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Imposing free-surface boundary conditions
using surface intrinsic coordinates

Tormod Bjøntegaard

September 6, 2007

We consider here the incompressible Navier-Stokes equations in three dimen-
sions subject to free surface boundary conditions along part or all of the domain
boundary. In [2] a surface integral for weak imposition of both normal and tangen-
tial surface tension boundary conditions was proposed. This integral was based
on describing the free surface using surface-intrinsic coordinates. In this paper
we derive the proposed surface integral using results from differential geometry. A
key ingredient in this derivation is an expression for the curvature-normal product,
and most of the paper will be devoted to deriving this expression.

1 Introduction

We consider here the incompressible Navier-Stokes equations in three dimensions subject to
free surface boundary conditions along part or all of the domain boundary. One critical
aspect of the numerical approximation of such problems is the incorporation of these boundary
conditions. This is related to the fact that the shape of the free surface is generally unknown,
and the normal and tangential stresses in the presence of surface tension depend on the local
curvature and possibly the surface gradient of the surface tension. The free surface boundary
conditions can be expressed as

Fn = niσijnj = γκ,

Ft = tiσijnj = tk(∇sγ)k,

where ni, i = 1, 2, 3, are the components of the outward unit normal vector (n), ti, i = 1, 2, 3,
are the components of a tangent vector (t), Fn is the normal component of the stress force,
Ft is a tangential component of the stress force in the direction of t, σij is the stress tensor,
γ is the surface tension and κ is twice the mean curvature. Here, ∇sγ represents the surface
gradient of the surface tension and tk(∇sγ)k represents the component of the surface gradient
in the direction of t. Summation over repeated indices is assumed.

In order to naturally incorporate the free surface boundary conditions, we need to use the
stress formulation of the Navier-Stokes equations. For the numerical treatment we will use
the corresponding weak formulation of the free surface problem. This involves multiplying
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the governing equations with suitable test functions and integrating over our computational
domain, Ω. Integration by parts on the viscous term yields the surface integral∫

Γγ

viσijnj dS, (1.1)

where Γγ = ∂Ωγ is the free surface, vi is a test function, and σijnj are the total stress forces
in the i’th direction; it is through this integral the imposition of the free-surface boundary
conditions will be done. In [2] Ho and Patera proposed an alternative surface integral for weak
imposition of both normal and tangential surface tension boundary conditions by the use of
surface intrinsic coordinates. This alternative form reads,

−
∫

Γγ

γ
∂vi

∂rα
gα
i dS, (1.2)

where r1 and r2 are surface parameters, and g1 and g2 are two vectors spanning the tangent
plane which will be introduced later. To our knowledge a complete derivation of this surface
integral has not been done, and the aim of this paper is to derive in detail all the necessary
steps in order to go from (1.1) to (1.2). We remark that the total stress forces

F = Fn + Ft = γnκ +∇sγ,

where Fn is the normal force and Ft represents the tangential force. Thus, we see that in
order to derive (1.2) we need to find an expression for the curvature normal product and the
surface gradient in the context of surface intrinsic coordinates.

In Section 2 we will go through some basic concepts in differential geometry. This is by no
means an exhaustive introduction to differential geometry, but more of a preliminary covering
of the necessary tools needed in the later part of this paper. In Section 3 we cover some
necessary quantities that we will need, like surface divergence, surface gradient and the mean
curvature for a general surface, and in Section 4 we start from (1.1) and derive (1.2).



2 Differential geometry: preliminaries

The introduction to differential geometry in this section is mainly influenced by [1], both in
contents and notation.

2.1 Cartesian coordinate system

A vector in the cartesian coordinate system, xi′ , can be written on the form,

V = V1ix1′ + V2ix2′ + V3ix3′ .

Here, ii′ , i = 1, 2, 3, are an orthonormal basis for Rd (Figure 2.1) such that ixm′ ·ixn′ = δm′n′ . As
an example, the inner-product between two vectors written in this notation can be expressed
as,

V · u = V1u1 + V2u2 + V3u3,

since the orthogonality makes the cross-terms zero.

i
x

3′

i
x

1′

i
x

2′

Figure 2.1: Cartesian coordinate system with orthonormal base vectors.

In the following, we will use xi′ for the cartesian coordinate system and xi or xi∗ for a
general coordinate system.

2.2 General coordinate system

If we instead consider another basis for Rd,

Rd = span{gi}d
i=1,

a vector in R3 can be written

V = V 1g1 + V 2g2 + V 3g3.

For this basis, we have no restriction on orthogonality between the base vectors nor that
they have unit length. The only requirement is that they are linearly independent. The
inner-product between two vectors in R3, V and u, expressed in this basis reads
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V · u = V 1u1g1 · g1 + V 1u2g1 · g2 + V 1u3g1 · g3

+ V 2u1g2 · g1 + V 2u2g2 · g2 + V 2u3g2 · g3

+ V 3u1g3 · g1 + V 3u2g3 · g2 + V 3u3g3 · g3.

We see that all nine entries are included, since the basis vectors in general are not orthogonal.

