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Error estimates in inverse design of

photonic crystals

Larisa Beilina, Marte P. Hatlo, Harald E. Krogstad

September 14, 2007

We present an a posteriori error estimate together with an adaptive finite
element method for an inverse design problem applied to reconstruction of the
structure of a photonic crystal.

The inverse problem is formulated as an optimal control problem, where
we solve the equations of optimality expressing stationarity of an associated
Lagrangian. We present an a posteriori error estimate for the error in the La-
grangian which couples residuals of the computed solution to weights of the
reconstruction. We show also that weights can be obtained by solving an asso-
ciated linearized problem for the Hessian of the Lagrangian and thus the value
of the error in the reconstructed parameter can be obtained. The performance
of the adaptive finite element method and the usefulness of the a posteriori
error estimator are illustrated in numerical examples on reconstruction of the
structure of a two-dimensional photonic crystal.

Keywords: transient wave equation, inverse scattering, adaptive finite element methods,
a posteriori error estimation, hybrid finite element/difference method, photonic crystals.

1 Introduction

Photonic crystals are space-periodic structures of dielectric material used for a variety
of electromagnetic applications extending from radio waves to optical wave lengths. In
particular, for the last couples of decades, photonic crystals have attracted great interest
for their ability to control the propagation of light [15, 21].

Up to some years ago, the design of a photonic crystal was done by forward simulations
combined with optimization or intuition. Recent developments in the field have, however,
replaced intuitive engineering and raised interesting mathematical problems in the area
[20], e.g. linked to numerical simulations for achieving a certain photonic bandgap [1, 12],
as well as design and optimization of crystals for other purposes (see [17] for an overview).
The bandgap structures optimization and the optimization of waveguide structures are the
two main design classes related to photonic crystals. The first class uses level set methods
to shape the interface between two materials [10].

In this paper we concentrate on the second design class and seek the structure of a finite
photonic crystal by applying a new mesh-adaptive finite element/difference method to an
associated inverse problem. The inverse problem consists of reconstructing the unknown
material variables, that is, the dielectric permittivity, ε(x), and magnetic permeability,
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µ(x), from measured wave scattering data on parts of the surface of the crystal, given the
wave input on other parts. By solving the wave equation with the same input, the material
variables are in principle obtained by fitting the computed to the measured data. The
problem is formulated as finding a stationary point of a Lagrangian, involving the forward
wave equation (the state equation), the backward wave equation (the adjoint equation),
and an equation expressing that the gradient with respect to the parameters vanishes. The
optimum is found in an iterative process solving for each step the forward and backward
wave equations and updating the material coefficients.

We present a new mesh-adaptive method for the inverse problem, developed in [5],
that is based on a specially constructed "goal-oriented" a posteriori error estimate which
couples residuals of the computed solution to weights in the reconstruction reflecting the
sensitivity of the reconstruction obtained by solving an associated linearized problem for
the Hessian of the Lagrangian. The derivation follows the main approach to adaptive error
control in computational differential equations presented in [14, 3] and references therein.

Finally, numerical experiments on the reconstruction of the structure of a two-dimensional
photonic crystal show the possibilities in computational inverse scattering using the adap-
tive error control.

2 Mathematical model

We will restrict ourselves to the propagation of light in a mixed dielectric medium in a
bounded domain Ω ⊂ R

d, d = 2, 3 with boundary Γ, governed by Maxwell’s equations:

∂D

∂t
−∇×H = −J, in Ω × (0, T ),

∂B

∂t
+ ∇×E = 0, in Ω × (0, T ), (2.1)

∇ ·D = ρ, in Ω × (0, T ),

∇ ·B = 0, in Ω × (0, T ).

Here E(x, t) and H(x, t) are the electric and magnetic fields, whereas D(x, t) and B(x, t)
are the electric and magnetic inductions, respectively. We assume that the dielectric per-
mittivity, ε(x), and magnetic permeability, µ(x), are scalars, so that D = εE and B = µH.
The material variables as well as the current density, J , and charge density, ρ, are assumed
to be piecewise smooth.

