
norges teknisk-naturvitenskapelige
universitet

Exact computation of the solution of the free rigid
body with applications

by

E. Celledoni, F. Fassò, N. Säfstöm, A. Zanna

preprint
numerics no. 6/2007

norwegian university of
science and technology

trondheim, norway

This report has URL
http://www.math.ntnu.no/preprint/numerics/2007/N6-2007.pdf

Address: Department of Mathematical Sciences, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway.

Exact computation of the solution of the
free rigid body with applications

E. Celledoni, F. Fassò, N. Säfstöm, A. Zanna

September 8, 2007

We discuss techniques for the direct, exact computation of the solution of the
equations of motion of a Free Rigid Body. The method relies on the efficient
and accurate computation of Jacobi ellipic functions and integrals. Here exact
means that the approximation produces an error of the size of machine accuracy.

We show how these techniques combined with splitting methods can be prof-
itably applied to the approximation of systems of torqued rigid bodies. The
performance of the proposed strategy is illustrated in applications to molecular
dynamics and satellite dynamics.

We discuss techniques for the direct, exact computation of the solution of the
equations of motion of a Free Rigid Body. The method relies on the efficient
and accurate computation of Jacobi ellipic functions and integrals. Here exact
means that the approximation produces an error of the size of machine accuracy.

We show how these techniques combined with splitting methods can be prof-
itably applied to the approximation of systems of torqued rigid bodies. The
performance of the proposed strategy is illustrated in applications to molecular
dynamics and satellite dynamics.

1 Introduction

We discuss techniques for the direct, exact computation of the solution of the
equations of motion of a Free Rigid Body. The method relies on the efficient
and accurate computation of Jacobi ellipic functions and integrals. Here exact
means that the approximation produces an error of the size of machine accuracy.

The rigid body equations are integrable, meaning that their exact solution
can be found in terms of known mathematical functions (elliptic functions).
One of the earliest solutions dates back to Jacobi [13], although he attributed
to Legendre the solution of the problem in terms of elliptic integrals of first
and third type, [13]. As this is one of the most classical problems in mechanics,
several other representations for the solution have been found (see for instance
[25], [2] and [19]).

We are interested in accurate numerical simulations with rigid bodies, there-
fore we wish to single out algorithms that are amenable for numerical com-
putations. By accurate we mean that the methods not only should produce a
small global numerical error, but also they should exactly preserve as many as

1

possible of the underlying geometrical properties of the system, as the kinetic
energy, the Lie-Poisson structure, the time-symmetry of the flow, the Casimirs.

In [5] it was shown that methods solving exactly the angular momentum were
numerically competitive and had good geometrical properties. In this paper we
intend to explore whether the same is true for the attitude rotation. The equa-
tions for the attitude matrix are more complicated. The classical approach
is to introduce Euler’s angles, [2], [13]. As in many simulations it is prefer-
able to work in Cartesian coordinates or in quaternions, we have investigated
approaches that avoid spherical coordinates all together.

For the case of Cartesian coordinates, we propose a method that can be
summarised as follows: it rotates one of the axes of the attitude matrix on the
angular momentum, so that the other two axes lie on the invariant plane; then,
the position of the two latter axes is parametrised by an angle with respect to
a known (moving) reference frame; finally, the angle parameter is computed by
evaluating an elliptic integral of the third kind, which is the most demanding
part, from a computational point of view. After having derived the method,
we have discovered similarities with an approach described in [6, 7]. What is
particular for our approach, is the way the known moving reference frame is
chosen.

The quaternion formulation is built on the same philosophy, we base our
method on a method proposed by [14], which we reformulate and generalise.
We obtain an algorithm which, for different choices of the parameters, gives
a quaternion implementation of different expressions for the exact solution,
some of which can be found in the classical mechanics literature. In all cases
the accurate computation of an incomplete elliptic integral of the third kind is
required.

To compute this integral we consider here two strategies, the well known
method of Carlson [20], and Gaussian quadrature. The latter allows us to
reduce the computational cost by 2/3.

Earlier work on accurate approximation of the solution of the free rigid body
equations can be found in [16], and more recently in [12]. In this approach
the classical discrete Moser-Veselov algorithm has been turned into a high
order method using techniques of backward error analysis. As it turns out
the exact solution can be tabulated at discrete time by applying the discrete
Moser-Veselov algorithm to a modified free rigid body equation. The difference
between the original free rigid body equation and the modified one is that in
the latter the principal moments of inertia are given by an expansion in powers
of the step-size h. Including more and more terms in this expansion improves
the order of the methods at a very moderate increase in computational cost.

In this paper we perform comparisons of the implementation of the exact
solution with these approaches. Following [11], we consider a range of differ-
ent moments of inertia, (I1, I2, I3), and investigate how the different methods
perform for different choices. We obtain that all the methods perform well
for oblate symmetric bodies and less well for very flat symmetric rigid bodies
(with the first inertia moment close to zero). The exact methods presented in
this paper perform well independently of the choice of the inertia moments. In
particular our methods, perform better, compared to others, when using large
step-sizes. Our conclusion is that the implementation of the exact solution of
the free rigid body is in general a competitive approach compared to other

numerical methods.
The numerical exact solution of the free rigid body equations is of interest

as it can be used as a building block for splitting methods of high order. We
show how the proposed techniques combined with splitting methods can be
profitably applied to the approximation of systems of torqued rigid bodies. The
performance of the proposed strategy is illustrated in applications to molecular
dynamics and satellite dynamics.

The paper is organized as follows. In section two we review the exact in-
tegration of the angular momentum equation and present our approaches for
the exact integration of the attitude matrix, using rotations and quaternions.
We give a unifying overview of the relation between the two. Section three is
devoted to extensive numerical experiments. Finally section four is devoted to
some concluding remarks.

2 Accurate integration methods for the full dynamics
of the free rigid body

To describe the motion of a free rigid body (FRB) we consider the Euler’s
equations of motion, [9], [10]. Consider a coordinate system fixed in space
Oξ1ξ2ξ3, with orthonormal coordinate frame e1, e2, e3 and a moving coordinate
system Ox1x2x3 with origin in the center of mass of the body (body coordinate
frame). For the sake of simplicity we assume e1, e2, e3 are the three canonical
vectors in R3.

Assuming that the axes of the body frame, Ox1x2x3, coincide with the prin-
cipal axes of inertia, the equations of motion for the FRB are

ṁ = m× I−1m, (1)

Q̇ = Q Î−1m, (2)

with m(t0) = m0, and Q(t0) = 1 the 3 × 3 identity matrix. Here we assume
I = diag(I1, I2, I3) is the inertia tensor, m = (m1,m2,m3)T ∈ R3 is the angular
momentum in the body frame, and Q ∈ SO(3) is the attitude matrix describing
the configuration of the body. The matrix Q transforms any vector in body
coordinates into the corresponding vector in space coordinates. The columns
of this matrix are an orthonormal basis for the body coordinate system. For
ease of notation in (2) we have used the hat-map, ̂ : R3 → so(3). This map
associates to any vector v a skew-symmetric matrix v̂ as follows,

v =

 v1
v2
v3

 , v̂ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 ,

and is such that v̂u = v × u.
Equations (1) and (2) are completely integrable. Using (1) and (2) it is easy

to show that the angular momentum is constant in the coordinate system fixed
in space, i.e.

m0 = Q(t)m(t).

The kinetic energy T , and the length of the angular momentum G are invari-
ants of the the solution and have the following expressions in terms of the

3

components of the solution

T =
1
2

(
m2

1

I1
+
m2

2

I2
+
m2

3

I3

)
, G2 = ‖m‖2 = m2

1 +m2
2 +m2

3. (3)

Without loss of generality we will assume G2 = 1 as other norms for m simply
correspond to a time scaling, t→ ‖m0‖ t.

Jacobi derived the solution of the equations (1) and (2) in terms of Jacobi
elliptic functions in 1849, [13]. In the sequel for the sake of completeness we
recall the formulae for the angular momentum.

2.1 The solution of the equations for the momentum

Assume that the principal moments of inertia are in ascending order, I1 < I2 <
I3, and that I = diag(I1, I2, I3) is the inertia tensor. Consider the constants

a2
1 = 2TI3 − 1, a2

3 = 1− 2TI1,

b21 = I2(I3 − I2), b23 = I2(I2 − I1).
(4)

In the case b3/a3 = b1/a1, when the trajectories of m coincide with the “sepa-
ratrices", the equation (1) becomes easy to integrate and the solution can be
written as

m1(t) =
a1

√
I1(1− x2)√
I3 − I1

, m2(t) =
a1I2
b1

x, m3(t) =
a3

√
I3(1− x2)√
I3 − I1

,

where

x =
e2u − L

e2u + L
,

and
L =

1− x0

1 + x0
, u =

b1a3

I2
√
I1I3

(t− t0).