2.3 The base-vectors

We will consider a point, P , with an associated position vector, p. A small increment, dp,
may be expressed as

dp =
∂p
∂xi

dxi, (2.1)

where xi (i = 1, . . . , d) denotes the reference frame, see Figure 2.2. However, if we assume

d
x

2

dx
1

x
1

x
2

g1

P

P
′ = P + dp

p

x
2′

d
p

x
1′

g
2

Figure 2.2: A differential expressed in a general coordinate system in two dimensions.

that each base-vector, gi, points in the same directions as xi, we may choose {gi} such that

dp = gidxi, (2.2)

and thus, an expression for the i’th base-vector is

gi =
∂p
∂xi

. (2.3)

We now introduce another basis for Rd,

Rd = span{gi}d
i=1,

with the property that gm · gn = δmn = δm
n , the Kronecker delta. This is displayed in two

dimensions in Figure 2.3.
A vector in R3 may now be expressed as



P

x
2

′

x
1

′

g
2

g
1

g2

g1

Figure 2.3: Covariant and contravariant basis vectors associated with the point P in two dimensions.

V = V1g1 + V2g2 + V3g3.

If we return to the example of the inner-product of two vectors, u and v, where u is expressed
in the basis {gi} and v is expressed in {gj}, we get the simplified formula,

u · v = u1v1 + u2v2 + u3v3 = uivi.

In literature, gi is often denoted as the i’th covariant base-vector, and gj as the j’th con-
travariant base-vector.

2.3.1 The metric tensor

Since both the covariant and contravariant base-vectors represent a basis for Rd, the covariant
vector, gi, can be expressed in terms of contravariant base-vectors,

gi = gijgj .

Here, gij are the components of the covariant metric tensor. Similarly, we have

gi = gijgj .

By the use of the orthogonality relation, we get

gi · gj = gikgk · gj = gij = gji,

gi · gj = gikgk · gj = gij = gji,

and

δj
i = gi · gj = gikgk · gjlgl = gikg

jlgk · gl = gikg
jk.

Thus, if the covariant components of the metric tensor is known, it is straightforward to find
the contravariant components.
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2.4 Transformation between coordinate systems

We now assume that we have two reference frames, {xi}d
i=1 and {x∗i }d

i=1, with two correspond-
ing sets of covariant base-vectors, gi and gi∗ (see Figure 2.4). We also have contravariant
vectors which satisfy the relations

gi · gj = δj
i ,

gi∗ · gj∗ = δj∗

i∗ .

x
1
∗

g2 g1∗

g1

g2∗

x
2
∗

x
2

x
1

Figure 2.4: Two sets of base-vectors in two dimensions.

These four sets of base-vectors span the same space, and can therefore be expressed in terms
of each other. Thus, we can write,

gi∗ = βj
i∗gj ,

gi∗ = βi∗
j gj .

Notice that the summation is over the superscript of βj
i for the first case, and the subscript

for the second case. Further,

δk∗
i∗ = gi∗ · gk∗

= βj
i∗gj · βk∗

l gl = βj
i∗β

k∗
l gj · gl = βj

i∗β
k∗
l δl

j

⇓
βj

i∗β
k∗
j = δk∗

i∗ , (2.4)

and in the same manner we have

βj∗

i βk
j∗ = δk

i . (2.5)



2.4.1 The components, βj∗

i

As before, we may write a small vector, ds, in terms of the covariant base-vectors,

ds = gi dxi = βk∗
i gk∗ dxi,

by the use of two reference frames, {xi}d
i=1 and {x∗i }d

i=1. The same vector may also be
expressed as

ds = gk∗ dxk∗
= gk∗

∂xk∗

∂xi
dxi.

Thus,

βk∗
i gk∗ dxi = gk∗

∂xk∗

∂xi
dxi

should be valid for all ds. By systematically choosing,

dx1 = 1, dx2 = 0, dx3 = 0,

dx1 = 0, dx2 = 1, dx3 = 0,

dx1 = 0, dx2 = 0, dx3 = 1,

we find that

βk∗
i gk∗ = gk∗

∂xk∗

∂xi
.

Taking the inner-product of both sides with gj∗ , we get

βk∗
i gk∗ · gj∗ = gk∗ · gj∗ ∂xk∗

∂xi
,

⇓

βj∗

i =
∂xj∗

∂xi
.

2.5 The permutation tensor

We wish to be able to evaluate cross-products in general coordinates. This is closely related
to a tensor often called the permutation tensor, and in order to derive this tensor we will first
introduce the permutation symbols.

2.5.1 The permutation symbols

The permutation symbols, eijk = eijk, are defined by

eijk = +1, if i, j, k is a cyclic sequence (1, 2, 3; 2, 3, 1 or 3, 1, 2 for the 3× 3 case.)
eijk = −1, if i, j, k is a anticyclic sequence (3, 2, 1; 2, 1, 3 or 1, 3, 2 for the 3× 3 case.)
eijk = 0, if i, j, k is acyclic (two or more subscripts are equal.)

