NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

Imposing free-surface boundary conditions using
surface intrinsic coordinates

by
Tormod Bjgntegaard

PREPRINT
NUMERICS NO. 5/2007

NORWEGIAN UNIVERSITY OF
SCIENCE AND TECHNOLOGY
TRONDHEIM, NORWAY

This report has URL http://www.math.ntnu.no/preprint/numerics/2007/N5-2007 . pdf
Address: Department of Mathematical Sciences, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway.






Imposing free-surface boundary conditions
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Tormod Bjgntegaard

September 6, 2007

We consider here the incompressible Navier-Stokes equations in three dimen-
sions subject to free surface boundary conditions along part or all of the domain
boundary. In [2] a surface integral for weak imposition of both normal and tangen-
tial surface tension boundary conditions was proposed. This integral was based
on describing the free surface using surface-intrinsic coordinates. In this paper
we derive the proposed surface integral using results from differential geometry. A
key ingredient in this derivation is an expression for the curvature-normal product,
and most of the paper will be devoted to deriving this expression.

1 Introduction

We consider here the incompressible Navier-Stokes equations in three dimensions subject to
free surface boundary conditions along part or all of the domain boundary. One critical
aspect of the numerical approximation of such problems is the incorporation of these boundary
conditions. This is related to the fact that the shape of the free surface is generally unknown,
and the normal and tangential stresses in the presence of surface tension depend on the local
curvature and possibly the surface gradient of the surface tension. The free surface boundary
conditions can be expressed as

F, = nioijn; =k,

F, =tioijnj = t(VeY)k,

where n;,i = 1,2, 3, are the components of the outward unit normal vector (n), ¢;,7 =1,2,3,
are the components of a tangent vector (t), F, is the normal component of the stress force,
F} is a tangential component of the stress force in the direction of t, o;; is the stress tensor,
~ is the surface tension and k is twice the mean curvature. Here, V4 represents the surface
gradient of the surface tension and ¢ (Vs7)i represents the component of the surface gradient
in the direction of t. Summation over repeated indices is assumed.

In order to naturally incorporate the free surface boundary conditions, we need to use the
stress formulation of the Navier-Stokes equations. For the numerical treatment we will use
the corresponding weak formulation of the free surface problem. This involves multiplying



the governing equations with suitable test functions and integrating over our computational
domain, 2. Integration by parts on the viscous term yields the surface integral

/ V;04515 dS, (11)
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where I', = 00, is the free surface, v; is a test function, and o;;n; are the total stress forces

in the ¢’th direction; it is through this integral the imposition of the free-surface boundary

conditions will be done. In [2] Ho and Patera proposed an alternative surface integral for weak

imposition of both normal and tangential surface tension boundary conditions by the use of

surface intrinsic coordinates. This alternative form reads,

(%i @
_/Fﬂaragi as, (1.2)

where 7! and 2 are surface parameters, and g' and g2 are two vectors spanning the tangent
plane which will be introduced later. To our knowledge a complete derivation of this surface
integral has not been done, and the aim of this paper is to derive in detail all the necessary
steps in order to go from (1.1) to (1.2). We remark that the total stress forces

F=F,+F,=vmr+ Vg,

where F,, is the normal force and F; represents the tangential force. Thus, we see that in
order to derive (1.2) we need to find an expression for the curvature normal product and the
surface gradient in the context of surface intrinsic coordinates.

In Section 2 we will go through some basic concepts in differential geometry. This is by no
means an exhaustive introduction to differential geometry, but more of a preliminary covering
of the necessary tools needed in the later part of this paper. In Section 3 we cover some
necessary quantities that we will need, like surface divergence, surface gradient and the mean
curvature for a general surface, and in Section 4 we start from (1.1) and derive (1.2).



2 Differential geometry: preliminaries

The introduction to differential geometry in this section is mainly influenced by [1], both in
contents and notation.

2.1 Cartesian coordinate system

. . . ;! .
A vector in the cartesian coordinate system, x*, can be written on the form,

V = Vi, + Vai,w + Vaio.