By eliminating B and D from (2.1) we obtain two independent second order systems of
partial differential equations

ε
∂2E

∂t2
+ ∇× (µ−1∇×E) = −

∂J

∂t
,

µ
∂2H

∂t2
+ ∇× (ε−1∇×H) = ∇× (ε−1J), (2.2)

which may be solved imposing appropriate initial and boundary conditions.
For simplicity, we restrict ourselves to formulation of the problem in terms of E(x, t)

and assume that J = 0 and ρ = 0. Taking into account the vector identity ∇×∇× V =
∇(∇ · V ) −4V , we then obtain

ε
∂2E

∂t2
−∇ · (

1

µ
∇E) = 0, in Ω × (0, T ). (2.3)



A similar system of equations is valid for H. Thus, the electric and magnetic fields in
isotropic medium satisfy wave equations with a wave speed c(x) = 1/

√

ε(x)µ(x).
We consider the equation (2.3) in the domain Ω representing the photonic crystal. Let

Γ1 ⊂ Γ and Γ2 = Γ\ Γ1. Assume that an impulse v1 is initialized at the boundary Γ1 and
propagated during time (0, t1] into Ω.

The forward problem consists of solving (2.3) with the following initial and boundary
conditions:

E(·, 0) = 0,
∂E

∂t
(·, 0) = 0, in Ω,

∂nE
∣

∣

Γ1

= v1, on Γ1 × (0, t1],

∂nE
∣

∣

Γ1

= 0, on Γ1 × (t1, T ),

∂nE
∣

∣

Γ2

= 0, on Γ2 × (0, T ).

(2.4)

Our goal is to solve the inverse problem for (2.3) and (2.4), or to find the material param-
eters ε(x) and µ(x) from knowledge of data at a finite set of observation points on Γ. The
data are generated in experiments where impulses are emitted from Γ1, backscattered by
material inhomogeneities, and recorded again on parts of the boundary Γ.

In real applications the data are generated by emitting waves on the surface of the
investigated object and are then recorded on parts of the surface of the object. In this
paper, data are generated by computing the forward problem (2.3)-(2.4) with given values
of the parameters, and the corresponding solution was recorded at parts of the boundary.
The coefficients are then “forgotten” and the goal is to reconstruct the coefficients from
computed boundary data.

3 A hybrid finite element/difference method

To solve equation (2.3)-(2.4) we use a hybrid FEM/FDM method developed in [9]. The
method is obtained by using continuous space-time piecewise linear finite elements on a
partially structured mesh in space. The computational space domain Ω is decomposed into
a finite element domain ΩFEM with an unstructured mesh and a finite difference domain
ΩFDM with a structured mesh, with typically ΩFEM covering only a small part of the Ω. In
ΩFDM we use quadrilateral elements in R2 and hexahedra in R3. In ΩFEM we use a finite
element mesh Kh = {K} with elements K consisting of triangles in R2 and tetrahedra
in R3. We associate with Kh a mesh function h = h(x) representing the diameter of the
element K containing x. For the time discretization we let Jk = {J} be a partition of the
time interval I = (0, T ) into time intervals J = (tk−1, tk] of uniform length τ = tk − tk−1.

We define the following L2 inner product and norm

((p, q)) =

∫ T

0

∫

Ω
pq dx dt, ‖p‖2 = ((p, p)).

We further use the notation Dv = ∂v
∂t

.
To formulate the finite element method for (2.3)-(2.4) we introduce the finite element
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trial space W v
h and test space W λ

h defined by :

W v
1 := {v ∈ H1(Ω × J) : v(·, 0) = 0, ∂nv|Γ1

= v1, ∂nv|Γ2
= 0},

W v
2 := {v ∈ H1(Ω × J) : v(·, 0) = 0, ∂nv|Γ = 0},

W λ := {λ ∈ H1(Ω × J) : λ(·, T ) = 0, ∂nλ|Γ = 0},

W v
h := {v ∈W v

1 ∪W v
2 : v|K×J ∈ P1(K) × P1(J),∀K ∈ Kh,∀J ∈ Jk},

W λ
h := {λ ∈W λ : λ|K×J ∈ P1(K) × P1(J),∀K ∈ Kh,∀J ∈ Jk},

where P1(K) and P1(J) are the set of linear functions on K and J , respectively.
The finite element method for (2.3)-(2.4) now reads: Find Eh ∈W v

h such that ∀λ̄ ∈W λ
h ,

−((εDEh, Dλ̄)) + ((
1

µ
∇Eh,∇λ̄)) = ((

1

µ
v1, λ̄))(0,t1 ]×Γ1

. (3.0)

Here, the initial condition DE(·, 0) = 0 is imposed in weak form through the variational
formulation.