In the general case the solution of (1) can be written as follows. We distin-
guish two cases,

case(a) if b3/a3 > b1/a1

m1 =
±a1

√
I1 dn u√

I3 − I1
, m2 =

a3I2 sn u
b3

, m3 =
a3

√
I3 cn u√
I3 − I1

,

λ = ±a1b3/(I2
√
I1I3), k = b1a3/(b3a1), u = λ(t− ν),

(5)

case(b) or if b3/a3 < b1/a1

m1 =
a1

√
I1 cn u√
I3 − I1

, m2 =
a1I2 sn u

b1
, m3 =

±a3

√
I3 dn u√

I3 − I1
,

λ = ±b1a3/(I2
√
I1I3), k = b3a1/(b1a3), u = λ(t− ν).

(6)

In both cases 0 < k < 1. Here, cn, sn and dn are the Jacobi elliptic functions
defined by

cn u = cosϕ, sn u = sinϕ, dn u =
√

1− k2 sin2 ϕ, (7)

with u(t) = λ(t − ν), and ν a constant of integration depending on the initial
condition. The amplitude ϕ is given implicitly as the solution of the equation∫ ϕ

0

dθ√
1− k2 sin2 θ

= u(t), u(t) = λ(t− ν) (8)

where the left hand side is the Legendre elliptic integral of the first kind with
modulus k. We will use the notation

ϕ = am(u).

Given u(t) and k, the Jacobi Elliptic functions cn, sn and dn can be efficiently
calculated to machine precision by the method of ascending/descending Landen
transformation, see for example [1].

2.2 Integration of the attitude rotation: the matrix case

In what follows we consider case (a), (5), when b3/a3 > b1/a1. The procedure is
identical in case (b), (6), when b3/a3 < b1/a1, except for the variable ξ2 = a1

b1
I2.

The following proposition gives an an expression for the attitude rotation
matrix as a product of three rotations. The rotation P (t0)T maps the axis e3

to the angular momentum and by virtue of (2) this axis coincides with m for
all t, see (9). Thereafter, the other two axes of the frame lie on the invariant
plane, and their position is determined by planar rotation Y (t).

Proposition 2.1. Assume P (t) ∈ SO(3) is a rotation such that

P (t)m = e3. (9)

If Q satisfies (2), then
Q(t) = P (t0)TY P,

where
Y e3 = e3, (10)

is a rotation around e3 with rotation angle ψ given by

ψ = 2T (t− t0) +
∫ t

t0

v̇(s)T w(s)ds (11)

with v := P T e1, w := P T e2 the first two columns of P T .

Proof. Equation (10) can be verified by direct calculation using the hypotheses
(9). Differentiating the expression Y = P (t0)QP (t)T , under the assumption
that Q satisfies (2), one obtains the following differential equation

Ẏ = Y (P ω̂P T − ṖP T), and Y (t0) = P (t0)TQ(t0)P (t0) = 1. (12)

The property (10) implies that Y is a planar rotation of the type

Y =

 c(t) −s(t) 0
s(t) c(t) 0
0 0 1

 , with
c(t) = cos(ψ(t)),

s(t) = sin(ψ(t)),

5

with ψ(t) the rotation angle, and ψ(t0) = 0. This also implies that Y satisfies
a differential equation of the type

Ẏ = Y S, with S =

 0 −γ(t) 0
γ(t) 0 0
0 0 0

 , (13)

and ψ̇ = γ. Comparing (13) with (12) we obtain that S = (P ω̂P T − ṖP T)
and γ = eT

2 (P ω̂P T − ṖP T)e1, where ω := I−1m is the body angular velocity.
Now since ω and P (t) are known functions of t, the problem reduces to a pure
quadrature. Setting w := P T e2, v := P T e1 one obtains

ψ(t) =
∫ t

t0

(w(s)T (ω(s)× v(s))− ẇ(s)T v(s))ds,

and using wT (ω×v) = mT ω = 2T , and the derivative of wT v = 0, one arrives
at (11).

We will in what follows discuss in detail what happens for a particular choice
of P .

Proposition 2.2. Assume P satisfies (9) and is such that

v =
ṁ

‖ṁ‖
, w =

m× ṁ

‖ṁ‖
, P T = [v,w,m].

Then
ψ(t) = 2T (t− t0) +

(1− 2TI2)
λI2

(Π(ϕ, n, k)−Π(ϕ0, n, k)), (14)

where ϕ = am(λ(t− ν)), ϕ0 = am(λ(t0 − ν)) and

Π(φ, n, k) :=
∫ u

0

ds

1− n sn2 s
, −∞ < n <∞, φ = am(u),

is the elliptic integral of the third kind with

n =
ξ22(I1 − I2)(I3 − I2)

I2
2 (1− 2TI1)(1− 2TI3)

,

with ξ2 = a3I2/b3, and λ, k defined in (5).

Proof. We begin observing that

v̇ =
m̈‖ṁ‖ − 2(m̈T ṁ)/‖ṁ‖3/2ṁ

‖ṁ‖2
,

hence wT v̇ = wT m̈/‖ṁ‖. Expanding

m̈ = −I−1ṁ×m− I−1m× ṁ,

substituting in (11), we obtain that

ψ(t) = 2T (t− t0)−
∫ t

t0

(
2T + w(s)T (I−1v(s)×m(s))

)
ds.

This expression can be further simplified by decomposing I−1v in the directions
of the orthogonal system m, v, w,

I−1v = 〈I−1v,m〉m + 〈I−1v,v〉v + 〈I−1v,w〉w,

where we have used the notation 〈x,y〉 = xT y for the scalar product. Since

m× v = w, w ×m = v, v ×w = m,

we have that
I−1v ×m = −〈I−1v,v〉w + 〈I−1v,w〉v.

Then we arrive to the simple expression

ψ(t) =
∫ t

t0

〈I−1v(s),v(s)〉ds.

Using the equation for the momentum (1) we obtain that

〈I−1v(s),v(s)〉 =
A
I1
m2

2m
2
3 + B

I2
m2

1m
2
3 + C

I3
m2

1m
2
2

Am2
2m

2
3 +Bm2

1m
2
3 + Cm2

1m
2
2

,

where
A = a2, B = b2, C = c2,

and
a =

(
1
I3
− 1
I2

)
, b =

(
1
I1
− 1
I3

)
, c =

(
1
I2
− 1
I1

)
. (15)

Next we eliminate the terms m2
1 and m2

3 using the integrals of motion (3) so
that

〈I−1v(s),v(s)〉 = 2T +
(1− 2TI2)

I2

1
1− n sn2(u(t))

,

which, integrated between t0 and t, gives the desired result.

2.3 Integration of the attitude rotation: the quaternion case

For reasons of storage and computational complexity it might be convenient
to represent rotations using quaternions of length 1 (Euler parameters) instead
of rotation matrices. In this section we derive an algorithm formulated in
quaternions for the implementation of the exact solution of the attitude rotation
of the free rigid body problem. We obtain a general framework and we show
how different approaches known in the literature fit within this framework.

The quaternions of length 1 are the elements of the unit sphere of R4,

S3 = {q = (q0, q) ∈ R× R3 ; q20 + ‖q‖2 = 1}.

This sphere S3 has the structure of Lie group with the product

p · q := (p0q0 − pT q, p0q + q0p + p× q),

and p = (p0,p), q = (q0, q) ∈ S3. The identity element is e = (1,0). The
inverse of a quaternion is defined by

q−1 = (q0,−q).

7

The product extends to R4 and can also be expressed by means of a matrix-
vector product, namely, p · q = Lpq = Rqp, where

Lp =
[
p0 −pT

p (p01+ p̂)

]
, Rq =

[
q0 −qT

q (q01− q̂)

]
, (16)

and 1 is the 3 × 3 identity matrix. The Lie algebra of S3, s3 = TeS3, can be
identified with R3, equipped with the cross product as commutator. Let us
denote with vec : R4 → R3 the projection corresponding to discarding the first
component.

Consider the inner automorphism of S3, Iq(p) = q · p · q−1, the adjoint
representation of S3 is the derivative mapping of Iq at the identity e, i.e.
Adq := TeIq : s3 → s3, and we have

Adq(u) = vec(q · u · q−1), q ∈ S3, u = (0,u), u ∈ s3.