Here, iil,i = 1,2, 3, are an orthonormal basis for R¢ (Figure 2.1) such that i/ i = Oy As
an example, the inner-product between two vectors written in this notation can be expressed
as,

V -u = Viu; + Voug + Vaus,

since the orthogonality makes the cross-terms zero.
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Figure 2.1: Cartesian coordinate system with orthonormal base vectors.

In the following, we will use 2" for the cartesian coordinate system and z* or ¥ for a
general coordinate system.
2.2 General coordinate system

If we instead consider another basis for R?,

Rd = Span{gi }g:1 )

a vector in R? can be written

V =Vlg +Vigy + Vigs.

For this basis, we have no restriction on orthogonality between the base vectors nor that
they have unit length. The only requirement is that they are linearly independent. The
inner-product between two vectors in R3, V and u, expressed in this basis reads



V.-u= Vlulgl - g1+ V1u2g1 - g2+ V1u3g1 83
+ V2u1g2 - g1+ V2u2g2 - g2+ V2U3g2 - 83
+ V3u1g3 - g1+ V3u2g3 - 8o+ V3u3g3 - 83-

We see that all nine entries are included, since the basis vectors in general are not orthogonal.

2.3 The base-vectors

We will consider a point, P, with an associated position vector, p. A small increment, dp,
may be expressed as

ap ., ;
where z¢ (i = 1,...,d) denotes the reference frame, see Figure 2.2. However, if we assume
2/
A
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Figure 2.2: A differential expressed in a general coordinate system in two dimensions.

that each base-vector, g;, points in the same directions as z*, we may choose {g;} such that
dp = g;da’, (2.2)
and thus, an expression for the ¢’th base-vector is

Jop

87 Gui

(2.3)
We now introduce another basis for RY,

Rd = Span{gi}gila

with the property that g™ - g, = dmn = 9,, the Kronecker delta. This is displayed in two
dimensions in Figure 2.3.
A vector in R? may now be expressed as



Figure 2.3: Covariant and contravariant basis vectors associated with the point P in two dimensions.

V =Vig! + Vog® + Vag’.
If we return to the example of the inner-product of two vectors, u and v, where u is expressed
in the basis {g;} and v is expressed in {g’}, we get the simplified formula,
u-v= u1v1 + u2v2 + u3v3 = uivi.

In literature, g; is often denoted as the i'th covariant base-vector, and g’ as the j’th con-
travariant base-vector.

2.3.1 The metric tensor

Since both the covariant and contravariant base-vectors represent a basis for R%, the covariant
vector, g;, can be expressed in terms of contravariant base-vectors,

g = gz‘jgj y
Here, g;; are the components of the covariant metric tensor. Similarly, we have

g' =g"g;
By the use of the orthogonality relation, we get

gi g = ging" - 8 = gij = Gji,
and

0! =gi-g =gug" ¢''g = girg’'8" - & = ging’".

Thus, if the covariant components of the metric tensor is known, it is straightforward to find
the contravariant components.



2.4 Transformation between coordinate systems

We now assume that we have two reference frames, {xi}le and {x} le, with two correspond-
ing sets of covariant base-vectors, g; and g;« (see Figure 2.4). We also have contravariant
vectors which satisfy the relations

g g =0

Figure 2.4: Two sets of base-vectors in two dimensions.

These four sets of base-vectors span the same space, and can therefore be expressed in terms
of each other. Thus, we can write,

g =0¢g.

Notice that the summation is over the superscript of ﬁf for the first case, and the subscript
for the second case. Further,

ok =g g" =ple B g =BL8 g & =BLB 3
a3
L8y = (24)

and in the same manner we have

gl gk = of. (2.5)



2.4.1 The components, ﬁlj

As before, we may write a small vector, ds, in terms of the covariant base-vectors,

ds = g; da’ = B g- da’,

by the use of two reference frames, {z;}¢ ; and {z7}%,. The same vector may also be
expressed as

. oxk
ds = gy dz*” = gy~ Sl P
oz’
Thus,
k* i M
1 7
B g da' = g da

should be valid for all ds. By systematically choosing,

det =1, de?2=0, da®=0,

dat = 0, da? = 1, da?® = 0,

dz! =0, dz?=0, da®=1,
we find that

ozt
oxt

Taking the inner-product of both sides with g’”, we get

BF g = g

. " w0zt
k —
bier g =8 5o
I
-j* o 8l‘j*
’ oz’

2.5 The permutation tensor

We wish to be able to evaluate cross-products in general coordinates. This is closely related
to a tensor often called the permutation tensor, and in order to derive this tensor we will first
introduce the permutation symbols.

