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The ParaReal algorithm, [12], is a parallel approach for solving numerically
systems of Ordinary Differential Equations by exploiting parallelism across the
steps of the numerical integrator. The method performs well for dissipative
problems and problems of fluid structure interaction [7]. We consider here a
convergence analysis for the method and we report the performance achieved
from the parallelization of a Stokes code via the ParaReal algorithm.

1 Introduction

The ParaReal algorithm, [12], [1], parallelizes in the time direction the computational effort
required to solve evolution equations. This method is an iterative procedure based on the
use of coarse sequential solvers and fine solvers to be computed in parallel.

A survey on earlier contributions in the field of parallelization of ODE solvers in the
time direction can be found in [4] and references therein. The main idea behind these
methods are very similar to the ParaReal algorithm, which however appears to be easier
to implement, especially in the PDE context.

Recent articles and studies, [13], [7], give evidence that the ParaReal technique performs
well in the case of dissipative problems, especially if particular care is taken in the choice
of the numerical integrators used in the implementation, [13]. In [7], in particular, the
method is used successfully also in problems of fluid structure interaction.

Herein we investigate the performance of the method in the parallelization of a finite
element code for the numerical solution of time dependent Stokes and non-Newtonian
Navier-Stokes problems for creeping flow. Our motivation for focusing on this type of
equations comes from our interest into the challenging industrial problem of extrusion of
aluminium modeled as a coupled thermo-viscoplastic problem, [10]. The movement of the
stem, i.e. the contraction of the domain occupied by the aluminium in the extrusion tool,
is taken into account to capture the transient character of the extrusion process. Even if in
this paper we report experiments on somewhat simple test problems, the actual simulations
require a very large number of degrees of freedom and the number of time steps required is
also quite large. In these models the presence of high viscosity implies that the dynamics
is dominated by the diffusion operator (Laplace operator), which is typically self-adjoint
and has real eigenvalues. We will restrict our analysis to the case of symmetric negative
definite spatial discretizations of such operator. Under these circumstances ParaReal can
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be applied succesfully provided the numerical integrator employed in the implementation
of the algorithm is implicit and satisfies certain conditions discussed in section 2.2.

In section 2 we insert the ParaReal method in the context of other strategies of paral-
lelism across time, we investigate the convergence of the iterative process, and we discuss
classes of problems and time integration methods amenable to make the ParaReal strategy
successful in terms of speed-up. In the final section of this paper we describe briefly the
parallel implementation of the ParaReal method and we report some numerical experi-
ments on the performance of our parallel implementation of ParaReal on three different
PDE test problems.

2 Parallelism across time and the ParaReal algorithm

In this section we describe some known strategies of parallelism across time and relate
them to the ParaReal algorithm. Suppose [0, Tfin] is the interval of integartion of the ODE
problem

y′ = f(y)
y(0) = b0,

(1)

and consider a grid of the type t0 = 0 < t1 < · · · < tN = Tfin, (the nodes will be here
assumed equidistant). Our goal is to compute at the given times the sequence of numerical
approximation of the ODE solution produced by a given numerical solver Fn, i.e.

y0 = y0, y1 = F1(y0), y2 = F2(y1), . . . , yN = FN (yN−1), (2)

where the approximations yn ≈ y(tn), for n = 0, . . . , N, have an adequate accuracy estab-
lished a priori by the choice of Fn.

By introducing the notation Y = [y0, . . . , yN ]T , problem (2) can be rewritten in the
compact form

Y = φ(Y ), φ(Y ) = [y0, F1(y0), . . . , FN (yN−1)]T . (3)

The fixed point iteration Y k+1 = φ(Y k) can be easily parallelized computing each of
the N + 1 block components of Y k+1 on a different processor, the convergence is however
in general very poor and the method does not lead to a computational gain. Acceleration
of the convergence of this iterative process can be achieved by rewriting the fixed point
equation (3) in a suitable manner.