The map E : S3 → SO(3), defined by

E(q) = 1+ 2q0q̂ + 2q̂2, (17)

is a group homomorphism since

E(q · p) = E(q)E(p), ∀q, p ∈ S3.

Its derivative at e,
E∗ = TeE : s3 → so(3),

is thus a Lie algebra isomorphism. By a simple calculation it is possible to
verify that

E∗(u) = 2û, u ∈ s3. (18)

The map E∗ intertwines the two adjoint representations and we have

E∗(q · u · q−1) = E(q)E∗(u)E(q−1), ∀u = (0,u), u ∈ R3.

The map E : S3 → SO(3) is not injective as E(q) = E(−q).
The following proposition is a direct consequence of (18) and gives the rigid

body equations of motion on S3.

Proposition 2.3. If m(t) ∈ R3 satisfies (1) and q(t) ∈ S3 is such that

q̇ =
1
2
q · ω, (19)

with ω = (0,ω) ∈ R4, ω = I−1m, then

d

dt
E(q) = E(q)ω̂. (20)

From the previous proposition we have that if q ∈ S3 satisfies (19), then E(q)
satisfies (2).

We will derive formulae for q as a product of three quaternions. We begin
by stating the following lemma.

Lemma 2.4. If p = (p0,p) ∈ S3 with components p0, p1, p2, p3, is such that

p ·m · p−1 = e3, (21)

with e3 = (0, e3) and m = (0,m) in S3, then

p2
0 + p2

3 =
1 +m3

2
, (22)

p1 =
p3m1 + p0m2

1 +m3
, (23)

p2 =
p3m2 − p0m1

1 +m3
. (24)

Proof. From (23), we have p ·m− e3 · p = 0, hence, expanding the quaternion
products, we obtain the conditions

pT (m− e3) = 0,

p0 = (m×e3)T p
1−m3

,
(25)

or, equivalently
p1m1 + p2m2 + p3(m3 − 1) = 0,

p0(1−m3)−m2p1 +m1p2 = 0.
(26)

By multiplying the first equation by m2, the second by m1, adding them to-
gether and solving for p2, we obtain (24). The procedure for (23) is similar.
Finally, using the obtained expressions for p1 and p2 and requiring |p| = 1, we
obtain (22).

Solving for p0 in (22) and substituting in (23) and (24), we can express p0, p1

and p2 in by means of p3. These expressions are used in our implementation.
In what follows, we state the analogous of proposition 2.1.

Proposition 2.5. Assume p ∈ S3 satisfies (21). If q(t) is the solution of (19)
with q(t0) = 1, then we have

q(t) = p(t0)−1 · y · p(t), (27)

where
y · e3 · y−1 = e3, (28)

is a rotation around e3 with rotation angle

ψ = 2T (t− t0)− 2
∫ t

t0

eT
3 vec(ṗ · p−1) ds. (29)

Proof. Assume q = p(t0)−1 · y · p with p satisfying (21). One can easily verify
that y·e3 ·y−1 = e3. Therefore y has the form y = (cos(ψ/2), sin(ψ/2)e3). From
1 = q(t0) = p(t0)−1 · y(t0) · p(t0), we have that y(t0) is the identity quaternion
and therefore ψ(t0) = 0.

By differentiating q = p(t0)−1 · y · p with respect to t, using (21) and substi-
tuting into (19), one obtains a differential equation for y,

ẏ = y ·
(

1
2
p · ω · p−1 − ṗ · p−1

)
. (30)

9

Since y and ẏ have the second and third component equal to zero then also the
quaternion product y−1 · ẏ does. Since p ·ω · p−1 and ṗ · p−1 have both the first
component equal to zero it follows that the three first components of y−1 · ẏ
are zero, and therefore from (30) one obtains that

ψ̇ = 2eT
3 vec(

1
2
p(t) · ω(t) · p(t)−1 − ṗ(t) · p(t)−1), (31)

with ψ(t0) = 0.
Observing that

1
2
eT

3 vec(p · ω · p−1) =
1
2
eT

3 E(p)ω =
1
2
mT ω = T,

from (31) we obtain

ψ = 2T (t− t0)− 2
∫ t

t0

eT
3 vec(ṗ · p−1)ds.

We stress here, for the sake of clarity, that the quaternion y = (cos(ψ/2), sin(ψ/2)e3)
is defined by using ψ/2, while ψ given by (29) is the angle of the corresponding
planar rotation.

The product q = p(t0)−1 · y · p is the analogous of Q = P T
0 Y P of proposi-

tion 2.1. In fact

E(p(t0)−1 · y · p) = E(p(t0)−1)E(y)E(p),

with E(p) satisfying (9) and E(y) satisfying (10).
In the following we express the angle (31) by means for the components of p.

Corollary 2.6. Under the hypotheses of the previous proposition one obtains
that

ψ = 2
∫ t

t0

(
2T + ω3

2(1 +m3)
+ 2

ṗ0p3 − p0ṗ3

1 +m3

)
ds. (32)

Proof. By expanding the quaternion product in (29), we obtain

ψ = 2
∫ t

t0

(T + (ṗ0p3 − p0ṗ3) + (ṗ1p2 − p1ṗ2)) ds.

Next, we expand the expression

ṗ1p2 − p1ṗ2 = p2
2

d

dt

p1

p2
=

(p3m2 − p0m1)2

(1 +m3)2
d

dt

(
p3m1 + p0m2

p3m2 − p0m1

)
,

and, by using Lemma 2.4, we obtain

ṗ1p2 − p1ṗ2 =
ṁ1m2 −m1ṁ2

2(1 +m3)
+ (ṗ0p3 − p0ṗ3)

1−m3

(1 +m3)
.

The final expression (32) is obtained by using the equations of motion to express
ṁ1 and ṁ2.

2.4 Relation between the quaternion and the matrix approach

In the sequel we discuss different possible choices of the quaternion p giving rise
to different exact algorithms for the attitude rotation of the free rigid body.
Most of these algorithms are known in the literature and we propose here a
unified quaternion framework.

In order to be able to identify the quaternion p corresponding to the a given
rotation matrix P ∈ SO(3) such that P T e3 = m, we consider the inverse of
the restriction of E to an appropriate subset of SO(3). The mapping E : S3 →
SO(3) is not injective as the counter image E−1(P) = {p,−p}. Consider the
following equivalence relation,

p ∼ q if p = ±q.

The restriction of E to S3/∼ is invertible. In the following proposition we give
explicit formulae for E−1(P), with E−1 : SO(3) → S3/ ∼.

Proposition 2.7. Given P ∈ SO(3) such that P T = [v,w,m], assume

α :=
√

v2m2(1+m3)+v3(1+m3−m2
2)

4m1
+ 1+m3

4 ,

β :=
√

1+m3
2 − α2,

γ := (4α2−1−m3)m1m2−v2(1+m3)2

4(1+m3−m2
2)

,

(33)

then the quaternion with components

p0 = β,
p3 = sign(γ)α,

(34)

and p1, p2 given as in (23), (24) of Lemma 2.4, is such that E(p) = P .

Proof. Using (17) one easily obtains the following explicit expression,

E(p)T =

 1− 2(p2
3 + p2

2) 2p0p3 + 2p1p2 −2p0p2 + 2p3p1

−2p0p3 + 2p1p2 1− 2(p2
3 + p2

1) 2p0p1 + 2p3p2

2p0p2 + 2p3p1 −2p0p1 + 2p3p2 1− 2(p2
2 + p2

1)

 ,

that we want to be equal to P T = [v,w,m]. This gives us a system of 9
equations in 4 unknowns, p0, . . . , p3. The choice P T e3 = m implies that
E(p)T e3 = m. Therefore the hypotheses of Lemma 2.4 are fulfilled for the
quaternion p, and (22), (23), (24) hold.

This allows to derive an expression for p2
3. One can proceed as follows.

Equating the components (1, 3) and (3, 1) in E(p) = P gives

m1 = −2p0p2 + 2p3p1, v3 = 2p0p2 + 2p3p1.

Adding these two equations and expanding the product p3p1 using Lemma 2.4,
we obtain

v3 +m1

4
=
p2
3m1 + p3p0m2

1 +m3
. (35)

11

Next, we express p0p3 by means of p2
3 only. To this end, we use v2 = −2p0p3 +

2p1p2, and expand the product p1p2 using Lemma 2.4. After some algebra we
obtain

p0p3 =
(4p2

3 − 1−m3)m1m2 − v2(1 +m3)2

4(1 +m3 −m2
2)

. (36)

Substituting in (35) and solving for p2
3 we obtain

p2
3 =

v2m2(1 +m3) + v3(1 +m3 −m2
2)

4m1
+

1 +m3

4
, (37)

and therefore p2
3 = α2, and p0p3 = γ. The absolute values of p0 and p3 are

obtained extracting the square roots of p2
0 = 1+m3

2 − p2
3, and (37) respectively.