7



2.5.2 The determinant

We define a2 to be the determinant of a matrix aj
i :

a2 = |aj
i | =

∣∣∣∣∣∣
a1

1 a1
2 a1

3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

∣∣∣∣∣∣ .
By the use of the permutation symbols, this can also be written as

a2 = ai
1a

j
2a

k
3eijk,

or

a2 = a1
l a

2
ma3

nelmn.

2.5.3 The permutation tensor

We now define the permutation tensor connected to the cartesian coordinate system, xi′ , as

εi′j′k′ = ei′j′k′ . (2.6)

If we wish to transform this tensor to another coordinate system, xi, we may do this in the
same way as introduced earlier,

εijk = εi′j′k′βi′
i βj′

j βk′
k = ei′j′k′βi′

i βj′

j βk′
k .

However, we recognize this as |βi′
i | if {i, j, k} is a cyclic sequence and −|βi′

i | if {i, j, k} is an
anticyclic sequence,

εijk = |βi′
i |, if i, j, k is cyclic,

εijk = −|βi′
i |, if i, j, k is anticyclic.

(2.7)

From (2.4), we know that

βj
i′β

k′
j = δk′

i′ ,

thus,

|βj
i′β

k′
j | = 1,

⇓

|βj
i′ | = ∆, |βi′

j | =
1
∆

,

where ∆ is currently unknown. We define g2 to be the determinant of the metric tensor,

g2 = |gij | =

∣∣∣∣∣∣
g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣ .



Since,

gijg
jk = δk

i ,

we have

|gijg
jk| = 1,

⇓
|gij ||gjk| = 1,

⇓

|gjk| = 1
g2

.

We transform the metric tensor to the cartesian reference frame,

gi′j′ = gijβ
i
i′β

j
j′ ,

which leads to

(g′)2 = |gi′j′ | = |gijβ
i
i′ ||β

j
j′ | = |gij ||βi

i′ ||β
j
j′ | = g2∆∆. (2.8)

For the cartesian coordinate system, we know that

g′ = 1,

since the metric tensor is simply the identity matrix, and this leads to

1
∆

= g.

Thus, we find that the tensor |βi′
i |, which is used for expressing a base vector in a general coor-

dinate system in terms of base vectors in the cartesian coordinate system, has the determinant
g. We arrive at,

εijk = |βi′
i | = g, if i, j, k is cyclic,

εijk = −|βi′
i | = −g, if i, j, k is anticyclic, (2.9)

εijk = 0, if i, j, k is acyclic.

2.6 Representation of a three-dimensional surface

We will use surface intrinsic coordinates for describing three-dimensional surfaces. Such
surfaces will in general be described by two surface parameters and written on the form
xi′ = fi(r1, r2), i = 1, 2, 3. We are free to choose the way we describe the surface in terms
of r1 and r2, but it is natural to choose r1 and r2 as variables on a pre-determined refer-
ence domain, which is connected to the physical surface through a one-to-one mapping. The
covariant base-vectors are then given by
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gi =
∂p
∂ri

.

Note that, independent of the choice of r1 and r2, the covariant base-vector, gi, will at
each point on the surface point in the mapped direction of ri while gi will generally have a
component in both the r1 and r2 direction.

In the following we will use the second approach, where r1 and r2 are variables on a reference
domain, Γ̂ (see Figure 2.5.) Here, we see that a line on the reference domain in which r1 varies
and r2 is constant corresponds to a curve on the physical surface, Γ, through the mapping
F . The vector g1 will be a tangent to this curve at all grid points, and similarly g2 will be
the tangent vector along a curve on Γ corresponding to constant r1 and varying r2 on the
reference domain. Thus, {g1,g2} and {g1,g2} will both span the tangent plane at all points
on the surface. For the third direction, we will in the following choose g3 = g3 = n, such that

g1

F

Γ̂

Γ

x
3
′

x
1

′

x
2
′

r
2

r
1

g2

n

Figure 2.5: Mapping between reference domain and physical domain for a surface in three dimen-
sions.

the third base vector is orthogonal to the tangent vectors as well as normalized,

g3 · gi = 0, i = 1, 2,
√

g3 · g3 = 1,

⇓
g3 = n.

Note that for this choice of g3 we get,

g2 =

∣∣∣∣∣∣
g11 g12 0
g21 g22 0
0 0 1

∣∣∣∣∣∣ =
∣∣∣∣g11 g12

g21 g22

∣∣∣∣ .
2.7 Cross product

2.7.1 Cross product between base vectors

If we choose gi′ as the orthonormal basis in the cartesian coordinate system,

gi′ = ixi′ , i = 1, 2, 3,



we know that for this case

gi′ × gj′ = εi′j′k′gk′
(2.10)

is valid. Here εi′j′k′ is the permutation tensor associated with the cartesian coordinate system,
defined in (2.6) and g3′ = g3′ = ix3′ . For general coordinate directions, we may now write

gi × gj = (βi′
i gi′)× (βj′

j gj′)

= βi′
i βj′

j (gi′ × gj′),

which by the use of (2.10) can be written as

= βi′
i βj′

j εi′j′k′gk′

= βi′
i βj′

j βk′
k εi′j′k′gk

⇓
gi × gj = εijkgk. (2.11)

2.7.2 Area-element on the surface

We now denote s1 and s2 to be surface coordinates pointing in the same directions as r1 and
r2, respectively, such that s1 = s1(r1) and s2 = s2(r2), see Figure 2.6. We are interested
in expressing an area-element, dS, on a general three-dimensional surface in terms of the
reference variables, r1 and r2.

dS
g2

ds
2

n

g1

ds
1

s1

s2

P

Figure 2.6: A surface element.