In earlier papers, [3], [2], [6], see also [4], the following approach was considered. Suppose
∆(Y ) is a matrix valued function such that

∆(Y ) · Y ≈ φ(Y ),

then we can rewrite (3) as

Y −∆(Y ) · Y = φ(Y )−∆(Y ) · Y, (4)

and assuming I −∆(Y ) to be invertible we obtain a new fixed point equation

Y = (I −∆(Y ))−1(φ(Y )−∆(Y ) · Y ). (5)

A natural choice is to take ∆(Y ) to be the Jacobian of φ(Y ), and then the fixed point
iteration stemming from (4) corresponds to the Newton iteration for solving the nonlinear
equation Y − φ(Y ) = 0. In this case ∆(Y ) is a strictly lower triangular block matrix, I −



∆(Y ) is invertible, and (I−∆(Y ))−1V can be easily computed by a backward substitution.
This means that in the new iteration,

Y k+1 = (I −∆(Y k))−1(φ(Y k)−∆(Y k) · Y k), (6)

while V k := φ(Y k)−∆(Y k) ·Y k can be computed in parallel, the solution of the triangular
linear system,

(I −∆(Y k))−1V k,

is by its nature a sequential task. Since the computation of the Jacobian of φ(Y ) can be
difficult to achieve in practice, it might be useful to consider suitable surrogates, leading for
example to a Steffensen iteration [2]. In this approach ∆(Y k) has the same lower triangular
block structure of the Jacobian of φ, and then

∆(Y k)V = [v1,∆1(Y k)v2, . . . ,∆N (Y k)vN+1]T .

Each of the matrix blocks ∆n is of dimension m × m and it is defined as follows. We
consider

Ỹ k+1 = φ(Y k),

and compute

Y k,j := Y k −
N∑

n=0

(en ⊗ ej)(en ⊗ ej)T (Y k − Ỹ k+1),

where en is the n-th canonical vector in RN+1, ej is the j-th canonical vector in Rm and
⊗ is the Kroneker product (see for example [9] p. 243). Furthermore we consider

Ỹ k+1,j = φ(Y k,j), j = 1, . . .m

and

∆n(Y k)i,j =
(en+1 ⊗ ei)T (Ỹ k+1,j − Ỹ k+1)

(en ⊗ ej)T (Ỹ k+1 − Y k)
,

for i, j = 1, . . . ,m. The parallelism of the overall approach is lying in the use of the
mapping φ, which can be applied concurrently on each of the block components of the
argument. However, in the case m is large this method can be quite demanding as it
requires the computation and storage of each of the m × m matrix blocks ∆n(Y k) per
each iteration. If Fn represents the implementation of an implicit solver for the numerical
discretization of a PDE problem, the blocks ∆n have the same size and sparsity of a typical
linear system whose solution is required in the implementation of Fn.

The parallel algorithm is intertwined with the linear algebra of the solver Fn as the
solution of linear systems with ∆n become building blocks in the parallel scheme.

The advantage the ParaReal method is that no approximations of the Jacobian of φ are
needed and that the parallelism in time in principle does not require to interfere with the
linear algebra of the solver Fn. The idea behind the ParaReal algorithm can be described
as follows. Suppose now we are given an approximation ψ of φ, and we write (4) in the
following way

Y − ψ(Y ) = φ(Y )− ψ(Y ), (7)

this immediately leads to the fixed point iteration

Y k+1 − ψ(Y k+1) = W k, W k = φ(Y k)− ψ(Y k), (8)
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and, in this case, a nonlinear equation involving ψ instead of φ must be solved at each
iteration step. The approximation ψ to φ can be obtained introducing the operators
Gn ≈ Fn and then taking

ψ(Y ) = [y0, G1(y0), . . . , GN (yN−1)]T .

The operators Gn should be both a good and inexpensive approximation of Fn. Typically
Fn and Gn are based on the same numerical algorithm, Fn propagates the numerical
solution of the evolution equation with a certain accuracy and a small time-step, and Gn

with a lower accuracy and a bigger time-step. We will in fact here assume that Fn and Gn

are obtained by applying a Runge–Kutta method. The solution of the nonlinear equation,

Y k+1 − ψ(Y k+1) = W k,

is done sequentially, but for suitable choices of Gn, is less expensive to compute compared
to the original nonlinear equation. The computation of W k is the predominant task of the
computation, and it can be executed in parallel.

Iteration k+ 1 of the ParaReal procedure can then be defined by means of the iteration
k by the following recursion formula,

y0
n+1 = Gn(y0

n), y0
0 = y0, n = 0, . . . , N − 1,

yk+1
n+1 = Fn(yk

n) +Gn(yk+1
n )−Gn(yk

n), n = 0, . . . , N − 1.
(9)

The first iterate [y0
0
T
, y0

1
T
, . . . , y0

N
T ]T , is obtained by computing the numerical approxima-

tion using the coarse operator.