The sign of p0 and p3 must be consistent with the sign of p0p3 given by (36),
by choosing p0 = β positive, we have p3 = sign(p0p3)α = sign(γ)α.

In what follows we consider a list of different choices of p corresponding to
different formulations of the exact solution known in the literature.

case(a) Choosing p0 = c1
√

1 +m3 and p3 = c2
√

1 +m3 with c1 and c2 con-
stants such that c21 + c22 = 1

2 (for example c1 = 1√
2

and c2 = 0), the
integrand of (32) simplifies to

β(t) =
2T + ω3

2(1 +m3)
.

This expression can be further rewritten in the form

β(t) =
1

2I3
+

2TI3 − 1
2I3 [1 + (I3ξ3) cnu]

,

where ξ3 = a3/
√
I3(I3 − I1). Integration of β(t), (see [4, page 215]), yields

ψ = 1
I3

(t− t0) + 2TI3−1
I3λ(1−µ2)

[Π (ϕ, n, k)−Π (ϕ0, n, k)− µ (F (t)− F (t0))] ,
(38)

where

µ := I3ξ3, (0 < µ2 < 1), n :=
µ2

µ2 − 1
,

F (t) =

√
1

k2 − n
tan−1

(
sdu(t)

√
k2 − n

)
, n < k2,

and Π is the incomplete elliptic integral of the third kind defined by

Π(φ, n, k) :=
∫ u

0

ds

1− n sn2 s
−∞ < n <∞, φ = am(u(t)), u(t) = λ(t−ν).

This choice produces a rescaled and simplified version of the algorithm
presented by Kosenko in [14].

case(b) Assume we wish to determine p by choosing the rotation matrix E(p)T =
[v,w,m] as considered in section 2.2.
By taking v = ṁ

‖ṁ‖ and using proposition 2.7, one obtains

p2
3 =

1 +m3

4
+
−am2m3 + bm2m

2
3 + cm2(1−m2

2)
4‖ṁ‖

,

with a, b, c defined in (15).
Substituting in the formulas of Lemma 2.4 and taking ψ as in (14) one
obtains a quaternion formulation of the algorithm in section 2.2.

case (c) Analogously, taking v = m×e3
‖m×e3‖ and w = m×(m×e3)

‖m×(m×e3)‖ one obtains

p2
3 =

1 +m3

4
− m2(1 +m3)

4
√

1−m2
3

,

giving rise to a different algorithm analogous to the one recently considered
by van Zon and Schofield in [23]. The rotation angle is

ψ =
∫ t

t0

2T − 1
I3
m2

3

1−m2
3

ds =
1
I3

(t−t0)+
(2TI3 − 1)(I3 − I1)
λ

(
(I3 − I1)I3 − a2

3I
2
3

) (Π(ϕ, n, k)−Π(ϕ0, n, k)) ,

with

n =
a2

3I3
a2

3I3 − (I3 − I1)
,

where ϕ = am(λ(t− ν)) and ϕ0 = am(λ(t0 − ν)).

3 Numerical experiments

3.1 Numerical implementation

The exact algorithm described in this paper require the computation of elliptic
integrals of the first and third kind. Elliptic integrals of the first kind are com-
puted very fast by using standard algorithms like AGM (arithmetic geometric
mean) and ascending/descending Landen trasformations [1]. These can be used
also for the elliptic integral of the third kind, but their performance is not so
uniform and other algorithms are preferred instead. In [23] the authors use a
method based on theta functions. Our implementation makes use of Carlson’s
algorithms rf, rj, rc, that have been acclaimed to produce accurate values for
large sets of parameters. These methods are described in details in [20] and are
the most common routines in several scientific libraries.

An alternative to the exact computation of this elliptic integral is the ap-
proximation by a quadrature method. In [24], the integral∫ u

u0

ds

1− n sn2 s

is approximated by a quadrature based on Hermite interpolation, as the func-
tion sn and its derivative can be easily computed at the endpoints of the inter-
val. Instead, we prefer to write the same integral in the Legendre form,∫ ϕ

ϕ0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
, −∞ < n <∞, ϕ = am(u). (39)

To our opinion, this format is more suitable to approximation by quadrature
formulae because it requires tabulating the sine function in the quadrature
nodes instead of sn(λ(t− ν)). Thus, (39) can be approximated as∫ ϕ

ϕ0

f(θ)dθ ≈
p∑

i=1

bif(ϕ0 + ai∆ϕ),

where ∆ϕ = ϕ− ϕ0 and bi, ai are weights and nodes of a quadrature formula
respectively. We use Gaussian quadrature, as it is known to give the highest

13

quadrature order (2p) for a given number of nodes (p). The coefficients and
weights for Gaussian quadrature of order 10 used in this paper are reported in
Appendix. Our numerical experiments indicate that this approximation is very
effective. For instance, a 5 point Gaussian quadrature (order 10) gives very
accurate results even for moderately large step-sizes, and reduces the overall
cost of the methods by 2/3.

3.2 Free rigid body

In this section we compare several FORTRAN algorithms for the numerical ap-
proximation of the free rigid body. The methods are: dmv6, dmv8, dmv10, the
methods based on the modified rattle algorithms of order 6, 8 and 10, respec-
tively, for the free rigid body [12]; jacobirot and jacobi_quat computing the
exact solution with the rotation and the quaternion method proposed in this
paper along with their variants in which the elliptic integral is approximated
by Gauss quadrature formulae of order 6, 8 and 10. All the methods, except
the jacobirot and jacobirot_gauss, employ a quaternion description for the
attitude matrix Q.

In the first experiment, we compute the number of significant digits (preci-
sion) for the attitude matrix1 and the cpu-time averages of the different meth-
ods in an interval of integration [0, 10], with twenty different stepsizes ranging
from about 0.34 down to 0.014. We choose a random inertia tensor, normalized
so that I1 < I2 < I3 = 1, thereafter a random initial angular moment in the
first quadrant. This is not a restriction, as both scaling the inertia tensor and
the angular momentum are equivalent to a time reparametrization. The ini-
tial condition for the attitude matrix is the identity matrix (for rotations) and
the quaternion (1, 0, 0, 0) for the other methods. The exact solution is com-
puted with Matlab’s ode45 routine, setting both relative and absolute error
to machine precision. In Figure 1 we show the average number of significant
digits and the time averages for the methods under investigation, the samples
are computed over 100 runs. The exact methods are clearly more expensive,
but they always converge (against 75 successes for the methods dmv6, dmv8,
dmv10, that are depending on a step size “small enough” for the fixed point
iterations to converge). The diverging runs of the dmv methods are not taken
into account when computing averages. Good behaviour is displayed also by
the methods using Gaussian quadrature instead of the exact elliptic integrals
of third kind. Their cost is about 1/3 of the methods using the exact elliptic
integral (and this is reasonable, because the exact routines compute 3 ellip-
tic integrals of the third kind: the complete one between 0 and π/2, and two
incomplete ones between 0 and φ, where 0 ≤ φ ≤ π/2).

The exact methods discussed in this paper reveal a worse accumulation of
roundoff error (see Figure 1, top plot). However, given to the exact nature of
the method, it is not necessary to perform many tiny steps for integrating to
the final time: a single time stepping is enough, and this avoids the problems
related to the accumulation of roundoff error. Numerical experiments reveal
that the accuracy of the two exact methods is very comparable and also their
cost (see Figure 2 and Table 1).

1Our methods use an exact approximations for the angular momentum, while the dmv methods do not.
However both the two classes of methods preserve exactly the kinetic energy, the norm of the angular

10
−5

10
−4

10
−3

10
−2

10
−1

−16

−14

−12

−10

−8

−6

−4

−2

cpu time

A
ve

ra
ge

 p
re

ci
si

on

10
−2

10
−1

10
0

0

5

10

15

20

25

stepsize

R
el

at
iv

e
co

st

Rotations Gauss6
Rotations Gauss8
Rotations Gauss10
Rotation Elliptic
dmv6
dmv8
dmv10
Quaternion Elliptic
Quaternion Gauss6
Quaternion Gauss8
Quaternion Gauss10

Figure 1: Top: Average precision versus average cpu times in the attitude matrix (100
runs) for random initial conditions and random inertia moments. Bottom: Rel-
ative cost (with respect to the cheapest method) versus stepsize. The methods
computing the exact solutions are more expensive then the approximated ones,
but their relative cost rate improves for large time-steps. The methods dvm6,
dmv8 and dmv10 converge 75 out of the 100 runs. The failures are not taken into
account when computing the averages.