Expanding E in terms of the standard continuous piecewise linear functions ϕi(x) in
space and ψi(t) in time and substituting this into (3.0), we obtain the following system of
linear equations:

M(Ek+1 − 2Ek + E
k−1) = −τ2

K(
1

6
E

k−1 +
2

3
E

k +
1

6
E

k+1), k = 1, ..., N − 1, (3.1)

with initial conditions :
E(·, 0) = DE(·, 0) = 0. (3.2)

Here, M is the mass matrix in space, K is the stiffness matrix, k = 1, 2, 3 . . . denotes the
time level, E is the unknown discrete field values of E, and τ is the time step. The explicit
formulas for the entries in (3.1) at each element e are given as

M e
i,j = (εϕi, ϕj)e,

Ke
i,j = (

1

µ
∇ϕi,∇ϕj)e.

(3.3)

To obtain an explicit scheme we approximate M with the lumped mass matrix M
L, where

approximate values of the mass integrals are obtained by using a quadrature rule, see
[16, 11]. By multiplying (3.1) with (ML)−1 and replacing the terms 1

6E
k−1 + 2

3E
k + 1

6E
k+1

by E
k, we obtain an efficient explicit formulation:

E
k+1 = 2Ek − τ2(ML)−1

KE
k −E

k−1 k = 1, ..., N − 1. (3.4)

In order to keep the same accuracy for the mass-lumped scheme as for the classical scheme
(without mass-lumping), we use Gauss-Lobato quadrature rule which is exact for P1 ele-
ments. On a regular mesh, the mass lumping using Gauss-Lobato quadrature rule for P1

elements provides a second order FDM approximation, or coincides with the FEM approx-
imation. This is particularly important in our case since we are using a hybrid FEM/FDM
method.

4 The inverse problem

We formulate the inverse problem for (2.3)-(2.4) as follows: given the function ∂nE =
v1 on Γ1 × (0, t1] determine the coefficients ε(x), µ(x) for x ∈ Ω which minimizes the



quantity

J(E, ε, µ) =
1

2

∫ T

0

∫

Ω
(E − Ẽ)2δobs dxdt

+
1

2
γ1

∫

Ω
(ε− ε0)

2 dx+
1

2
γ2

∫

Ω
(µ− µ0)

2 dx.

(4.1)

Here Ẽ is the observed data at a finite set of observation points xobs, E satisfies (2.3)-(2.4)
and thus depends on ε, µ. Moreover δobs =

∑

δ(xobs) is a sum of delta-functions δ(xobs)
corresponding to the observation points, γi,i=1,2, are regularization parameters, and ε0, µ0

are initial guess values for parameters to be reconstructed. Choosing the regularization
parameters can be done iteratively in the computations and is discussed in Section 10.

To solve this minimization problem, we introduce the Lagrangian

L(u) = J(E, ε, µ) − ((εDE,Dλ)) + ((
1

µ
∇E,∇λ)) − ((

1

µ
v1, λ))(0,t1 ]×Γ1

, (4.2)

where u = (E, λ, ε, µ), and search for a stationary point with respect to u satisfying for all
ū = (Ē, λ̄, ε̄, µ̄)

L′(u; ū) = 0, (4.3)

where L′ is the gradient of L. The equation (4.3) expresses that for all ū,

L′
λ(u; λ̄) = −((εDλ̄,DE)) + ((

1

µ
∇E,∇λ̄)) − ((

2

µ
v1, λ̄))(0,t1 ]×Γ1

= 0,

L′
E(u; Ē) = ((E − Ẽ, Ē))δobs

− ((εDλ,DĒ)) + ((
1

µ
∇λ,∇Ē)) = 0,

L′
ε(u; ε̄) = −((DEDλ, ε̄)) + γ1(ε− ε0, ε̄) = 0,

L′
µ(u; µ̄) = −((

1

µ2
∇λ∇E, µ̄)) + ((

1

µ2
v1λ, µ̄))(0,t1 ]×Γ1

+ γ2(µ− µ0, µ̄) = 0.