2.5.1 The permutation symbols

The permutation symbols, e;;, = e'* are defined by

eijk = +1, if 4, j, k is a cyclic sequence (1,2,3; 2,3,1 or 3, 1,2 for the 3 x 3 case.)
eijk = —1, if 4, j, k is a anticyclic sequence (3,2,1; 2,1,3 or 1,3,2 for the 3 x 3 case.)

eijr = 0, if 4, j, k is acyclic (two or more subscripts are equal.)



2.5.2 The determinant

We define a? to be the determinant of a matrix a?:
1 1 1
TR B
0
a® = |a)| = aé ag ag .

By the use of the permutation symbols, this can also be written as

_ i J.k
a —a1a2a362‘jk,
or

a’ = all a%aielm".

2.5.3 The permutation tensor

. . . !
We now define the permutation tensor connected to the cartesian coordinate system, z*, as

si’j/k’ = ei’j/k’" (26)

If we wish to transform this tensor to another coordinate system, z*, we may do this in the
same way as introduced earlier,

i il k! ) /
€ijk = iy B; B B, = ewj B; B By, -

However, we recognize this as |ﬁf/| if {i,7,k} is a cyclic sequence and —]ﬁf,] if {i,7,k} is an
anticyclic sequence,

Eiik = i/ , if 4, 7, k is cyclic,
i |ﬁz |<, J Yy (27)
gijk = —|6; |, if 4, j, k is anticyclic.

From (2.4), we know that

885 = ot
thus,

J gk'| _
‘ﬁz/ﬁ] ‘ - 17
U

; " 1
J| — i
Bhl=a, 1871 = %,
where A is currently unknown. We define g2 to be the determinant of the metric tensor,

g11 912 913
92 = |g¢j| = (921 922 G23|-
931 932 933



Since,

gijgjk = 557

we have

l9i59""| = 1,
I

l9il1g”* = 1,
I3

jk‘ — %

lg
g

We transform the metric tensor to the cartesian reference frame,

girjr = gz‘jﬁf/ﬁju
which leads to

(¢) = lgoyr| = lgisB0118%] = lgis 1BA18%] = g?AA. (2.8)

For the cartesian coordinate system, we know that

g =1,

since the metric tensor is simply the identity matrix, and this leads to

AT

Thus, we find that the tensor \Bf’ |, which is used for expressing a base vector in a general coor-
dinate system in terms of base vectors in the cartesian coordinate system, has the determinant
g. We arrive at,

e = 16] | = g, if 4, j, k is cyclic,
Eijk = —\ﬁf/\ = —g, if 4, 7, k is anticyclic, (2.9)
gijk = 0, if 7, j, k is acyclic.

2.6 Representation of a three-dimensional surface

We will use surface intrinsic coordinates for describing three-dimensional surfaces. Such
surfaces will in general be described by two surface parameters and written on the form
2t = fi(rt,r?), i = 1,2,3. We are free to choose the way we describe the surface in terms
of ! and 72, but it is natural to choose r! and 72 as variables on a pre-determined refer-
ence domain, which is connected to the physical surface through a one-to-one mapping. The
covariant base-vectors are then given by



_op
87 oric

Note that, independent of the choice of r! and 72, the covariant base-vector, g;, will at
each point on the surface point in the mapped direction of 7* while g’ will generally have a

component in both the r! and 72 direction.

In the following we will use the second approach, where r! and 2 are variables on a reference
domain, T' (see Figure 2.5.) Here, we see that a line on the reference domain in which 7! varies

and r2 is constant corresponds to a curve on the physical surface, I', through

the mapping

F. The vector g will be a tangent to this curve at all grid points, and similarly gs will be
the tangent vector along a curve on I' corresponding to constant r' and varying r2 on the
reference domain. Thus, {g1,gs} and {g!, g?} will both span the tangent plane at all points
on the surface. For the third direction, we will in the following choose g3 = g = n, such that

r

Figure 2.5: Mapping between reference domain and physical domain for a surface in three dimen-

sions.
the third base vector is orthogonal to the tangent vectors as well as normalized,

g3'gi:07 i:1527

V83 g3 =1,
(2
g3 =1n.