In general, when these exact methods are applied within a splitting method,
the value of the parameters (angular momentum, attitude, energy) will change
before and after one free rigid body step, hence the problem of roundoff accu-
mulation will not be present.

Our extensive numerical experiments revealed that the performance of the
methods depended heavily on the inertia matrix I and the initial condition m0

for the angular momentum. To understand this dependence, we have followed a
procedure similar to the one used in [11]. Since normalizing the inertia matrix
is equivalent to a time reparametrization, it is sufficient to consider values of
the form I1/I3 < I2/I3 < 1. This reduces to considering two parameters, say
x = I1/I3 and y = I2/I3. By a symmetry argument, the problem can be further
reduced to considering values of x and y in the triangle

T = {(x, y) ∈ R2 : 0 < 1− y ≤ x < y < 1},

(see Figure 3).
We construct a discretization of this triangle (100 points in the x direction

and 50 in the y direction), and for each point (x, y, 1) we solve 20 initial value

momentum, its projection, are time-reversible and Lie–Poisson integrators.

15

Median error σ Median cpu σ
(×10−13) (×10−12) (×10−5) (×10−6)

Rotation 7.0865 4.4725 2.2466 2.4379
Quaternion 3.3383 2.3748 2.1452 3.0631

Table 1: Average error and cpu for the two exact methods (rotation and quaternion) for a
single timestepping (h = 5), over 100 experiments with 100 random initial angular
momentum and identity matrix as initial attitude. The exact reference solutions is
computed with ode45. See also Figure 2. The computational effort is dominated
by the cost of computing the elliptic integrals of the third kind.

problems with initial condition m0 in the first quadrant (again, by a symmetry
argument, this choice is representative of all possible behaviors). Thereafter,
we average the number of significant digits of the methods (non converging runs
for the dmv methods are discarded). The results of the experiments are shown
in Figures (4–7), computed with integration stepsize h = 0.4 and Figures (8–
11), computed with integration stepsize h = 0.04 . For the largest stepsize,
h = 0.4, the exact methods described in this paper perform very similarly and
show an uniform accuracy. We compare then approximate methods of the same
order (6, 8, and 10), for the rotation method, the quaternion method and the
dmv method. The rotation and quaternion methods employ a Gauss–Legendre
approximation of the elliptic integral. All the approximate methods reveal a
worse approximation in the proximity of the top left corner

0 ≈ x =
I1
I3
� y =

I2
I3
≈ 1 =

I3
I3
,

namely when one of the moments of inertia is much smaller than the two
others, that are quite close (very thin disc case). The dmv methods have in
average less accuracy and they failed to converge for several initial conditions.
Nevertheless, for this choice of the stepsize (see Figure 1), they are 5 times
faster than their approximate counterparts based on the algorithms described
in this paper. For the next value of the stepsize (h = 0.04) the exact methods
reveal a worse accumulation of roundoff error, already observed in Figure 1.
The dmv, in particular dmv10, performs very well in the whole triangle, except
for the top left corner.

0 10 20 30 40 50 60 70 80 90 100

10
−4.8

10
−4.7

10
−4.6

10
−4.5

Experiment number

cp
u

0 10 20 30 40 50 60 70 80 90 100
10

−15

10
−10

Experiment number

E
rr

or
 r

ot
at

io
n

(Q
−

Q
ex)

Rotation Elliptic
Quatern Elliptic

Rotation Elliptic
Quatern Elliptic

Figure 2: Top: Cpu in 100 runs for the exact method based on rotations (crosses) and the
quaternion method (diamonds). Bottom: Error in the rotation matrix (infinity
norm) for the rotation method and the quaternion method. Symbols as above.
The exact reference solutions is computed with ode45. See Table 1 for median
and standard deviation values.

Figure 3: Parametrization domain for the Inertia matrix. x-axis: I1/I3, y-axis: I2/I3.

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

Figure 4: Significant digits for the various values of the inertia matrix with stepsize h = 0.4.
Comparison of exact methods. Top: Rotation elliptic. Bottom: Quaternion
elliptic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

Figure 5: Significant digits for the various values of the inertia matrix with stepsize h = 0.4.
Comparison of order 6 methods. Top: Rotation G6. Middle: Quaternion G6.
Bottom: dmv6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

Figure 6: Significant digits for the various values of the inertia matrix with stepsize h = 0.4.
Comparison of order 8 methods. Top: Rotation G8. Middle: Quaternion G8.
Bottom: dmv8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

Figure 7: Significant digits for the various values of the inertia matrix with stepsize h = 0.4.
Comparison of order 10 methods. Top: Rotation G10. Middle: Quaternion G10.
Bottom: dmv10.

19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

Figure 8: Significant digits for the various values of the inertia matrix with stepsize h =
0.04. Comparison of exact methods. Top: Rotation elliptic. Bottom: Quaternion
elliptic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

Figure 9: Significant digits for the various values of the inertia matrix with stepsize h =
0.04. Comparison of order 6 methods. Top: Rotation G6. Middle: Quaternion
G6. Bottom: dmv6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

Figure 10: Significant digits for the various values of the inertia matrix with stepsize h =
0.04. Comparison of order 8 methods. Top: Rotation G8. Middle: Quaternion
G8. Bottom: dmv8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

−20

−15

−10

−5

0

Figure 11: Significant digits for the various values of the inertia matrix with stepsize
h = 0.04. Comparison of order 10 methods. Top: Rotation G10. Middle:
Quaternion G10. Bottom: dmv10.

21

3.3 Torqued systems and perturbations of free rigid body motions

In this section we consider systems of the form

H(m, Q) = T + V, T (m) =
1
2
mT (I−1m), V = V (Q). (40)

A standard approach to solve this problem is to split it into a free rigid body
motion plus a torqued motion, namely

S1 =

{
ṁ = m× I−1m,

Q̇ = Q Î−1m,
(41)

free motion corresponding to the kinetic part, and

S2 =

{
ṁ = f(Q),

Q̇ = 0,
(42)

Thereafter, the flows of the S1 and S2 systems are composed for instance by
means of a splitting method [17].

The most commonly used is the symplectic second order Störmer/Verlet
scheme

(m, Q)(j+1) = ϕ
[S2]
h/2 ◦ ϕ

[S1]
h ◦ ϕ[S2]

h/2((m, Q)(j)), j = 0, 1, . . . ,

where ϕ[S1]
h and ϕ[S2]

h represent the exact flows of S1 and S2, respectively. Some
higher order schemes are presented in the appendix.

3.3.1 The heavy top

For this system we have
V (Q) = εeT

3Q
T u0,

as potential energy. The vector u = QT u0 describes position of the center of
mass times the gravitational force. This potential V corresponds to f(Q) =
(u2,−u1, 0)T , where u1 and u2 are components of u.

One of the most popular (and elegant) methods for approximating the free
rigid body system (41) is a second-order method designed by McLachlan and
Reich MR (see [8]). This method has very nice geometric properties, as it is
time-reversible and preserves the Poisson structure of the system. In brief, the
MR method is based on a splitting of the Hamiltonian (40) into four parts,

H̃1 =
m2

1

2I1
, H̃2 =

m2
2

2I2
, H̃3 =

m2
3

2I3
, H̃4 = V (Q).

Each of the corresponding Hamiltonian vector fields can be integrated exactly
(H̃1, H̃2, H̃3 correspond to the vector fields (1)), the symmetric composition of
the flows gives rise to the approximation scheme,

(m, Q)(j+1) = ΦMR((m, Q)(j)),

where
ΦMR = ϕ4,h/2 ◦ ΦT,h ◦ ϕ4,h/2.

Here
ΦT,h = ϕ1,h/2 ◦ ϕ2,h/2 ◦ ϕ3,h ◦ ϕ2,h/2 ◦ ϕ1,h/2

is the contribution from the kinetic parts, H̃1, H̃2 and H̃3, where the flows of
the kinetic parts corresponds to elementary rotations in R3.

We consider next perturbations of free rigid body motions,

V (Q) = ε eT
3Q

T u0, (43)

with ε small. We compare different splitting methods for the following values
of the kinetic energy T0 = T (m0) = ε2, ε, 1, 1/ε, 1/ε2. The total Hamiltonian
energy is of the form

H = T0 +O(ε).