We assign ds1 to be a vector originating from P associated with a small increment dr1

on the reference domain, and similarily ds2 is the vector associated with the increment dr2.
Thus, ds1 points in the direction of g1 and ds2 points in the direction of g2 and we have the
relation
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ds1 × ds2 = dSn,

⇓
dS = |ds1 × ds2|. (2.12)

We also have

ds1 =
∂s1

∂r1
dr1 =

∂p
∂r1

dr1 = g1 dr1,

ds2 =
∂s2

∂r2
dr2 =

∂p
∂r2

dr2 = g2 dr2.

Inserted into (2.12), we get

dS = |(g1 dr1 × g2 dr2)|,
= |g1 × g2|dr1 dr2.

From (2.11) and our choice of g3 = n, we get

|g1 × g2| = |ε123n|,
= |ε123||n|,
= ε123,

⇓
dS = g dr1 dr2, (2.13)

by the use of (2.9) and the fact that g is always positive.

2.7.3 Cross-product between two general vectors

The cross product between two general vectors expressed in a covariant basis

a = aigi,

b = bjgj ,

becomes

a× b = aigi × bjgj ,

= aibjgi × gj ,

= aibjεijkgk. (2.14)



2.7.4 Normal vector of a line element

We consider a line element vector, ds, associated with a curve, C, on an arbitrary curved
surface, S. In Figure 2.7 this curve is the boundary of the surface, but in general, C could
be anywhere on S. We will consider a point P on C where ds is a tangent vector, g3 = n is
the normal to S at P and dn is an outer normal to C. We express ds in terms of covariant
base-vectors and dn in terms of contravariant base-vectors,

ds = drαgα,

dn = dnβgβ. (2.15)

Then, the outer normal to C at P may be written

dn = ds× g3

= drα(gα × g3)

= drαεα3βgβ. (2.16)

Comparing (2.15) and (2.16) leads to

dnβ = drαεα3β,

dnα = εβ3α drβ,

⇓
= ε̃αβ drβ, (2.17)

where ε̃12 = g, ε̃21 = −g and ε̃11 = ε̃22 = 0. Since g3 is of unit length, we observe that
|dn| = |ds|.

ds

dn

nS

P

C

Figure 2.7: Outward normal to the point P on the curve C.
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2.8 Summary

In summary, we have some results and definitions which will be used in the following sections:

gα =
∂p
∂rα

, (2.18)

gα · gβ = gαβ , (2.19)

gαγgγβ = δβ
α, (2.20)

gα = gαβgβ, (2.21)

g =
√

[det(gαβ)], (2.22)

bαβ = n · ∂gα

∂rβ
= −gα ·

∂n
∂rβ

(2.23)

The relation between the contravariant and covariant metric tensor is given by

[
g11 g12

g21 g22

] [
g11 g12

g21 g22

]
=
[
1 0
0 1

]
⇓[

g11 g12

g21 g22

]
=

1
g2

[
g22 −g12

−g21 g11

] [
1 0
0 1

]
=

1
g2

[
g22 −g12

−g21 g11

]
⇓

g11 =
1
g2

g22 (2.24)

g12 = − 1
g2

g12 (2.25)

g21 = g12 (2.26)

g22 =
1
g2

g11 (2.27)



3 Mean curvature and related operators

The main objective in this section is to find an expression for the curvature-normal product.
In order to do this we will derive expressions for some important quantities like gradient,
divergence and principal directions related to the mean curvature in the context of a general
coordinate system. The contents of this section is mainly influenced by [4] and [3], while the
notation is mostly the same as used in [1] and [3].

3.1 Surface divergence of a vector in general coordinates

If we have a vector, F = F(r1, r2), expressed in general coordinates, the divergence at a given
point is given by [4]

∇s · F =
1
g2

g1 ·
(

g22
∂F
∂r1

− g12
∂F
∂r2

)
+

1
g2

g2 ·
(

g11
∂F
∂r2

− g12
∂F
∂r1

)
. (3.1)

We now wish to find another expression for ∇s · F. Expressing F in covariant base-vectors,
we may write F = ag1 + bg2 + cn. Thus, the divergence may be written as

∇s · F = ∇s · (ag1) +∇s · (bg2) +∇s · (cn).