(4.4)

The first equation in (4.4) is a weak form of the state equation (2.4), the second equation
is a weak form of the adjoint state equation,

ε
∂2λ

∂t2
−∇ · (

1

µ
∇λ) = −(E − Ẽ)δobs, x ∈ Ω, 0 < t < T,

∂nλ = 0 on Γ × (0, T ),

λ(·, T ) = Dλ(·, T ) = 0 in Ω,

(4.5)

and the last two equations expresses stationarity with respect to the parameters ε, µ.

5 A finite element method for inverse problem

To formulate a finite element method for (4.3) we introduce the finite element space Vh of
piecewise constants for the coefficients ε(x), µ(x), defined by :

Vh := {v ∈ L2(Ω) : v ∈ P0(K),∀K ∈ Kh}.

Recalling the definition of W v
h related to the state E and W λ

h for the costate λ, and
defining Uh = W v

h ×W λ
h × Vh × Vh, we formulate the finite element method for (4.3) as:

Find uh ∈ Uh, such that
L′(uh; ū) = 0 ∀ū ∈ Uh. (5.1)
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6 An a posteriori error estimate for the Lagrangian

We follow [7] to present the main steps in the proof of an a posteriori error estimate for
the Lagrangian. We start by writing an equation for the error e in the Lagrangian as

e = L(v) − L(vh) =

∫ 1

0

d

dε
L(vε+ (1 − ε)vh)dε

=

∫ 1

0
L′(vε+ (1 − ε)vh; v − vh)dε = L′(vh; v − vh) +R,

(6.1)

where R denotes a (small) second order term. For full details of the arguments we refer to
[2] and [14].

Using the Galerkin orthogonality (4.3), the splitting

v − vh = (v − vI
h) + (vI

h − vh) (6.2)

where vI
h denotes an interpolant of v, and neglecting the term R, we get the following error

representation:
e ≈ L′(vh; v − vI

h). (6.3)

For full details of the derivation of an a posteriori error estimate for the Lagrangian
for the time-dependent scalar wave equation, we refer to [4, 6, 7]. The main steps of the
derivation are: estimation of v− vI

h in terms of derivatives of v, the mesh parameter h and
time step τ . Then the derivative of v is estimated by the corresponding derivatives of vh.
The concrete form of the a posteriori error estimate (6.3) for the error in Lagrangian (4.2)
is:

∣

∣e
∣

∣ ≤ ((RE1
, σλ))(0,t1 ]×Γ1

+ ((RE2
, σλ)) + ((RE3

, σλ))

+ ((Rλ1
, σE)) + ((Rλ2

, σE)) + ((Rλ3
, σE))

+ ((Rε1 , σε)) + (Rε2 , σε)

+ ((Rµ1
, σµ)) + ((Rµ2

, σµ))(0,t1 ]×Γ1
+ (Rµ3

, σµ),

(6.4)