The initial conditions are chosen as follows. Having fixed a value of ε, we choose
a random inertia tensor, normalized so that I1 = 1 (other choices correspond to
time reparametrizations of the flow). Having chosen the first two components
of m0 randomly, the remaining one is determined to match T0. The vector u0

is a random vector normalized to have unit norm. Q0 is the identity matrix.
For a splitting method of order p, it is reasonable to expect a leading error
term of the form εhp, i.e. linear in ε. Several splitting methods are compared,
each timing and relative Hamiltonian error is averaged (mean value) over 20
different initial conditions (each with new I,m0,u0). The methods are im-
plemented so that all the splitting schemes perform the same number force f
evaluations. This is done as follows: start with the following basic time steps:
h ∈ {8, 5, 4, 2, 1.75, 1.5, 1.25, 1, 0.5}. For a splitting method with s stages (s
is the number of evaluations of the force), we use hs = csh = s

10h. For in-
stance, for the 6th order 10-stages method S610, cs = 1, for the Verlet splitting
cs = 1

10 . The integration is performed in the interval [0, 2000] (see Figures 12-
13). Note that only the methods using the exact integrator produce an error
that is smaller than ε for all the choices of the step size.

3.3.2 Satellite simulation

We consider a simplified model describing the motion of a satellite in a circular
orbit of radius r around the earth [15]. Denote µ = gM , where g is the
gravitational constant and M is the mass of the earth. The potential energy of
this system is given by

V (Q) = 3
µ

2r3
(QTe3)T I(QTe3), (44)

where I is the inertia tensor and e3 is the canonical vector (0, 0, 1)T in R3. The
torque associated to this potential becomes

f(Q) = 3
µ

r3
(QTe3)× I(QTe3). (45)

We simulate the motion of the satellite using the same parameters as in [18],
namely

I1 = 1.7× 104, I2 = 3.7× 104, I3 = 5.4× 104,

with
µ = 3.986× 1014, r = 1.5× 105,

23

10
−1

10
0

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average computational time

A
ve

ra
ge

 e
ne

rg
y

er
ro

r

10
−1

10
0

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average computational time

A
ve

ra
ge

 e
ne

rg
y

er
ro

r

10
−1

10
0

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average computational time

A
ve

ra
ge

 e
ne

rg
y

er
ro

r

10
−1

10
0

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average computational time

A
ve

ra
ge

 e
ne

rg
y

er
ro

r

10
−1

10
0

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average computational time

A
ve

ra
ge

 e
ne

rg
y

er
ro

r

Figure 12: Average relative errors versus computational time, perturbed rigid body, ε =
10−6. Initial kinetic energies (from top left) T0 = ε2, ε, 1, 1/ε, 1/ε2. Solid lines:
splitting methods using exact RB solutions. Dash-dotted lines: splitting meth-
ods using McL2 approximation for RB. See text for details. Circles: S610,
triangles: V2+McL2, times: SRKN4b

6, diamonds: S46, pentagrams: SRKN6a
14.

10
−1

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average computational time

A
ve

ra
ge

 e
ne

rg
y

er
ro

r

10
−1

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average computational time

A
ve

ra
ge

 e
ne

rg
y

er
ro

r

10
−1

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average computational time

A
ve

ra
ge

 e
ne

rg
y

er
ro

r

10
−1

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average computational time

A
ve

ra
ge

 e
ne

rg
y

er
ro

r

10
−1

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average computational time

A
ve

ra
ge

 e
ne

rg
y

er
ro

r

Figure 13: Average relative errors versus computational time, perturbed rigid body, ε =
10−3. Initial kinetic energies (from top left) T0 = ε2, ε, 1, 1/ε, 1/ε2. Solid lines:
splitting methods using exact RB solutions. Dash-dotted lines: splitting meth-
ods using McL2 approximation for RB. See text for details. Circles: S610,
triangles: V2+McL2, times: SRKN4b

6, diamonds: S46, pentagrams: SRKN6a
14.

25

in the interval [0, 400]. The initial angular velocity is ω0 = (15,−15, 15)T ,
corresponding to an angular momentum m0 = Iω0. The initial attitude Q0 is
the identity matrix. The system has an energy H0 = 1.21595664× 107, which
is conserved in time. The splitting method based on the exact approximation
of the rigid body is very accurate. The motion of the center of mass (left
column) and the relative error on the energy H0 (right column) for the splitting
method SRKN6a

14 employing our exact solution, are shown in Figure 15. The
integration is performed in the interval [0, 400] with with stepsize h = 0.1 (top)
and h = 0.05 (bottom). The relative error on the energy (see Figure 15), which
is of the order of 10−7 for h = 0.1 and 10−10 for h = 0.05 , indicates that H0 is
preserved to 7 and 10 digits respectively. The corresponding plots for the MR
method are shown in Figure (14).

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

0 100 200 300 400
0

0.5

1

1.5

Time

R
el

at
iv

e
en

er
gy

 e
rr

or

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400
0

1

2

3

4

5

6

7
x 10

−3

Time

R
el

at
iv

e
en

er
gy

 e
rr

or

Figure 14: Satellite simulation. Left column: Center of mass (QTe3) by the splitting
method MR with stepsize h = 0.1 (top) and h = 0.05 (bottom). Right: Relative
error on the energy corresponding to the same stepsizes. See text for details.

3.4 Molecular dynamics simulation: Soft dipolar spheres

We consider a molecular dynamics simulation, where molecules are modeled as
dipolar soft spheres. This model is of interest because it can be used to study
water and aqueous solutions, as water molecules can be described as small
dipoles. We consider the system described in example b in Appendix A of [8].

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−7

Time

R
el

at
iv

e
en

er
gy

 e
rr

or

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400
0

1

2

3

4

5
x 10

−10

Time

R
el

at
iv

e
en

er
gy

 e
rr

or

Figure 15: Satellite simulation. Left column: Center of mass (QTe3) by the splitting
method SRKN6a

14 with stepsize h = 0.1 (top) and h = 0.05 (bottom). Right:
Relative error on the energy corresponding to the same stepsizes. See text for
details.

27

Denote by mi the total mass of the ith body, by qi the position of its center
of mass, by pi its linear momentum, by Qi its orientation and, finally, by mi

its angular momentum in body frame. We consider systems with Hamiltonian
(total energy) of the type

H(q,p,m,Q) = T (p,m) + V (q,Q), (46)

where T refers to the total kinetic energy,

T (p,m) =
∑

i

(T trans
i (pi) + T rot

i (mi)),

consisting of the sum of the translational and rotational kinetic energies of each
body,

T trans
i (pi) =

‖pi‖2

2
, T rot

i (mi) =
1
2
mi · (I−1

i mi),

(here Ii = diag(I1, I2, I3) is the inertia tensor of the ith body and · the
standard scalar product), and V is a potential energy, describing the interaction
between dipoles, that is assumed to depend on the position and orientation
only. Furthermore, V =

∑
j>i Vi,j , where Vi,j describes the interaction between

dipole i and dipole j. We suppose

Vi,j(qi,Qi,qj ,Qj) = V short
i,j + V dip

i,j ,

where

V short
i,j = 4ε

(
σ

ri,j

)12

, ri,j = qi − qj , ri,j = ‖ri,j‖,

describes the short range interaction between particles i and j, while

V dip
i,j =

1
r3i,j

µi · µj −
3
r5i,j

(µi · ri,j)(µj · ri,j),

is the term modeling the dipole interaction, where µi being the orientation of
the ith dipole vector. If µ̄i is an initial fixed reference orientation for the dipole,
then µi = Qiµ̄i.

The Hamiltonian (46) is separable, as the potential does not depend on
the position or on the angular momenta. Therefore, we split the system as
H = HT +HV , yielding

d
dtqi = pi

mi
,

d
dtpi = 0,
d
dtmi = mi × (I−1

i mi),
d
dtQi = Qi

̂(I−1
i mi),

(47)

and
d
dtqi = 0,
d
dtpi = − ∂V

∂qi
,

d
dtmi = −rot(Q>

i
∂V
∂Qi

)
d
dtQi = 0.

(48)

Here, rot-function maps matrices to vectors, first by associating to a matrix a
skew-symmetric one, and then identifying the latter with a vector,

rot(A) = skew−1(A−AT),

where skew(v) = v̂, see also [21].
In our approach, the original system with full Hamiltonian (46) is then re-

placed by a composition of the flows of (47) and (48), according to the coeffi-
cients of a splitting method. Note that (48) is exactly integrable by a step of
the Forward Euler method. This is not the case of (47) because, even though
the first equation is,

qi(t+ ∆t) = qi(t) + ∆tpi(t)/mi,

the last two equations are precisely the equations of a free rigid body. In [8],
the authors propose to use a Verlet-splitting for the original system (i.e. solve
(47) for half time step, then (48) for full time step and then again (47) with
half time step) and to split further the rigid-body part. This corresponds to the
MR method described earlier in §3.3.1. Here, we will denote the same method
by V2+McL2. This is the standard method which is used in several packages
for molecular dynamics simulations, for instance the ORIENT package [22].