By the help of (3.1), we get

∇s · (ag1) =
1
g2

g1 ·
[
g22

(
∂a

∂r1
g1 + a

∂g1

∂r1

)
− g12

(
∂a

∂r2
g1 + a

∂g1

∂r2

)]
+

1
g2

g2 ·
[
g11

(
∂a

∂r2
g1 + a

∂g1

∂r2

)
− g12

(
∂a

∂r1
g1 + a

∂g1

∂r1

)]
=

1
g2

[
g22

∂a

∂r1

(
g1 · g1

)
+ g22a

(
g1 ·

∂g1

∂r1

)
− g12

∂a

∂r2

(
g1 · g1

)
− g12a

(
g1 ·

∂g1

∂r2

)]
+

1
g2

[
g11

∂a

∂r2

(
g2 · g1

)
+ g11a

(
g2 ·

∂g1

∂r2

)
− g12

∂a

∂r1

(
g1 · g2

)
− g12a

(
g2 ·

∂g1

∂r1

)]
To proceed, we need the following quantities (note that ∂g1

∂r2 = ∂g2

∂r1 ),

g1 ·
∂g1

∂r1
=

1
2

∂(g1 · g1)
∂r1

=
1
2

∂g11

∂r1
,

g1 ·
∂g1

∂r2
=

1
2

∂(g1 · g1)
∂r2

=
1
2

∂g11

∂r2
,

g2 ·
∂g1

∂r2
= g2 ·

∂g2

∂r1
=

1
2

∂(g2 · g2)
∂r1

=
1
2

∂g22

∂r1
,

g2 ·
∂g1

∂r1
=

∂(g1 · g2)
∂r1

− g1 ·
∂g2

∂r1
=

∂g12

∂r1
− 1

2
∂g11

∂r2
.

Thus,
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∇s · (ag1) =
1
g2

[
g22

∂a

∂r1
g11 + g22a

(
1
2

∂g11

∂r1

)
− g12

∂a

∂r2
g11 − g12a

(
1
2

∂g11

∂r2

)]
+

1
g2

[
g11

∂a

∂r2
g12 + g11a

(
1
2

∂g22

∂r1

)
− g12

∂a

∂r1
g12 − g12a

(
∂g12

∂r1
− 1

2
∂g11

∂r2

)]

=
1
g2

g2︷ ︸︸ ︷
(g11g22 − g2

12)
∂a

∂r1
+

a

2g2

(
g11

∂g22

∂r1
+ g22

∂g11

∂r1
− 2g12

∂g12

∂r1

)
,

=
∂a

∂r1
+

a

2g2

(
g11

∂g22

∂r1
+ g22

∂g11

∂r1
− 2g12

∂g12

∂r1

)
,

=
∂a

∂r1
+

a

2g2

∂

∂r1
(g11g22 − g2

12),

=
1
g

∂(ga)
∂r1

,

where g =
√

g11g22 − g2
12. Similarly, we have

∇s · (bg2) =
1
g

∂(gb)
∂r2

,

and we will later show that

∇s · (cn) = −κc,

where κ is twice the mean curvature. This gives us another formula for the divergence of a
vector, F = ag1 + bg2 + cn,

∇s · F =
1
g

[
∂(ga)
∂r1

+
∂(gb)
∂r2

]
− κc. (3.2)

3.1.1 Example

As a simple example we will consider the surface of a sphere with radius r = 1.
We will choose basis vectors

g1 = − sin θix1′ + cos θix2′ + 0ix3′ ,

g2 = cos φ cos θix1′ + cos φ sin θix2′ − sinφix3′ ,

where {ixi′}3
i=1 as usual are the standard basis vectors in the cartesian coordinate system. We

observe that

g12 = g1 · g2 = 0,

g11 = g1 · g1 = 1,

g22 = g2 · g2 = 1,

⇓
g = 1.

(3.3)



x

φ
P (r, φ, θ)

y
θ

z

g1

g2

r

Figure 3.1: Sphere with orthonormal base-vectors.

Inserted into (3.2), we find that the surface divergence to a vector F = ag1 + bg2 for this case
is given by

∇s · F =
∂a

∂r1
+

∂b

∂r2
,

which is what we would expect.

3.2 Surface gradient of a scalar field

P

dp

r2
g1g2

δp

r1(up, vp)

We now consider a scalar function, φ(r1, r2), on a surface, S, parameterized by the reference
variables r1 and r2. We assume that φ(r1, r2) = C is a level curve on the surface and that P
is a point on this curve. If (δr1, δr2) is a small displacement from P such that

δp = g1δr
1 + g2δr

2 (3.4)

is a tangent to this curve, then

φ,1δr
1 + φ,2δr

2 = 0, (3.5)

where φ,1 = ∂φ
∂r1 and φ,2 = ∂φ

∂r2 .
We consider another displacement (dr1,dr2), with associated displacement vector,

dp = g1 dr1 + g2 dr2, (3.6)

and find that the inner-product between δp and dp is given by
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dp · δp =
(
g1 dr1 + g2 dr2

)
·
(
g1δr

1 + g2δr
2

)
= g11 dr1δr1 + g12( dr1δr2 + dr2δr1) + g22 dr2δr2.

We now assume that dp and δp are perpendicular, which leads to the relation

g11
dr1

dr2

δr1

δr2
+ g12

(
dr1

dr2
+

δr1

δr2

)
+ g22 = 0. (3.7)

From (3.5) we see that
δr1

δr2
= −φ,2

φ,1
.