Note that for this choice of gg we get,

g11 912
9 =g g2 0= g g1z
0 0 1 g21 922

2.7 Cross product
2.7.1 Cross product between base vectors

If we choose g; as the orthonormal basis in the cartesian coordinate system,

g = ixi’a 1=1,2,3,



we know that for this case

/

g X gj/ = Ei/j/k/gk (210)

is valid. Here ;4 is the permutation tensor associated with the cartesian coordinate system,
defined in (2.6) and g* = gy = i_s. For general coordinate directions, we may now write

gi x g = (8} g) x (B gjr)
= 01 8] (i % gj1);

which by the use of (2.10) can be written as

— ﬂ; ﬂjj gi/j/k/gk
_ ﬁi’ﬂj’ﬂk’e ) k
I I i"j'k'8
J
gi X gj = kg (2.11)

2.7.2 Area-element on the surface

We now denote s' and s? to be surface coordinates pointing in the same directions as 7! and
72, respectively, such that s' = s'(r!) and s? = s%(r?), see Figure 2.6. We are interested
in expressing an area-element, dS, on a general three-dimensional surface in terms of the

reference variables, r! and r2.

N

Figure 2.6: A surface element.

We assign ds! to be a vector originating from P associated with a small increment dr!
on the reference domain, and similarily ds? is the vector associated with the increment dr?.
Thus, ds! points in the direction of g; and ds? points in the direction of gy and we have the
relation

11



ds! x ds? = dSn,

\’
dS = |ds' x ds?|. (2.12)
We also have
Os! op
1_ 1_ 1_ 1
ds —ﬁdr —ﬁdr —gldT y
0s? 0
ds? = 2% dr? = 28 dr? = gy dr.

Inserted into (2.12), we get

dS = |(g1 dr' x g dr?),
= |g1 x go|dr! dr?.

From (2.11) and our choice of g3 = n, we get

|g1 X g2’ = |5123n|,
= |5123||n|7

= €123,

J
dS = gdrtdr?, (2.13)

by the use of (2.9) and the fact that g is always positive.

2.7.3 Cross-product between two general vectors

The cross product between two general vectors expressed in a covariant basis
a= a/igl'a
b = bj gj,
becomes
axb:aigi X bjg]’,

= a't'g; x g,
= aibjeijkgk. (2.14)



2.7.4 Normal vector of a line element

We consider a line element vector, ds, associated with a curve, C, on an arbitrary curved
surface, S. In Figure 2.7 this curve is the boundary of the surface, but in general, C' could
be anywhere on S. We will consider a point P on C' where ds is a tangent vector, g = n is
the normal to S at P and dn is an outer normal to C. We express ds in terms of covariant
base-vectors and dn in terms of contravariant base-vectors,

ds = dr%g,,
dn = dngg”. (2.15)

Then, the outer normal to C' at P may be written

dn = ds x g*
= dr(ga X 83)
= dr®,3s8”. (2.16)

Comparing (2.15) and (2.16) leads to

dng = dreass,
dne = €83a drﬂ,

Eapdr? (2.17)

where €19 = g, 21 = —¢ and &1 = 90 = 0. Since g2 is of unit length, we observe that
|dn| = | ds].

ds

C

Figure 2.7: Outward normal to the point P on the curve C.
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2.8 Summary

In summary, we have some results and definitions which will be used in the following sections:

op
8a = oo’ (2.18)
8a ' 83 = Jas (2.19)
gawg’}ﬂ = (557 (2.20)
g% = g*gg, (2:21)
g9 = /[det(gap)]; (2.22)
0ga On
bap =m- 9B —8a- 978 (2.23)
The relation between the contravariant and covariant metric tensor is given by
[gn gu] g7 {1 o]
gn 92| |9*' 9% 01
\
9"t g"] _ L [ 922 —912] [1 0} _ L [ 922 —912]
' g 291 gu | [0 1] g2 |—ga1 gu
4
n_ 1
g = 592 (2.24)
12 1
g~ =—>302 (2.25)
9> =g" (2.26)
1

97 = <9 (2.27)




3 Mean curvature and related operators

The main objective in this section is to find an expression for the curvature-normal product.
In order to do this we will derive expressions for some important quantities like gradient,
divergence and principal directions related to the mean curvature in the context of a general
coordinate system. The contents of this section is mainly influenced by [4] and 3], while the
notation is mostly the same as used in [1] and [3].