To obtain methods of order higher than two with the second order split-
ting scheme V2+McL2, one has use composition rules for self-adjoint scheme
described in [26]: these splitting schemes might have large error constants com-
pared to other splitting schemes, whose coefficients are obtained by including
extra stages and using the free parameters for minimizing error coefficients [3].
On the other hand, by treating the rigid body part of (47) with our exact
methods, we obtain an exact integrator for (47). This is more expensive per
step, however, it allows us to use directly higher order splitting methods – in
particular, the best one known to-date, see [3, 17]. See the appendix for the
coefficients of the splitting methods.

It is important to stress that, for sufficiently large number of particles, using
the cheap method McL2 or the more expensive exact method RB for solving
the rigid body equations is irrelevant, as the cost of this part grows only linearly
with the number of particles. The computationally most demanding part in
this simulation, that dominates the cost of the simulation, is the solution of
(48), namely the computation of the potential, which grows quadratically with
the number of particles (unless treated with more sophisticate methods like
fast multipole expansions, but that is beyond the scope of the present work).

This appears clearly in our first example: we compare different splitting
methods for a system of 100 particles, for a relatively short time integration
(T = 1). All the methods use fixed step size, appropriately scaled for each
splitting scheme, to require the same number of function evaluations. For
the reference method, the V2+McL2, we use step size h = 10−1 × 1/2i, for
i = 0, . . . , 7, i.e. for the largest stepsize h = 0.1 one has 10 potential evalua-
tions, thus the x-axis in Figure 16 can be interpreted as number of function
evaluations as well. Similarly, the sixth-order splitting method S610+RB, with
10 internal stages requiring potential evaluations, is implemented with stepsize
h = 1. The results of the simulation are displayed in Figure 16. The figure
should be read as follows: there are 3 basic splitting methods V2, SRKN46b,
S610 (Verlet; a Runge–Kutta–Nyström type splitting of order 4 and 7(6) inter-
nal stages with optimized coefficients, effective error Ef = 0.28; a partitioned
RK splitting of order 6 and 10 internal stages with optimized coefficients, ef-
fective error Ef = 1.12). The methods are implemented both solving exactly
the RB equations (solid line) and using the McL2 method (dash-dotted line).
Coalescence of stages is exploited for all methods.

29

10
0

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Computational time

lo
g(

H
am

ilt
on

ia
n

er
ro

r)

S6
10

+RB

S6
10

+McL2

V2+McL2
V2+RB
SRKN4

6
b+RB

SRKN4
6
b+McL2

S4
6
+RB

S4
6
+McL2

Figure 16: Error in the Hamiltoninan versus computational time for 100 particles. Several
splitting methods are compared. See text for details.

The figure indicates that the use of higher order splitting method is indeed
favourable. All methods using McL2 will ultimately behave as a second-order
method, and the corresponding lines will ultimately be parallel to the lines of
the Verlet splitting. Notice however the gain in accuracy: this is due to the
fact that the splitting method have very small leading-error coefficients. In
particular, the Nyström 4th order scheme is extremely accurate. The methods
using the exact RB solutions display the correct order of convergence producing
more accurate solutions – at the same computational cost.

The initial conditions for the experiment were taken as follows: mi = 1,
qi = N × randn(3, 1), N = 100 being the number of particles, and randn(3, 1)
a vector with random components (gaussian distribution) between −1 and 1;
pi = 0,mi = 0, Qi random orthogonal matrix, µi = [0, 1, 1]T , σ = ε = 1, with
a resulting energy H0 = 0.14134185611814. The inertia moments are those of
water (I1 = 1, I2 = 1.88, I3 = 2.88).

In the next numerical example (Figure 17), we test the same methods for
different energies. The initial conditions are chosen as follows: we take 125
particles that we position on a lattice of dimension 5 × 5 × 5. The initial
positions are then perturbed by 1% (Gaussian normal distribution). The ini-
tial orientations are random orthogonal matrices. With these parameters, we
compute the initial energy and then we change the linear momentum of the
particles in positions q1 = [1, 1, 1]T and q125 = [5, 5, 5]T to achieve the target
energy H0. For each stepsize h = 1, 1/2, 1/4, 1/8 of the basic method SR610,
we perform 100 simulations (choosing every time a different initial condition),
and we average the error and the computational time (arithmetic mean). We
observe that for small energies, the splitting methods using the exact RB in-
tegrator perform very well. For higher energies, the leading error term in the
splitting comes from V short, and the effect of having an exact integrator for the
RB part is less relevant.

10
1

10
2

10
−15

10
−10

10
−5

H
0
 = −0.1

10
1

10
2

10
−15

10
−10

10
−5

H
0
 = 0.1

10
1

10
2

10
−15

10
−10

10
−5

H
0
 = 0.5

10
1

10
2

10
−15

10
−10

10
−5

H
0
 = 1

S6
10

+RB

S6
10

+MC2

V+Mc2

V+RB
RKN4

6
+RB

RKN4
6
+MC2

S4
6
+RB

S4
6
+MC2

Figure 17: Average errors for different values of the energy H0, 100 runs per each of the
stepsizes 1, 1/2, 1/4, 1/8. Number of particles N = 125. For small energy
values, the splitting methods based on the exact RB integrator perform better
than those with the MC2 splitting. For higher values of the energy, the error
of due to the splitting is much higher than the error for the RB-part and it
dominates the total error

31

Finally, in Figure 18, the method SRKN46b is compared to another Nyström
splitting schemes, this time of order 6 and 14 stages, SRKN6a

14. The number
of function evaluations is the same. The initial conditions as before, except for
the number of averages (which is 1), and the time of integration, with T = 10.

It is worthwhile to mention that the RB integrator that we have used in these
experiments is algorithm based on rotations described in §2.2. The main cost
of the method is the computation of the elliptic integral of the third kind. The
latter could be approximated at a much lower cost using Gaussian quadrature.
Similarly, one could use other RB methods, like those based on quaternions (like
the exact one presented in this paper, or the methods of Hairer and Vilmart,
that instead produce approximate solutions). The resulting lines would then
lie somewhere between the solid and dash-dotted lines of the same colors in
fig. 17-18, but this is less relevant, as the overall cost of the implementation
lies in the computation of the potential part, which is the same for all the
implementations. One marginal advantage of the quaternion representation
is the storage, as quaternions require only 4 elements to store an orthogonal
matrix, instead of 9; thus, the number of variables to store for each particle is
reduced from 24 to 19.

10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

H
0
=0.1

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

H
0
=0.5

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

H
0
=1

10
1

10
2

10
−15

10
−10

10
−5

H
0
 = −0.1

Figure 18: Comparison of two RKN splittings of order 4 and 6, on the interval [0,10], 125
particles, for some initial conditions. The sharp increase of the error for the 6th
order method is due to the fact that the stepsize is greater than one. The green
method is the same as in figure 2.

4 Conclusions

The main purpose of this paper has been to understand whether and when
methods employing the exact solution of the free rigid body equations could
compete with state of the art geometric integrators. As the exact solution
of the momentum equations has been discussed in the literature before, we
have focussed on the computation of the attitude rotation. We have presented
two concrete approaches, based on rotation matrices and quaternions, and we
have shown how other formulations of the solution fit into our framework.
Thereafter, we have considered the implementation of the exact and semi-exact
methods discussed in this paper and we have tested them thoroughly for several
problems.

We have found out that the exact methods, though more expensive, are very
robust and behave uniformly well for all choices of the principal moments of
inertia and initial conditions, independently of the step-size of integration.

If cost is an issue, semi-exact methods are a good compromise. They are much
cheaper than the exact ones, while sharing all the geometric properties and
being robust for large step-sizes and arbitrary values of the principal moments
of inertia. This is an advantage with respect to implicit methods using fixed-
point iteration, that might require small step-sizes to converge.

Our conclusion is that the implementation of the exact solution of the free
rigid body is competitive as a numerical approach.

The numerical exact solution of the free rigid body equations is of interest as
it can be used as a building block for splitting methods of high order. The main
argument is that one would like to use step-sizes as large as possible to reduce
the number of force evaluations. This property is appealing in several important
applications, like molecular dynamics simulations, where other aspects (like
force evaluation) are the computationally heavy part of the problem.

