iterations needed to achieve
a certain order of convergence. The results concerning the Stratonovich case when
considering strong approximation and using the simple iteration scheme where already
obtained by Burrage and Tian [3] analyzing predictor corrector methods.

6. Numerical examples. As first example, we apply the drift implicit strong
order 1.5 scheme due to Kloeden and Platen [16], implemented as stiffly accurate
SRK scheme with six stages and denoted by IPS, to a nonlinear Itô SDE in order to
analyze its order of convergence in dependence on the kind and number of iterations.
Therefore, the solution is approximated with step sizes 2−8, . . . , 2−12 and the sample
average of M = 20000 independent simulated realisations of the absolute error is
calculated in order to estimate the expectation.

As test equation, we consider the non-linear SDE [16, 21]

dX(t) =
(

1
2X(t) +

√
X(t)2 + 1

)
dt+

√
X(t)2 + 1 dW (t), X(0) = 0, (6.1)

on the time interval I = [0, 1] with the solution X(t) = sinh(t+W (t)).
The results at time t = 1 without iteration, with one and two simple iterations

and one modified Newton iteration step are presented in Figure 6.1, where the orders
of convergence correspond to the slope of the regression lines. As predicted by Table
5.1 we observe strong order 0.5 without iteration, strong order one for one simple
iteration and strong order 1.5 for two simple or one modified Newton iteration.
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Figure 6.1. Error of IPS applied to (6.1) without iteration, with one or two simple iterations
and with one modified Newton iteration (the results for two simple iterations and one modified
Newton iteration nearly coincide).

As second example, we apply the implicit strong order 1.5 method IRK3 given
by1

yn+1 = yn +
3∑
i=1

αig0(Yi) +
3∑
i=1

(
J1γ

(1)
i +

J10

h
γ

(2)
i

)
g1(Yi),

Yi = yn +
3∑
j=1

aijg0(Yj) +
3∑
j=1

(
J1b

(1)
ij +

J10

h
b
(2)
ij

)
g1(Yi)

with coefficients

α> = (3.8987207850703709e−01, 2.5303195561124980e−01, 3.5709596588171316e−01),

γ(1)> = (−5.1071092434339060e−01, 5.8945603509591227e−01, 9.2125488924747834e−01),

γ(2)> = (1.4755439991699316, 0,−1.4755439991699316),

A =

−2.8952337674962747e− 1 7.4418828501997702e− 1 −2.8516957799526149e− 1
1.0980329196623682e+ 0 −5.9356838134753187e− 1 1.4769092465852457e− 2
4.3056898319396864e− 1 −4.2336418516823161e− 2 4.5897891676832508e− 1

 ,

B1 =

−3.7888032376529462e− 2 3.1212706165530735e− 1 −5.8972962840290177e− 1
−5.5669836775129566e− 1 7.5799500096196037e− 1 −5.4160073101557960e− 1
−3.9406687933866946e− 1 5.4561698120971203e− 1 4.3403138596161156e− 1

 ,

B2 =

5.4900483755770564e− 2 3.7642537111125235e− 1 3.2079615732320838e− 1
1.8393033906369787e+ 0 −1.4094467152219967e+ 0 1.3018964952626004e+ 0
8.0702249594600106e− 1 3.7642537111125235e− 1 −4.3132585486702213e− 1


1Note that this method constructed here does not satisfy the strong order 1.5 order conditions

of [2], which seem to be flawed.
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Figure 6.2. Error of IRK3 applied to the Stratonovich version of (6.1) without iteration, with
one, two or three simple iterations and with one or two modified Newton iterations (the results for
three simple iterations and two modified Newton iterations nearly coincide).

to the corresponding Stratonovich version of (6.1). Again, the solution is approxi-
mated with step sizes 2−8, . . . , 2−12 and M=20000 simulations are performed. The
results at time t = 1 without iteration, with one, two and three simple iterations and
one and two modified Newton iteration steps are presented in Figure 6.2. As predicted
by Table 5.1 we observe no convergence without iteration, strong order one for one
or two simple iterations or one modified Newton iteration and strong order 1.5 in the
case of three simple iterations or two modified Newton iterations.

Finally, we apply the drift implicit weak order two SRK scheme DDIRDI5 [8]
to SDE (6.1). Here, we choose as functional f(x) = p(arsinh(x)), where p(z) =
z3− 6z2 + 8z is a polynomial. Then the expectation of the solution can be calculated
as

E(f(X(t))) = t3 − 3t2 + 2t . (6.2)

The solution E(f(X(t))) is approximated with step sizes 2−2, . . . , 2−5 and M = 5 ·108

simulations are performed in order to determine the systematic error of DDIRDI5 at
time t = 1. The results without iteration, with one simple iteration and with one
modified Newton iteration steps are presented in Figure 6.3. According to Table 5.1
we expect approximation order one for zero iterations and order two in the other
cases, which is approved by Figure 6.3.

7. Conclusion. For stochastic Runge-Kutta methods that use an iterative scheme
to compute their internal stage values, we derived convergence results based on the
order of the underlying Runge-Kutta method, the choice of the iteration method,
the predictor and the number of iterations. This was done by developing a unify-
ing approach for the construction of stochastic B-series, which is valid both for Itô-
and Stratonovich-SDEs and can be used both for weak and strong convergence. We
expect this to be useful also for the further development and analysis of stochastic
Rung-Kutta type methods.
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