3.1 Surface divergence of a vector in general coordinates

If we have a vector, F = F(r!,r?), expressed in general coordinates, the divergence at a given
point is given by [4]

1 OF OF 1 OF OF
V- F = gjgl : <92287’1 - 912(%2> + ?gQ : <9118r2 - 9125)Tl>‘ (3.1)

We now wish to find another expression for V- F. Expressing F in covariant base-vectors,
we may write F = agj + bgs + cn. Thus, the divergence may be written as

Vs -F=V;-(agi1)+ Vs (bg2) + Vs - (cn).
By the help of (3.1), we get

1 da g1 da g1
vs'(agl)_gggl'[922<algl+ 81>_g12<8 581+ a 82>]
1 da (9g1 da agl
+gﬁg2 [911<a 381 +a 82> g12<8 781 +a 81)]
1 Oa (9g1 Oda 8g1
-7 9225 7| 8181 + g22a| 81 - o1 ) 91253 (8181 ) —ga(8i- 55

1 da g1 Oa og1
+ gy 5|82 81 +gu1a 8255 ) T2y 7| 8182 ) —g2a| g2 5

To proceed, we need the following quantities (note that ggé = %)

<

0g1_ 10(g1-81) _ 19gn

8 91 T2 ot T 209

O0g1 _10(g1-81) _ 109gn

8L 92 T2 o2 20r2’

Og1  Ogo 10(g2-82) 1092

82 92 T8 51T 97 g1 T 29
Jg1  0(g1-82) 0g2  _ 0gi2  10gn
82591 T o1 B9 T a0 T 292

Thus,

15



V, - (ag1) = 1 da n 19gn) ~ Oa a 1991
s - ag1 e 922a 7911 T g220Q 5 arl glzfarzgn g12 2 o2

LA, o0 (L0922  Oa (0912 10gu
g2 911(9 5912 T g11 2 orl g12 arl g12 — 912 ol 2 92

2

g

1 2 00  a 0g22 dgn 9912
= ?(911922 —912)ﬁ + 22(911 o1 T925 T — 2012 1 91
_ Oa a 0922 0911 5 0912
=91 T oz\9g T + 92—+ ol G125 T

aa a 8 2
=T 2792%(911922 — 912);
_ 10(ga)
g ort”’

where g = \/g11922 — g7,. Similarly, we have
19(gb)

s'b = - )
\ (gQ) 967“2

and we will later show that
Vs (en) = —ke,
where k is twice the mean curvature. This gives us another formula for the divergence of a

vector, F = ag; + bgo + cn,

1 [8(9&) a(gb)] ~ ke. (3.2)

3.1.1 Example
As a simple example we will consider the surface of a sphere with radius r = 1

We will choose basis vectors

g1 = —sin 91961/ + cos 01902/ + 015/,
g2 = cos g costli i + cos@sinbi o — sin iz,

where {i_ «+ }3_, as usual are the standard basis vectors in the cartesian coordinate system. We

observe that

gi2=81-82=0,
g1 =2g1-8 =1,
g22 = 8282 =1,
I
g=1



Figure 3.1: Sphere with orthonormal base-vectors.
Inserted into (3.2), we find that the surface divergence to a vector F = ag; + bga for this case

is given by

which is what we would expect.

3.2 Surface gradient of a scalar field

We now consider a scalar function, ¢(r!, r2), on a surface, S, parameterized by the reference
variables r! and r2. We assume that ¢(r!,7?) = C is a level curve on the surface and that P
is a point on this curve. If (67!, 6r?) is a small displacement from P such that

p = g16r" + gaor? (3.4)

is a tangent to this curve, then

¢ 10" + ¢ 20r* =0, (3.5)

where ¢1 = 2% and ¢ = 9.
We consider another displacement (dr', dr?), with associated displacement vector,

dp = g1 dr! + go dr?, (3.6)

and find that the inner-product between dp and dp is given by

17



dp - dp = <g1 dr! + g9 dr2> . (glérl + g25r2>
= g1 drior! + g12(d7’15r2 + dr25r1) + goo dr26r2.