2.1 Computational complexity and speed-up

Since yk+1
n+1 for n = 0, . . . , N − 1 depends only on F (yk

n) for n = 0, . . . , N − 1, assuming we
have N processors at our disposal, we can compute one of the Fn(yk

n) on each processor.
Once Fn(yk

n) for n = 0, . . . , N − 1 are available as a result of a parallel computation, yk+1
n+1

is computed form (9) by sequentially applying Gn. If now we assume u is the cost of
applying Gn, i.e. the cost of performing one step of a chosen one-step integrator (with
step-size ∆T = Tfin/N and [0, Tfin] is the interval of integration), then the overall cost of
the ParaReal method per iteration is given by the cost of applying Fn once simultaneously
on each processor, l · u, and N times the cost of applying Gn sequentially, in total

l · u +N · u.

Here l is the number of micro-steps of size ∆T/l required to implement Fn. In our exper-
iments we will always consider l = N .

The cost of one iteration of ParaReal should be compared to the cost of applying Fn, N
times sequentially, i.e.

N · l · u.

We obtain a speed-up of
N · l · u

m(l · u +N · u)
,

where m is the total number of iterations performed. If m = N there is no speed-up, and
therefore it is important to apply the method to problems where convergence is obtained
for m << N . If we want to maximize the speed-up, we must aim at applying ParaReal in
cases when we can terminate the iteration after just few steps, while being certain to have
reduced the norm of the initial error of a sufficient amount.



2.2 Convergence of the ParaReal iteration in the linear case

In this section we perform an analysis of the ParaReal algorithm. The thermo-viscoplastic
model problems considered in this paper, all have a dominating linear part, and for this
reason we will restrict our analysis to the linear case. In the case F is linear, i.e. F (y) = F ·y
where F is a constant if y is a scalar and F is a matrix if y is a vector, we can rewrite (2)
in a matrix format as follows 

I O · · · O

−F I
. . .

...
...

. . . . . . O
O · · · −F I

Y = b, (10)

where b = [yT
0 , 0

T , . . . , 0T ]T . We denote the operator of the system of equations to be solved
I − S, I is the identity and S is minus the lower triangular part. This operator I − S is a
bidiagonal block Toeplitz matrix.

Consistently with the adopted notation, in the linear case we can rewrite the iterative
process as follows

I O · · · O

−G I
. . .

...
...

. . . . . . O
O · · · −G I


(I − P )

Λk+1 =


O O · · · O

F O
. . .

...
...

. . . . . . O
O · · · F O


S

Λk

−


O O · · · O

G O
. . .

...
...

. . . . . . O
O · · · G O


P

Λk + b

where Λk = [λk
0, . . . , λ

k
N ]T . Here (I−P ), and (S−P ) are bidiagonal block Toeplitz matrices.

In short we obtain a format of the type

Λk+1 = (I − P )−1(S − P )Λk + (I − P )−1b. (11)

This iteration stems from the linear block fix point equation

Y = (I − P )−1(S − P )Y + (I − P )−1b, (12)

equivalent to the linear system
(I − S)Y = b. (13)

Subtracting (11) from (12) we obtain the recursion formula for the error,

Y − Λk = (I − P )−1(S − P )(Y − Λk−1). (14)

We will use in the sequel the following expression for the inverse of (I − P )−1 in terms
of G,

(I − P )−1 =



I O · · · · · · O

G I O · · ·
...

G2 . . . . . . . . .
...

...
. . . . . . . . .

...
GN · · · G2 G I


.
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The matrix (I −S)−1 has a similar structure with G substituted by F . It is easy to veryfy
by straightforward calculation that

(I − P )−1(S − P ) =



O O · · · · · · O

F −G O O · · ·
...

G(F −G)
. . . . . . . . .

...

...
. . . . . .

...

GN−1(F −G) · · · G(F −G) F −G O


. (15)

We are interested in the case when the differential equation to be solved is defined by
a symmetric negative definite spatial discretization of the Laplace operator. The problem
is therefore diagonalizable via an orthogonal similarity transformation, and in the analysis
we can look separately at a scalar problem for each of the eigenvalues. We therefore restrict
now our analysis to the linear scalar case constituting a good indication of what would
happen in more general cases. We first assume F is the exact solution of the linear scalar
differential equation y′ = λy, y(0) = y0, i.e. F = eλ∆T , and we assume G = R(λ∆T ),
where R is a polynomial or a Pade’ approximant of the exponential function. Then we
have F − G = eλ∆T − R(λ∆T ). We are interested in sufficient conditions guaranteeing
that the error of the ParaReal iteration is contracted at each step.