where the residuals are defined by

RE1
=

2

µh
|v1|, RE2

= max
S⊂∂K

1

µh
h−1

k

∣

∣

[

∂sEh

]
∣

∣, RE3
= εhτ

−1
∣

∣

[

∂Eht

]
∣

∣,

Rλ1
= |Eh − Ẽ|δobs

, Rλ2
= max

S⊂∂K

1

µh
h−1

k

∣

∣

[

∂sλh

]∣

∣, Rλ3
= εhτ

−1
∣

∣

[

∂λht

]∣

∣,

Rε1 = |Dλh| · |DEh|, Rε2 = γ1|εh − ε0|,

Rµ1
=

1

µ2
h

|∇λh| · |∇Eh|, Rµ2
=

1

µ2
h

|v1| · |λh|, Rµ3
= γ2|µh − µ0|,

and the interpolation errors are

σλ = Cτ

∣

∣

∣

∣

[

∂λh

∂t

]∣

∣

∣

∣

+ Ch

∣

∣

∣

∣

[

∂λh

∂n

]∣

∣

∣

∣

,

σE = Cτ

∣

∣

∣

∣

[

∂Eh

∂t

]
∣

∣

∣

∣

+ Ch

∣

∣

∣

∣

[

∂Eh

∂n

]
∣

∣

∣

∣

,

σε = C
∣

∣[εh]
∣

∣,

σµ = C
∣

∣[µh]
∣

∣.

Here, [v] denotes the maximum of the modulus of the jump on element K (or time interval
J) of the v across a face ofK (or boundary node of J), [∂sv] denotes the maximum modulus



of a jump in the normal derivative of v across a side K, [∂tv] is the maximum modulus of
the jump of the time derivative of v across a boundary node of J , C is the interpolation
constant of moderate size.

7 A posteriori error estimation for parameter identification

Following [8] we present more general a posteriori error estimation to estimate error in the
reconstructed parameter. We first note that

L′(u; ũ) − L′(uh; ũ) =

∫ 1

0

d

dε
L′(uε+ (1 − ε)uh; ũ)dε

=

∫ 1

0
L′′(uε+ (1 − ε)uh;u− uh, ũ)dε

= L′′(uh;u− uh, ũ) +R,

where R is a second order remainder and L′′(uh; ·, ·) is the Hessian of the Lagrangian.
Since L′(u; ũ) = 0 and using the Galerkin orthogonality (5.1) with a splitting ũ − ũh =
(ũ − ũI

h) + (ũI
h − ũh) where ũI

h ∈ Uh denotes an interpolant of ũ, we get the following
equation:

−L′′(uh;u− uh, ũ) = L′(uh; ũ) +R = L′(uh; ũ− ũI
h) +R. (7.1)

Estimate of the error in the parameter identification involve solution to the dual problem

−L′′(uh;u− uh, ũ) = (ψ, u − uh), (7.2)

where ψ is a given data. Comparing (7.1) with (7.2) and neglecting term R in (7.1) we get
the analog of an a posteriori error estimate for Lagrangian

(ψ, u− uh) ≈ L′(uh; ũ− ũI
h), (7.3)

where u is replaced by ũ. From this estimate we observe that the form of the error for a
parameter identification is similar to the error in the Lagrangian with u replaced by ũ in
weights.

We can choose ū = u− uh in (7.2) and the dual problem can be written as:

−L′′(uh; ū, ũ) = (ψ, ū). (7.4)

We conclude that for appropriate choice of ψ as data in the dual problem and solving
approximately of (7.4) for ũ we can get values of the error for ū.

8 The Hessian of the Lagrangian

Now we present the Hessian of the Lagrangian for the problem (2.3)-(2.4). The corre-
sponding Lagrangian for (2.3)-(2.4) in the case µ = 1 is

L(u) = J(E, ε) − ((εDE,Dλ)) + ((∇E,∇λ)) − ((v1, λ))(0,t1 ]×Γ1
, (8.1)

where u = (E, λ, ε). The Hessian of the Lagrangian (8.1) then takes the following form:

L′′(u; ū, ũ) = L′′
E(u; ū, Ẽ) + L′′

λ(u; ū, λ̃) + L′′
ε (u; ū, ε̃), (8.2)
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where

L′′
E(u; ū, Ẽ) = −((εDλ̄,DẼ)) + ((∇Ẽ,∇λ̄)) + ((Ẽ, Ē))δobs

− ((DẼDλ, ε̄)),

L′′
λ(u; ū, λ̃) = −((εDĒ,Dλ̃)) + ((∇λ̃,∇Ē)) − ((v1, λ̃))(0,t1 ]×Γ1

− ((DEDλ̃, ε̄)),

L′′
ε (u; ū, ε̃) = −((DEDλ̄, ε̃)) − ((DλDĒ, ε̃)) + γ1(ε̄, ε̃).