We now assume that dp and dp are perpendicular, which leads to the relation

drt ért drt ot
gngs5s T2 <dr2 + (W) + g22 = 0. (3.7)
From (3.5) we see that
LA
(57‘2 N (;5,1 ’

We insert this into (3.7) and find that

drl  gnd1 — gi1202

— = . 3.8
dr? g2 — gi2da (3:8)

The displacement vector, &p, is a tangent to the curve ¢(r!,r?) = C, and we know that the
surface gradient points in a normal direction to this curve along the surface. Thus, from (3.8)
we see that the vector

V = k(92201 — 9120,2)81 + k(91102 — 9120,1)82

is parallel to Vs¢. In order to determine k, we require that

g1 _ %fil _ 1 ¢
/911 - orlost /911 b

where s; is an arc-length coordinate which runs in the same “direction” as the reference

variable, r'. We find that k = g%, so the gradient of the scalar function ¢(r!,r?) may be
written

(91102 — 9120,1)
) 29

(92201 _2912¢’2)g1 n

g g
= (9" o1+ 9"02)g1 + (9701 + 9770 2)8, (3.9)
= $,a8"%, (3.10)

vs¢ =

where we have used (2.21) in the last step, and a = 1, 2.

3.2.1 Example

By using the same example as for the surface divergence, (see Figure 3.1), where the geometric
factors are given by (3.3), we get the simplified formula

¢ ¢
Vs = ﬁgl + Wg%

which again seems reasonable.



3.3 Curvature of a curve

We will consider a curve, C, spanning three dimensions given by

where ' is the #’th cartesian coordinate and s is an arc-length variable along the curve. Such
a curve is depicted in Figure 3.2. Here, we have used

e Normal plane, N

The plane spanned by all vectors normal to the unit tangent vector t(s) = p = i—‘s’ at

the point P.
e Osculating plane, O
The plane spanned by t = ?TE and t = i%)'

Figure 3.2: A curve in three dimensions. N is the normal plane and O is the osculating plane.

We observe that the vector .
_ t(s)

[£(s)]
is a unit normal to C. This vector lies in both the normal plane, N, and in the osculating
plane, O, and therefore points in the direction of the line of intersection between N and O.
The curvature of the curve C' at the point P(s) is given by

ne

Ke = ‘t(8)|7
!
Kee = P(8). (3.11)

Figure 3.3 shows a plot of the curve C projected to the osculating plane at the point P. The
point M at a distance p = %c from P in the direction of n. is called the centre of curvature.

19



The circle in the osculating plane with centre M and radius p is called the circle of curvature

of C at P.

Figure 3.3: The curve, C, projected to the osculating plane at P.

We observe that the circle of curvature is only dependent on t at the point P, such that
any curve through P with the same local behavior will have the same circle of curvature.

3.4 Orthogonal curves on a surface

In Section 3.2 we found that (3.7) must be satisfied for the two directions g—:; and % to be

orthogonal. We will later encounter equations on the form

art\? dr!
al <dr2> + ag <d7“2> +az =0, (3.12)
where the solu‘gions replresent two directions on a surface associated with a point, P. If we
assume that % and g% are the two solutions of (3.12), we find that

drt  ort as
dr2 = §r2 ai’
drl orl  as

767 " 0y
Combining this with (3.7), we get the required relation for orthogonality,

g11a3 — g12a2 + g22a1 = 0. (3.13)

3.4.1 Example

If we again consider a situation with orthonormal base vectors, for instance the case in Figure
3.1, we get the required relation,



as 4+ a; = 0.

Choosing a; = —ag in (3.12), we get the two solutions,
drl _a n \/a% +4a§
dr2  2ag 2a3
ort as \/ a% + 4a§
2a3

W 2a3

Defining the two vectors,
Va3 + 4a3
2a3

as a% + 4a§

2@3 2@3 g1 + g2,

) g1 +g27

we find that

VI'V2:07

which shows that the two directions are orthogonal.