Consider the function defined by

RN (z) := max
k=1,...,N−1

∣∣∣∣∣
k+1∑
l=1

R(z)l(ez/R(z)− 1)

∣∣∣∣∣ .
By using (14) and (15) one shows that

‖Y − Λk‖∞ ≤ RN (hλ)‖Y − Λk−1‖∞.

Consider also the subset of the complex plane here defined,

SN := {z ∈ C | RN (z) < 1} .

If λ∆T ∈ SN then the error of the ParaReal iteration with N processors is contracted at
each step in the max norm, i.e. we have

‖Y − Λk‖∞ < ‖Y − Λk−1‖∞, k = 1, 2, . . . , N.

In figures 1, 2 (left) and 3 (left) we report the level curves of RN (z) in a portion of the
complex plane. We are in particular interested in the shape of the set SN for different
choices of R(z). In the case R(z) = 1 + z, corresponding to using the explicit Euler
method in the implementation of the coarse operator, SN is quite small and it is included
in an ellipse of the negative complex plane tangent in the origin to the imaginary axsis.
This implies severe restrictions on the step-sze ∆T if we require to contract the error at
each iteration.

For implicit methods SN is including a bigger area of the negative complex plane even if
C− is not entirely included in SN . In particular we observe that the implicit Euler method,
(figure 3), has the desired property of contracting the error at each iteration, for a big range
of values of z in the negative complex plane, apart from a thin strip along imaginary axis.
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Figure 1: Level curves of the function RN (z) in the negative complex plane. The level
curve corresponding to the value 1 delimits the set SN . In this experiment
R(z) = (1+ z) the stability function of the explicit Euler integration method. In
this experiment N = 80. Level curves at the values 0.9, 1 and 1.1 of RN (z).

0.9 0.9 0.9
0.90.9

0.9 0.9 0.9
0.9

0.9
0.9

0.9

0.9

0.9
0.9

0.9
0.9

0.90.9
0.9 0.9 0.9

0.90.90.9

0.90.9
0.9 0.9

0.90.9
0.9 0.9

1 1
1

1
1

11
1

1
1

1

1

1

1

1

1
1

1
1

11
1

1
1

1.1
1.1

1.1
1.1

1.1
1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1
1.1

1.1
1.1

1.1 

 

!5 !4 !3 !2 !1 0 1
!30

!20

!10

0

10

20

30

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1 0.9 0.9

0.9 0.9

0.9 0.9 0.9

0.9 0.9 0.9

0.9
0.9

0.9

0.9
0.9

0.9

0.9

0.9
0.9

0.9

11

1
1

1

1
1

1

1

1

1

1
1

1
1

1
1 1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1
1.1

1.1

1.1

1.1
 

 

!5 !4 !3 !2 !1 0 1
!30

!20

!10

0

10

20

30

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Figure 2: Level curves of the function RN (z) (left) and R̃N (z) (right) in a region of the
complex plane. The level curve corresponding to the value 1 delimits the set SN

and S̃N respectively. In this experiment R(z) = (1+ z/2)/(1− z/2) the stability
function of the midpoint integration method. In this experiment N = 80. Level
curves at the values 0.9, 1 and 1.1 of RN (z) and R̃N (z) respectively.

7



0.
9

0.9

0.9

0.9
1

1

1

1

1.
1

1.1

1.1

1.
1

 

 

!5 !4 !3 !2 !1 0 1
!30

!20

!10

0

10

20

30

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0.9

0.9

0.9

1

1

1

1.1

1.1

1.1

 

 

!5 !4 !3 !2 !1 0 1
!30

!20

!10

0

10

20

30

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Figure 3: Level curves of the function RN (z) (left) and R̃N (z) (right) in a region of the
complex plane. The level curve corresponding to the value 1 delimits the set SN

and S̃N respectively. In this experiment R(z) = 1/(1−z) the stability function of
the implicit Euler integration method. In this experiment N = 80. Level curves
at the values 0.9, 1 and 1.1 of RN (z) and R̃N (z) respectively.