We insert this into (3.7) and find that

dr1

dr2
=

g22φ,1 − g12φ,2

g11φ,2 − g12φ,1
. (3.8)

The displacement vector, δp, is a tangent to the curve φ(r1, r2) = C, and we know that the
surface gradient points in a normal direction to this curve along the surface. Thus, from (3.8)
we see that the vector

V = k(g22φ,1 − g12φ,2)g1 + k(g11φ,2 − g12φ,1)g2

is parallel to ∇sφ. In order to determine k, we require that

V · g1√
g11

=
∂φ

∂r1

∂r1

∂s1
=

1
√

g11
φ,1,

where s1 is an arc-length coordinate which runs in the same “direction” as the reference
variable, r1. We find that k = 1

g2 , so the gradient of the scalar function φ(r1, r2) may be
written

∇sφ =
(g22φ,1 − g12φ,2)

g2
g1 +

(g11φ,2 − g12φ,1)
g2

g2,

= (g11φ,1 + g12φ,2)g1 + (g12φ,1 + g22φ,2)g2, (3.9)
= φ,αgα, (3.10)

where we have used (2.21) in the last step, and α = 1, 2.

3.2.1 Example

By using the same example as for the surface divergence, (see Figure 3.1), where the geometric
factors are given by (3.3), we get the simplified formula

∇sφ =
∂φ

∂r1
g1 +

∂φ

∂r2
g2,

which again seems reasonable.



3.3 Curvature of a curve

We will consider a curve, C, spanning three dimensions given by

p(s) =

x1′(s)
x2′(s)
x3′(s)

 ,

where xi′ is the i’th cartesian coordinate and s is an arc-length variable along the curve. Such
a curve is depicted in Figure 3.2. Here, we have used

• Normal plane, N

The plane spanned by all vectors normal to the unit tangent vector t(s) = ṗ = dp
ds at

the point P .

• Osculating plane, O

The plane spanned by t = dp
ds and ṫ = d2p

ds2 .

p(s)

N

P

C

O

Figure 3.2: A curve in three dimensions. N is the normal plane and O is the osculating plane.

We observe that the vector

nc =
ṫ(s)
|ṫ(s)|

is a unit normal to C. This vector lies in both the normal plane, N , and in the osculating
plane, O, and therefore points in the direction of the line of intersection between N and O.
The curvature of the curve C at the point P (s) is given by

κc = |ṫ(s)|,
⇓

κcnc = p̈(s). (3.11)

Figure 3.3 shows a plot of the curve C projected to the osculating plane at the point P . The
point M at a distance ρ = 1

κc
from P in the direction of nc is called the centre of curvature.
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The circle in the osculating plane with centre M and radius ρ is called the circle of curvature
of C at P .

C

t

ρ =
1

κ
c

P

M

nc

Figure 3.3: The curve, C, projected to the osculating plane at P .

We observe that the circle of curvature is only dependent on ṫ at the point P , such that
any curve through P with the same local behavior will have the same circle of curvature.

3.4 Orthogonal curves on a surface

In Section 3.2 we found that (3.7) must be satisfied for the two directions dr1

dr2 and δr1

δr2 to be
orthogonal. We will later encounter equations on the form

a1

(
dr1

dr2

)2

+ a2

(
dr1

dr2

)
+ a3 = 0, (3.12)

where the solutions represent two directions on a surface associated with a point, P . If we
assume that dr1

dr2 and δr1

δr2 are the two solutions of (3.12), we find that

dr1

dr2
+

δr1

δr2
= −a2

a1
,

dr1

dr2

δr1

δr2
=

a3

a1
.

Combining this with (3.7), we get the required relation for orthogonality,

g11a3 − g12a2 + g22a1 = 0. (3.13)

3.4.1 Example

If we again consider a situation with orthonormal base vectors, for instance the case in Figure
3.1, we get the required relation,



a3 + a1 = 0.

Choosing a1 = −a3 in (3.12), we get the two solutions,

dr1

dr2
= − a2

2a3
+

√
a2

2 + 4a2
3

2a3
,

δr1

δr2
= − a2

2a3
−
√

a2
2 + 4a2

3

2a3
.

Defining the two vectors,

V1 =

(
− a2

2a3
+

√
a2

2 + 4a2
3

2a3

)
g1 + g2,

V2 =

(
− a2

2a3
−
√

a2
2 + 4a2

3

2a3

)
g1 + g2,

we find that

V1 ·V2 = 0,

which shows that the two directions are orthogonal.

3.5 Principal directions and mean curvature

We now wish to find an expression for the mean curvature at a point on a surface. In Section 3.3
we showed that the curvature at the point P of a curve C with the parametric representation
p(s) is given by

κcnc = p̈(s),

where nc is the unit normal to C which points in the direction of the intersection of the
osculating plane and the normal plane, and s is an arc-length variable. If we now set nc = n,
where n is the unit normal to a surface S at P , we get the formula

κcn = p̈(s). (3.14)

This formula will give us the curvature for all curves p(s) on S for which the intersection
between the osculating plane and the normal plane points in the same direction as n. This
leads us to a type of curves on S called normal sections:

• Normal section

A normal section is a plane curve associated with a general curve on S which passes
through P . A normal section is defined by the intersection of S and a plane containing
the normal n of S at P and a tangent vector, t, to the curve. The normal section at
P will then automatically have t as a tangent vector and n as a principal normal. For
such a curve (3.14) will be the formula for the curvature. We will denote the curvature
of a normal section by κn.