Acknowledgments

The authors would like to thank E. Hairer, B. Carlson, E. Karatsuba for useful
discussion and comments. We acknowledge the kind hospitality and support
of the Newton Institute of Mathematical Sciences in Cambridge UK. Special
thanks to A. Iserles.

Appendices

Coefficients of the Gauss quadrature

For completeness, we report the coefficients of the Gaussian quadrature of order
10 shifted to the interval [0, 1].

a1 = 0.04691007703067 b1 = 0.11846344252809
a2 = 0.23076534494716 b2 = 0.23931433524968
a3 = 0.5 b3 = 0.28444444444444
a4 = 0.76923465505284 b4 = b2
a5 = 0.95308992296933 b5 = b1.

(49)

For the qudrature of order 6 and 8 the coefficients have closed form and can
be found for instace in [1].

33

Coefficients of the splitting schemes

Given the differential equation

y′ = F (y) = A(y) +B(y),

denote by ϕ[F]
τ the flow of the vector-field F from time t to time t+ τ . Given a

numerical approximations y(j) ≈ y(tj), we consider symmetric splitting schemes
of the type

y(j+1) = ϕ
[A]
a1h ◦ ϕ

[B]
b1h ◦ ϕ

[A]
a2h ◦ · · · ◦ ϕ

[A]
am+1h ◦ · · ·ϕ

[B]
b1h ◦ ϕ

[A]
a1h y

(j),

where h = tj+1−tj . A typical splitting is obtained separating the contributions
arising from the from kinetic (A) and potential (B) energy of the system. For
this reason, the (twice) the number s of the coefficients bi is called the stage
number of the splitting method. The effective error is defined as Ef = s p

√
||c||2,

where c is the vector of coefficients of the elementary differentials of the leading
error term and p is the order of the method. We refer to [3, 17] for background
and notation.

In this notation, the Störmer–Verlet scheme V2 has coefficients

a1 = 1/2, b1 = 1, (50)

(order 2, one stage).
For completeness, we report the coefficients of the methods used in this paper:

S610 method (order 6, 10 stages, effective error Ef = 1.12)

a1 = 0.0502627644003922, b1 = 0.148816447901042,
a2 = 0.413514300428344, b2 = −0.132385865767784,
a3 = 0.0450798897943977, b3 = 0.067307604692185,
a4 = −0.188054853819569, b4 = 0.432666402578175,
a5 = 0.541960678450780, b5 = 1/2− (b1 + · · ·+ b4),
a6 = 1− 2(a1 + · · ·+ a5).

(51)

In the implementation, the A part (coefficients ai) corresponds to (47) while
the B part (bi) corresponds to (48). This is a general splitting and the A and
B part are interchangeable. Similarly, for S46 (order 4, 6 stages, effective error
Ef = 0.56), we have

a1 = 0.07920369643119565, b1 = 0.209515106613362,
a2 = 0.353172906049774, b2 = 0.143851773179818,
a3 = −0.04206508035771952, b3 = 1/2− (b1 + b2),
a4 = 1− 2(a1 + a2 + a3).

(52)

For SRKN4b
6 (order 4, (7)6 stages, effective error Ef = 0.28)

b1 = 0.0829844064174052, a1 = 0.245298957184271,
b2 = 0.396309801498368, a2 = 0.604872665711080,
b3 = −0.0390563049223486, a3 = 1/2− (a1 + a2),
b4 = 1− 2(b1 + b2 + b3)

(53)

but for this last method, the coefficients for the A and B part are not inter-
changeable. Also for the method SRKN6a

14 (order 6, 14 stages, effective error
Ef = 0.63)

a1 = 0.0378593198406116, b1 = 0.09171915262446165,
a2 = 0.102635633102435, b2 = 0.183983170005006,
a3 = −0.0258678882665587, b3 = −0.05653436583288827,
a4 = 0.314241403071477, b4 = 0.004914688774712854,
a5 = −0.130144459517415, b5 = 0.143761127168358,
a6 = 0.106417700369543, b6 = 0.328567693746804,
a7 = −0.00879424312851058, b7 = 1/2− (b1 + · · ·+ b6)
a8 = 1− 2(a1 + · · ·+ a7)

(54)

the stages A and B are not interchangeable.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions
with formulas, graphs, and mathematical tables, volume 55 of National
Bureau of Standards Applied Mathematics Series, 55. Reprint of the 1972
edition. Dover Publications, Inc., New York, 1992.

[2] P. E. Appell. Traité de mécanique rationnelle, volume 2. Gauthier Villars,
Paris, 1924/26.

[3] S. Blanes and P. C. Moan. Practical symplectic partitioned Runge–Kutta
and Runge–Kutta–Nyström methods. J. Comp. Appl. Math., 142(2):313–
330, 2002.

[4] P.F. Byrd and M.D. Friedman. Handbook of elliptic integrals for engineers
and scientists. Die Grundlehren der mathematischen Wissenschaften,
Band 67. Springer-Verlag, New York-Heidelberg, second edition edition,
1971.

[5] E. Celledoni and N. Säfstöm. Efficient time-symmetric simulation of
torqued rigid bodies using Jacobi elliptic functions. Journal of Physics
A, 39:5463–5478, 2006.

[6] R. Cushman. No polar coordinates. Lecture notes, MASIE summer school,
Peyresq, France, September 2-16, 2000.

[7] R. H. Cushman and L. Bates. Global aspects of classical integrable systems.
Birkhauser, Basel, 1997.

[8] A. Dullweber, B. Leimkuhler, and R. McLachlan. Symplectic splitting
methods for rigid body molecular dynamics. J. Chem. Phys., 107:5840–
5851, 1997.

[9] M. Euler. Decouverte d’un nouveau principe de mecanique. Memoires de
l’academie des sciences de Berlin, 6:185–217, 1752.

[10] M. Euler. De motu corporum circa punctum fixum mobilium. In Opera
postuma, number 2, pages 46–62. 1862.

[11] Francesco Fassò. Comparison of splitting algorithm for the rigid body. J.
Comput. Phys., 189(2):527–538, 2003.

35

[12] E. Hairer and G. Vilmart. Preprocessed discrete Moser-Veselov algorithm
for the full dynamics of a rigid body. J. Phys. A, 39:13225–13235, 2006.

[13] C.G.J. Jacobi. Sur la rotation d’un corps. Crelle Journal für die reine und
angewandte Matematik, Bd. 39:293–350, 1849.

[14] I. I. Kosenko. Integration of the equations of a rotational motion of
rigid body in quaternion algebra. The Euler case. J. Appl. Maths Mechs,
62(2):193–200, 1998.

[15] M. Leok, T. Lee, and N.H. McClamroch. Attitude maneuvers of a rigid
spacecraft in a circular orbit. In Proc. American Control Conf., 2005.
Submitted.

[16] R. I. McLachlan and A. Zanna. The discrete Moser–Veselov algorithm for
the free rigid body, revisited. Found. of Comp. Math., 5(1):87–123, 2005.

[17] Robert I. McLachlan and G. Reinout W. Quispel. Splitting methods. Acta
Numer., 11:341–434, 2002.

[18] J.Wm. Mitchell. A simplified variation of parameters solution for the mo-
tion of an arbirarily torqued mass asymmetric rigid body. PhD thesis,
University of Cincinnati, 2000.

[19] Harold S. Morton, Jr., John L. Junkins, and Jeffrey N. Blanton. Analytical
solutions for Euler parameters. Celestial Mech., 10:287–301, 1974.

[20] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical recipes in Fortran 77 and Fortran 90. Cambridge
University Press, Cambridge, 1996. The art of scientific and parallel com-
puting, Second edition diskette v 2.06h.

[21] S. Reich. Symplectic integrators for systems of rigid bodies. Integration
algorithms and classical mechanics (Toronto, ON, 1993). Fields Inst. Com-
mun., 10:181–191, 1996.

[22] A. J. Stone, A. Dullweber, M. P. Hodges, P. L. A. Popelier, and D. J.
Wales. ORIENT Version 3.2: A program for studying interaction between
molecules.

[23] R. van Zon and J. Schofield. Numerical implementation of the exact dy-
namics of free rigid bodies. J. of Comput. Phys., 2007. To appear.

[24] R. van Zon and J. Schofield. Symplectic algorithms for simulations of rigid
body systems using the exact solution of free motion. Phys. Rev. E, 75,
2007.

[25] E. T. Whittaker. A Treatise on the Analytical Dynamics of Particles and
Rigid Bodies. Cambridge University Press, 4th edition, 1937.

[26] H. Yoshida. Construction of higher order symplectic integrators. Physics
Letters A, 150:262–268, 1990.