The implicit midpoint (figure 2), meets the requirement at least in a sector of the negative
complex plane.

As in general the fine operator does not compute the exact solution, but just a more
accurate approximation compared to the coarse operator, we now consider the function

R̃N (z) := max
k=1,...,N−1

∣∣∣∣∣
k+1∑
l=1

R(z)l(R(z/N)N/R(z)− 1)

∣∣∣∣∣ ,
where ez has been substituted with R(z/N)N . This corresponds to the choice we have done
in the implementation of ParaReal in our codes, i.e. the fine operator is obtained by sub-
dividing the macrostep ∆T in exactly N microsteps of size δt = ∆T/N . Correspondingly
we can define the set

S̃N :=
{
z ∈ C | R̃N (z) < 1

}
,

such that if λ∆T ∈ S̃N then the error of the ParaReal iteration with N processors is
contracted at each step in the max norm. The sets S̃N for the case of the implicit midpoint
and the implicit Euler method are reported in figures 2 (right) and 3 (right). The case of
the explicit Euler method is not reported as there is virtually no difference compared to
figure 1.

Now the advantage of using the implicit Euler method is even more evident, in fact S̃N is
significantly bigger in this case, (figure 3), compared to SN . For the midpoint, in figure 2,
S̃N is not improved compared to SN . In conclusion the implicit Euler method seams to be
a better choice for the implementation of ParaReal compared to the implicit midpoint.

2.3 Other estimates

It is also easy to realize that

Λk =
k∑

l=0

(
(I − P )−1(S − P )

)lΛ0, Λ0 = (I − P )−1b. (16)



In order to understand the behaviour of the iteration we want to find the powers(
(I − P )−1(S − P )

)j
, j = 1, 2, . . . .

Since (I − P )−1(S − P ) is nihilpotent the Neuman series for I − (I − P )−1(S − P ) has
a finite number of terms, and we have

(
I − (I − P )−1(S − P )

)−1 =
N∑

j=0

(
(I − P )−1(S − P )

)j
, (17)

which proves (in the linear case) that the algorithm gets to the exact solution in m ≤ N
steps. We are interested in characterizing the non trivial powers of (I − P )−1(S − P ).

Proposition 2.1. The j-th power of (I −P )−1(S−P ) is a lower triangular block Toeplitz
matrix. The first column of

(
(I −P )−1(S−P )

)j has N +1 block components equal to zero
for k = 1, . . . , j, and equal to

αj
kG

k−j−1(F −G)j , with αj
k :=

(
k − 2
j − 1

)
, (18)

for k = j + 1, . . . , N + 1.

Proof We proceed by induction. For j = 1 we verify that formula (18) is returning the
expression founded explicitely in (15). According to (18), for j = 1, we have that α1

k = 1,
for k = 2, . . . , N + 1, the first block component is zero, and the remaining ones are

Gk−2(F −G), k = 2, . . . , N + 1,

which verifies (18) for j = 1.
Assume now the proposition holds true for the j− 1-th power. It is well known that the

lower triangular block Toeplitz matrices form a commutative algebra. Therefore multiply-
ing (I−P )−1(S−P ) and ((I−P )−1(S−P ))j−1 we obtain a Toeplitz lower triangular block
matrix. It is then enough to multiply (I − P )−1(S − P ) from formula (15), with the first
column of ((I −P )−1(S −P ))j−1 in order to find the first column of ((I −P )−1(S −P ))j .
Due to the Toeplitz structure, from the first column we are able to reconstruct the whole
matrix.

By the induction hypothesis the first column of ((I − P )−1(S − P ))j−1 has N + 1 block
components equal to zero for s = 1, . . . , j − 1, and equal to

αj−1
s Gs−j(F −G)j−1, with αj−1

s :=
(
s− 2
j − 2

)
,

for s = j, . . . , N + 1. Multiplying the k-th row of I − (I − P )−1(S − P ) with the first
column of ((I − P )−1(S − P ))j−1 we obtain

k−1∑
s=j+1

αj−1
s Gk−1−s(F −G)Gs−j(F −G)j−1,

for k = j + 1, . . . , N + 1. Since G and F commute, the given expression is equal to k−1∑
s=j+1

αj−1
s

Gk−1−j(F −G)j . (19)

9



Substituting in the sum the expressions for αs we obtain
k−1∑

s=j+1

αj−1
s =

(
j − 1
j − 2

)
+ · · ·+

(
k − 1− 2
j − 2

)
.