An example of a normal section is displayed in Figure 3.4.
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t
S

C
P

n

Figure 3.4: A normal section associated with a curve, C, passing through the point, P ..

3.5.1 Curvature of a normal section

We now wish to derive another expression for the curvature of a normal section which involves
tensors. From (3.14) we have

κnn = p̈(s) =
d2p
ds2

=
∂2p

∂rα∂rβ
ṙαṙβ +

∂p
∂rα

r̈α

⇓

κn =
(

∂2p
∂rα∂rβ

· n
)

ṙαṙβ

=
(

∂gα

∂rβ
· n
)

ṙαṙβ. (3.15)

By the use of (2.23), we find that

κn = bαβ ṙαṙβ.

If we now assume that we parameterize the curve C by a parameter t instead of the arc-length,
s, we find,

ṙα =
drα

dt

dt

ds
=

rα′

s′
.

Thus, we may write

κn =
bαβrα′

rβ′

(s′)2
(3.16)

We know that

ds2 = dp · dp = gαβ drα drβ



and thus

(s′)2 = gαβrα′
rβ′

.

(3.16) now becomes

κn =
bαβrα′

rβ′

gαβrα′rβ′

=
bαβ drα drβ

gαβ drα drβ
. (3.17)

Thus, (3.17) gives us an expression for the curvature of a normal section whose tangent
direction is given by (dr1,dr2).

3.5.2 Principal directions

Twice the mean curvature is given by

κ = κnmin + κnmax ,

where κnmin and κnmax are the extremas for κn when we consider all possible curves on S
passing through a point, P . We now wish to find which directions on S for which κn has its
extremas. In (3.17) we have a formula to find the curvature at a point P of the normal section.
In Figure 3.5, we see that for a general vector, v = dr1g1 + dr2g2, the ratio dr1

dr2 defines a
direction on the surface. Thus, we wish to find the directions, dr1

dr2 , such that ∂κn
∂s = 0, where

s is a variable in the angular direction, see Figure 3.6. We see that a vector in the angular
direction may be expressed

δs = δr1g1 + δr2g2.

Thus, if we require that

∂κn

∂l1
= 0,

∂κn

∂l2
= 0,

(3.18)

where lα = drα, we will also have ∂κn
∂s = 0.

(3.17) may be written as

(bαβ − κngαβ)lαlβ = 0. (3.19)

If we set

aαβ = bαβ − κngαβ ,

differentiating (3.19) yields
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Figure 3.5: A vector, v , in a general direction on a surface.

s
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g2

r
1

r
2

δr
2
g2

δr
1
g1

ds

v

P

Figure 3.6: A vector, ds , in the angular direction on a surface.



∂

∂lγ
(aαβlαlβ) = aαβ

(
∂lα

∂lγ
lβ + lα

∂lβ

∂lγ

)
= aαβ(δα

γ lβ + lαδβ
γ ) = aγβlβ + aαγlα = (aγα + aαγ)lα, γ = 1, 2.

(Note here that ∂
∂lγ denotes differentiation with respect to the direction drγ on the surface.

Thus, the point P is constant, and therefore ∂bαβ

∂lγ = 0 and ∂gαβ

∂lγ = 0.) aαβ is symmetric, and
we get the two equations

(bα1 − κngα1) drα = 0,

(bα2 − κngα2) drα = 0.
(3.20)

If we eliminate κn from (3.20), we end up with the second order equation

(g11b12 − g12b11)
(

dr1

dr2

)2

+ (g11b22 − g22b11)
(

dr1

dr2

)
+ (g12b22 − g22b12) = 0. (3.21)

We see that (3.21) satisfies (3.13) with

a1 = (g11b12 − g12b11),
a2 = (g11b22 − g22b11),
a3 = (g12b22 − g22b12),

and thus we have shown that the two principal curves are orthogonal.

3.5.3 Mean curvature

From (3.20) we find that

dr1

dr2
=

(κng21 − b21)
(b11 − κng11)

,

dr1

dr2
=

(κng22 − b22)
(b12 − κng12)

.

Eliminating dr1

dr2 leads to the second order equation

(g11g22 − g2
12)κ

2
n + (2g12b12 − b11g22 − g11b22)κn + (b11b22 − b2

12) = 0, (3.22)

from which we obtain κnmax and κnmin . Twice the mean curvature is given by

κ = κnmax + κnmin

=
2(g22b11 − 2g12b12 + g11b22)

2g2

= b11g
11 + 2b12g

12 + b22g
22. (3.23)
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3.5.4 Surface divergence of the unit normal

From (3.1) and (2.23), we find that the divergence of the unit normal may be expressed as

∇s · n =
1
g2

g1 ·
(

g22
∂n
∂r1

− g12
∂n
∂r2

)
+

1
g2

g2 ·
(

g11
∂n
∂r2

− g12
∂n
∂r1

)
=

1
g2

(
g22g1 ·

∂n
∂r1

− g12g1 ·
∂n
∂r2

+ g11g2 ·
∂n
∂r2

− g12g2 ·
∂n
∂r1

)
= −(g22b11 − g12b12 + g11b22 − g12b21)

g2

= −(g11b22 − 2g12b12 + g22b11)
g2

= −(b11g
11 + 2b12g

12 + b22g
22)

= −κ.