3.5 Principal directions and mean curvature

We now wish to find an expression for the mean curvature at a point on a surface. In Section 3.3
we showed that the curvature at the point P of a curve C' with the parametric representation

p(s) is given by

Relle = I.:.)(S)a
where n, is the unit normal to C' which points in the direction of the intersection of the
osculating plane and the normal plane, and s is an arc-length variable. If we now set n. = n,
where n is the unit normal to a surface S at P, we get the formula

kel = P(s). (3.14)

This formula will give us the curvature for all curves p(s) on S for which the intersection
between the osculating plane and the normal plane points in the same direction as n. This
leads us to a type of curves on S called normal sections:

¢ Normal section

A normal section is a plane curve associated with a general curve on S which passes
through P. A normal section is defined by the intersection of S and a plane containing
the normal n of S at P and a tangent vector, t, to the curve. The normal section at
P will then automatically have t as a tangent vector and n as a principal normal. For
such a curve (3.14) will be the formula for the curvature. We will denote the curvature
of a normal section by k.

An example of a normal section is displayed in Figure 3.4.
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Figure 3.4: A normal section associated with a curve, C, passing through the point, P..

3.5.1 Curvature of a normal section

We now wish to derive another expression for the curvature of a normal section which involves
tensors. From (3.14) we have

. d’p
Kpll = P(S) = ds2
82[) a3 ap s
Oreors + %T
g

— (&ga : n> 770 (3.15)

By the use of (2.23), we find that

Fin = bagr®iP.

If we now assume that we parameterize the curve C by a parameter t instead of the arc-length,
s, we find,

o dredt e
r¢ = ——=—.
dt ds s
Thus, we may write
b Oél ﬁ/
g = 2287 T (3.16)

(s')?
We know that

ds> = dp- dp = Gap dr® dr?



and thus

(s’)2 = gagro‘lrﬂ/.

(3.16) now becomes

baﬁro‘lrﬁl

Kp = ————7
gocﬁra r

_ bapgdr® drP

= 3.17
Gap dredrP ( )

Thus, (3.17) gives us an expression for the curvature of a normal section whose tangent
direction is given by (dr!,dr?).

3.5.2 Principal directions

Twice the mean curvature is given by

k= K/nmin + K/nmax’

where &, and Ky, are the extremas for x, when we consider all possible curves on S
passing through a point, P. We now wish to find which directions on S for which x,, has its

extremas. In (3.17) we have a formula to find the curvature at a point P of the normal section.

ar!
dr2

direction on the surface. Thus, we wish to find the directions, g—:;, such that 86% = 0, where
s is a variable in the angular direction, see Figure 3.6. We see that a vector in the angular
direction may be expressed

In Figure 3.5, we see that for a general vector, v = drlg; + dr?gs, the ratio defines a

§s = orlgy + 0r’gy.

Thus, if we require that

Okin
or (3.18)
i
ol2 ’
where [ = dr®, we will also have aaisn =
(3.17) may be written as
(bag — Kngap)l®l® = 0. (3.19)

If we set

Qap = ba,@ — Kngag,
differentiating (3.19) yields
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Figure 3.5: A vector, v , in a general direction on a surface.

Figure 3.6: A vector, ds , in the angular direction on a surface.



5] ol e
aify lﬁ 1@
i (eat"l") = dap (817 - 8IV>

= aap(091° +1900) = apl” + aayl® = (Gya + aay)l*, 7 =1,2.

(Note here that % denotes differentiation with respect to the direction dr? on the surface.

Thus, the point P is constant, and therefore agﬁﬁ =0 and ag[‘f =0.) aqp is symmetric, and
we get the two equations

RO (320)
(ba2 — Kngaz)dr® = 0. '

If we eliminate k, from (3.20), we end up with the second order equation

1 1

a

2 dr
dlr2> + (g11b22 — g22b11) <

dr
(911012 — g12011) < > + (g12b22 — g22b12) = 0. (3.21)

We see that (3.21) satisfies (3.13) with

a1 = (g11b12 — g12b11),
az = (g11b22 — ga2b11),

as = (g12b22 — ga2b12),

and thus we have shown that the two principal curves are orthogonal.