It can be easily proven by induction that
k−1∑

s=j+1

αs =
(
k − 2
j − 1

)
= αj

k−1, k = j + 1, . . . , N + 1.

This together with (19) proves the proposition. q.e.d.
We will use now the result of the proposition for characterizing the error at the k-th

iteration of the ParaReal method.
Using the previously deduced expression for the inverse of (I − (I − P )−1(S − P )) and

since Y satifies (12), we can write the following espression for the solution of the problem

Y =
N∑

j=0

((I − P )−1(S − P ))j(I − P )−1b.

We can then obtain the following expressions for the error in the iterative process

Y − Λk =
N∑

j=k+1

((I − P )−1(S − P ))j(I − P )−1b.

By straightforward calculation we have that

(I − P )−1b =


b0
Gb0
...
GNb0

 .
In order to find an explicit expression for the error Y − Λk, we compute

((I − P )−1(S − P ))j(I − P )−1b.

We use the characterization of ((I − P )−1(S − P ))j given in Proposition 2.1, and with a
similar procedure as the proof of Proposition 2.1, we find that ((I−P )−1(S−P ))j(I−P )−1b
has components equal to zero for s = 1, . . . , j and equal to

αj+1
s+1(F −G)jGs−j−1b0,

for s = j + 1, . . . , N + 1. As an immediate consequence we obtain the following character-
ization of the error after k iterations of the ParaReal iteration in the linear case.

Proposition 2.2. The error in the ParaReal iteration is given by

Y − Λk =
N∑

j=k+1

((I − P )−1(S − P ))j(I − P )−1b,

and it is a vector divided in N + 1 component blocks. The first k+ 1 component blocks are
zero, while the remaining N − k − 1 ones are of the type

s∑
l=k+2

αl
s+1(F −G)l−1Gs−lb0, s = k + 2, . . . , N + 1. (20)



N 4 8 16 32

speedup perc. 45.79 37.59 28.90 29.00

speedup 1.8319 3.00 4.62 9.56

error .3118D-01 .9570D-02 .3201D-02 .1238D-02

Table 1: Heat equation discretized in space with central finite differences and in time with
a implicit Euler method and the ParaReal iteration. Parallel implementation, N
number of processors and of time steps used to integrate over the interval [0, 1].
Displayed: speed-up percentage, speed-up and 2-norm of the error. Results after
one iteration.

3 Parallel implementation and performance

We have implemented the ParaReal method in a FORTRAN/MPI code. We have per-
formed tests with a simple one-dimensional heat equation and by coupling our FOR-
TRAN/MPI implementation of ParaReal to an existing C++ code for extrusion of alu-
minium developed within the PDE solving environment DiffPack, [11]. The code can be
found at the website http://www.math.ntnu.no/∼elenac/ for the case of the heat equa-
tion.

We compute the speed-up for the method as the quotient between the CPU time em-
ployed by the sequential integrator and the CPU time employed by the ParaReal imple-
mentation with N processors. The number of processors employed is always equal in the
experiments to the number of time steps and therefore the accuracy of the integration in-
creases with the number of processors used in the calculation. The speed-up is reported on
the second row of each table below, while the corresponding speed-up percent is reported in
the first row. The 2-norm of the error between the numerical solution obtained by sequen-
tial and the parallel solver is reported in the third row. We perform experiments with only
one or two iterations of the ParaReal approach. The operators G (coarse) and F (fine)
are implemented by integrating in time with an implicit Euler’ s method with stepsize
∆T = Tfin/N and δt := ∆T/N respectively, where Tfin is the amplitude of the integration
interval. The experiments have been performed on a SGI origin 3800 of type SMP with a
total of 384 nodes. We could not run the experiments with a dedicated machine.

3.1 Parallel experiments: Heat equation

We consider the one-dimensional heat equation

Tt = Txx, x ∈ [0, 1], t ∈ [0, 1],

T (x, 0) = 1, u(0, t) = u(1, t) = 0

where T is the temperature field. When we discretize this in space with central finite
differences, we obtain a system of linear ordinary differential equations which we here solve
with ParaReal. The number of degrees of freedom in our numerical example is Ndof = 10.
The results are reported in Tables 1 and 2. The corresponding finite difference code is
reported at the website http://www.math.ntnu.no/∼elenac/.