3.6 The surface Laplacian of the position vector, ∇2
sp

If we use (3.9) with (3.2), we find

∇2
spi = ∇s · ∇spi

=
1
g

∂

∂r1

(
g22

∂pi

∂r1 − g12
∂pi

∂r2

g

)
+

1
g

∂

∂r2

(
g11

∂pi

∂r2 − g12
∂pi

∂r1

g

)

=
1
g

∂

∂r1

(
g22g1i − g12g2i

g

)
+

1
g

∂

∂r2

(
g11g2i − g12g1i

g

)
=

1
g

(
∂

∂r1

(
g22

g

)
g1i +

(
g22

g

)
∂g1i

∂r1
− ∂

∂r1

(
g12

g

)
g2i −

(
g12

g

)
∂g2i

∂r1

)
+

1
g

(
∂

∂r2

(
g11

g

)
g2i +

(
g11

g

)
∂g2i

∂r2
− ∂

∂r2

(
g12

g

)
g1i −

(
g12

g

)
∂g1i

∂r2

)
. (3.24)

Thus, we need other expressions for ∂g1

∂r1 , ∂g2

∂r1 , ∂g1

∂r2 and ∂g2

∂r2 . We may show that



∂g1

∂r1
= a1g1 + b1g2 + c1n

∂g2

∂r1
=

∂g1

∂r2
= a2g1 + b2g2 + c2n

∂g2

∂r2
= a3g1 + b3g2 + c3n

Taking the inner-product of g1, g2 and n with these three equations leads to

a1 =
(g22

∂g11

∂r1 − 2g12
∂g12

∂r1 + g12
∂g11

∂r2 )
2g2

b1 =
(2g11

∂g12

∂r1 − g11
∂g11

∂r2 − g12
∂g11

∂r1 )
2g2

c1 = b11

a2 =
(g22

∂g11

∂r2 − g12
∂g22

∂r1 )
2g2

b2 =
(g11

∂g22

∂r1 − g12
∂g11

∂r2 )
2g2

c2 = b12

a3 =
(2g22

∂g12

∂r2 − g22
∂g22

∂r1 − g12
∂g22

∂r2 )
2g2

b3 =
(g11

∂g22

∂r2 − 2g12
∂g12

∂r2 + g12
∂g22

∂r1 )
2g2

c3 = b22

Inserted into (3.24), we see that all the tangential components cancel, and we end up with

∇2
spi =

(g11b22 − 2g12b12 + g22b11)
g2

ni

= κni.

3.7 Curvature-normal product

From (3.24) we have that

κni =
1
g

∂

∂r1

(
g22

∂pi

∂r1 − g12
∂pi

∂r2

g

)
+

1
g

∂

∂r2

(
g11

∂pi

∂r2 − g12
∂pi

∂r1

g

)
.

Finally, by the use of (2.24)-(2.27) and (2.21)
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κni =
1
g

∂

∂r1

(
g

(
g22g1,i − g12g2,i

g2

))
+

1
g

∂

∂r2

(
g

(
−g12g1,i + g11g2,i

g2

))
=

1
g

∂

∂r1
(g(g11g1,i + g12g2,i)) +

1
g

∂

∂r2
(g(g21g1,i + g22g2,i))

=
1
g
(ggα

i ),α. (3.25)



4 Derivation of the surface integral

We have now obtained all the necessary expressions in order to find another expression for
(1.1) by using surface intrinsic coordinates. By the use of (2.13), (3.25) and (3.10),

∫
Γ

viσijnj dS =
∫

Γ
vi(γniκ + (∇sγ)i) dS

=
∫

Γ̂
vi(γg−1(ggα

i ),α + γ,αgα
i )g dr1 dr2

=
∫

Γ̂
vi(γgα

i,α + γg−1g,αgα
i + γ,αgα

i )g dr1 dr2

=
∫

Γ̂
vi(γggα

i,α + γg,αgα
i + γ,αggα

i ) dr1 dr2

=
∫

Γ̂
vi(γggα

i ),α dr1 dr2

=
∮

∂Γ̂
γvig

α
i dnα −

∫
Γ̂

vi,αγgα
i g dr1 dr2.

where dnα = ε̃αβ drα, and ε̃11 = ε̃22 = 0, ε̃12 = −ε̃21 = g.

For the cases we will consider,
∮
∂Γ̂ γvig

α
i dnα = 0, such that∫

Γ
viσijnj dS = −

∫
Γ̂

vi,αγgα
i g dr1 dr2.

This is the same integral as proposed in [2].
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