3.5.3 Mean curvature

From (3.20) we find that

dr! _ (kng21 — ba)
d7’2 a (1)11 — :‘ingn)7
dr'  (kng22 — ba)
d7“2 - (512 — K:ngm) '

Eliminating 3—:3 leads to the second order equation

(911922 — Gia)K2 + (2g12b12 — br1gaz — g11D22)kn + (b11b2g — bly) = 0, (3.22)

from which we obtain x,,,,, and Ky, ,, . Twice the mean curvature is given by

K= K'nmaa: + K/nmin
_ 2(g22b11 — 2g12b12 + g11b22)
2g2
= b11g'! + 2b12g™? + baog®?. (3.23)
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3.5.4 Surface divergence of the unit normal

From (3.1) and (2.23), we find that the divergence of the unit normal may be expressed as

¥, n- L on Oy 1 on _ On
s = gle 92287“1 912&2 2g2 91187“2 912%1

1 On On On On
g 92281 57 ~ G1281 82+911g2 g2 912827 59

(922011 — g12b12 + g11b22 — gr12b21)
3

g
_ (g11b22 — 2g12b12 + go2b11)
- 2
g
= —(b11g"" + 2b12g™ + b22g*?)

= —K.
3.6 The surface Laplacian of the position vector, V2p

If we use (3.9) with (3.2), we find

Vgpi = V- Vpi

o li 922 3’/’ Opy 4z 1 8 gll 87“ 3p1
~gort g g or? g

1.0 (g2291, — 91292, ! 1 0 (91192, — 91291,
g orl g g or2 g

_1 0 (92 ., (92209 _ 0 (g2 —_ (912)) 99
orl I g ) ort orl\ ¢ 92 g ) orl
1 0 gg gu) 992 0 (g2 (912} 99
P () e () 2 0 (22, () )

Thus, we need other expressions for 281 982 981 5,4 6g2 . We may show that
’ P orlr orl> or y




g1
8751 =a1g1 + bi1g2 + cin
0 g1
% = 8752 = aog1 + bago + con
0g2
5,2 = @81+ bsga + c3n
Taking the inner-product of g1, go and n with these three equations leads to
" (g22% B — 29122 St + 9122 So)
1= 24?
b (2911 292 — g1 90 — g1901)
c1 = by
( _ 0922 )
ay = 922 3T 912 5,1
2g2
0
b (911 8%‘22 — 912 897"121)
2 = 242
c2 = b1g
0 e} 0
e — (29225 — 92257 — 91254
3 292
0, 0, 0
b _ (911 d_?rQZ 912 +g 922>
3= 292
c3 = b

Inserted into (3.24), we see that all the tangential components cancel, and we end up with

g11b22 — 2912012 + 922011
Vipi = ( .2 )ni

= RN;.

3.7 Curvature-normal product

From (3.24) we have that

10 9222 o on; 10 (9 ar2 dny
Kn; = t-53 .
g ort g g or g

Finally, by the use of (2.24)-(2.27) and (2.21)
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jmg = L0 ( (9291, — 91202\ [ L O ([ (—gn01, +gnge, >

. 10 11 12 10 21 22
—gﬁ(g(g g1, +g gg,i))+garg(g(g 91, +9792,))
1
= —(998).a- (3.25)
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4 Derivation of the surface integral

We have now obtained all the necessary expressions in order to find another expression for
(1.1) by using surface intrinsic coordinates. By the use of (2.13), (3.25) and (3.10),

/ V03N ds = / 'Ui('yniﬁ + (VSV)’L) ds
T T

/ vi (7971 (995) .0 + Va9l g drt dr?

I
T— 5

Ui(V92% + 79 9.agl + Vagl)g drt dr?

0i(V998 8 + V9,098 + V,aggl) dr' dr?

(79950 drt dr?

I
So—

Yvigs dng — / Viavgl g drt dr?,
ar r

where dn, = é,gdrg, and €11 = €22 = 0,610 = —E21 = ¢.

For the cases we will consider, faﬁ Y95 dng = 0, such that

/viaijnj dsS = — / Vi.aV95' 9 drt dr?.
r r
This is the same integral as proposed in |[2].
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