11



N 4 8 16 32

speedup perc. 31.42 20.60 15.83 14.94

speedup 1.25 1.64 2.53 4.78

error .2721D-01 .1019D-01 .2537D-02 .5743D-03

Table 2: Heat equation discretized in time with central finite differences and in time with
a implicit Euler method and the ParaReal iteration. Parallel implementation, N
number of processors and of time steps used to integrate over the interval [0, 1].
Displayed: speed-up percentage, speed-up and 2-norm of the error. Results after
two iterations.

N 4 8 16 32

speedup perc. 50.71 49.71 48.63 48.07

speedup 2.0285 3.97 7.78 15.38

error .4123D-03 .1192D-05 .3228D-09 .1780D-11

Table 3: Stokes channel flow problem discretized in space with finite elements and in time
with an implicit Euler method and the ParaReal iteration. Parallel implementa-
tion, N number of processors and of time steps used to integrate over the interval
[0, 1]. Displayed: speed-up percentage, speed-up and 2-norm of the error. Results
after one iteration.

3.2 Parallel experiments: Stokes channel flow with constant inflow profile

In the following two experiments the ParaReal approach has been combined with an exist-
ing object oriented code for solving Stokes and Navier-Stokes equations arising in problems
of extrusion of aluminium. This code named Extrud was developed by Kvamsdal et al. [10].
To begin with we consider the following incompressible Stokes problem in two space di-
mensions:

ut = −∇p+ µ∆u,
∇ · u = 0,

with (x, y) ∈ [0, 1]x[0, 1], t ∈ [0, 1], u(x, y, t) the flow velocity with u(x, y, 0) = 0, u(x, y, t) =
1 on the boundary with a given initial velocity profile, p the pressure field, µ the dynamic
viscosity. The equations are discretized in space with finite elements where we use a mixed
interpolation of the aluminium flow variables, with quadratic test- and trial functions for
the velocities and linear functions for the pressure. The number of degrees of freedom used
in the numerical example is Ndof = 187, µ = 1. The results are reported in table 3.

3.3 Parallel experiments: Navier-Stokes extrusion problem

In this last experiment we solve the following coupled thermo-viscoplastic extrusion flow
problem:

ρ(ut + (u− ug) · ∇u) = −∇p+ (2µ(u, T )ε(u)),
∇ · u = 0,

ρ(Tt + (u− ug) · ∇T ) = ∇ · (k∇T ) + (2µ(u, T )ε(u) : ε(u)),



N 4 8 16 32

speedup perc. 51.77 52.48 50.57 50.33

speedup 2.07 4.19 8.09 16.10

error .4125D-09 .3954D-15 .3738D-15 .5143D-15

Table 4: Navier-Stokes extrusion problem discretized in space with finite elements and in
time with an implicit Euler method and the ParaReal iteration. Parallel imple-
mentation, N number of processors and of time steps used to integrate over the
interval [0, 1]. Displayed: speed-up percentage, speed-up and 2-norm of the error.
Results after one iteration.

Here, the extrusion code uses an ALE formulation (Arbitrary Lagrangian- Eulerian for-
mulation) to take into account the movement of the stem in the extrusion process, i.e.
we have to handle a moving boundary problem where ug is the grid (mesh) velocity. The
thermo-viscoplastic extrusion problem is a non-Newtonian Navier-Stokes problem where
the dynamic viscosity µ depends on the flow velocity u and the temperature field T . The
strains are given as ε(u) = 1/2(∇u+ (∇u)T ), whereas the conductivity k is assumed con-
stant. The discretization of the aluminium flow variables u and p is the same as for the
Stokes problem above, whereas for the temperature problem we use quadratic interpola-
tion. The number of degrees of freedom was here Ndof = 854, corresponding to 375 nodes,
and 84 elements.
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3.4 Conclusions

We applied succesfully the ParaReal algorithm to a problem of fluid structure interaction
in the context of extrusion of alluminium and we discussed fast convergence criteria for the
method. Our parallel implementation shows that the ParaReal approach brings significant
improvements in terms of the CPU time spent in the calculation, with savings up to 50%.
However due to the intrinsic sequential nature of time integration problems the speed-up
can only be suboptimal. A similar, but different analysis of the convergence of the ParaReal
algorithm was recently derived independently in [8]. A preliminary version of our work
was presented in [5].
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