Here we used the boundary conditions ∂nλ = ∂nλ̄ = ∂nλ̃ = 0 and ∂nE = ∂nĒ = ∂nẼ =
v1|(0,t1 ]×Γ1

. Then the dual problem (7.4) takes the following strong form:

ε
∂2λ̃

∂t2
−∇ · (∇λ̃) + Ẽδobs

+ ε̃
∂2λ

∂t2
= ψ1,

ε
∂2Ẽ

∂t2
−∇ · (

1

ε
∇Ẽ) + ε̃

∂2E

∂t2
− v1|(0,t1 ]×Γ1

= ψ2,

−

∫ T

0
DλDẼdt−

∫ T

0
Dλ̃DEdt+ γ1ε̃ = ψ3

(8.3)

with initial and boundary conditions. Our goal is to solve the system (8.3) with already
known approximation to the final solution u, computed using adaptive algorithm in Section
9, and find ũ = (Ẽ, λ̃, ε̃). We assume that the solution of the adjoint problem, λ, and ∇λ
will be small, and we can neglect all the terms involving λ to get the following approximated
problem:

ε
∂2λ̃

∂t2
−∇ · (∇λ̃) + Ẽδobs

= ψ1,

ε
∂2Ẽ

∂t2
−∇ · (∇Ẽ) + ε̃

∂2E

∂t2
− v1|(0,t1]×Γ1

= ψ2,

−

∫ T

0
Dλ̃DEdt+ γ1ε̃ = ψ3.

(8.4)

As already mentioned in [8], the stability properties of this system is an open problem.
To solve the problem (8.4) we use the iterative algorithm described in [8], with already

computed approximation to u (values uh = (Eh, λh, εh), obtained in an adaptive algorithm
in Section 9), and with initial guess ũ = ũm,m = 0. From the last equation in (8.4) we
can update ε̃ as the iterative procedure

ε̃m+1 = ε̃m + α(ψ3 +

∫ T

0
Dλ̃mDEhdt− γ1ε̃

m), (8.5)

where α > 0 is the step length in the iterative procedure. Next, we solve the second
equation in (8.4) to find Ẽ, and finally, the first equation to find λ̃. We stop computations
when ||ε̃m+1 − ε̃m|| < eps, where eps > 0 is a tolerance, otherwise, we choose ε̃m = ε̃m+1

and return to the iterative procedure (8.5).

9 An adaptive algorithm for solution of the inverse problem

To improve the reconstruction and achieve better convergence in the computed parameter
ε (µ = 1), we use the following adaptive algorithm:

0. Choose an initial mesh Kh and an initial time partition J0 of the time interval (0, T ).
Starting from initial guess of the parameter ε0, compute a sequence of εn in the
following steps:



1. Compute the solution En of the forward problem (2.3)-(2.4) on Kh and Jk with
ε = ε(n).

2. Compute the solution λn of the adjoint problem (4.5) on Kh and Jk.

3. Update the parameter ε on Kh and Jk using the quasi-Newton method

εn+1 = εn + αnHngn, (9.1)

where Hn is an approximate Hessian, computed using the usual BFGS update for-
mula for the Hessian, see [18]. Next, gn is the gradient of the Lagrangian (4.2) with
respect to the parameter ε:

gn = −

∫ T

0
DλnDEndt+ γ1(ε

n − ε0), (9.2)

and α is the step length in the parameter upgrade computed using an one-dimensional
search algorithm [19].

4. Stop if the gradient gn < tol; if not, set n = n+ 1 and go to step 5.

5. Compute an a posteriori error estimate (6.4) and refine all elements where |e| > tol.
Here tol is a tolerance chosen by the user.

6. Construct a new mesh Kh and a new time partition Jk. Return to step 1 and perform
all steps of the optimization algorithm on a new mesh.

As we see from (6.4), the error in the Lagrangian consists of space-time integrals of dif-
ferent residuals multiplied by the interpolation errors. Thus, to estimate the error in the
Lagrangian we need to compute the approximated values of (Eh, λh, εh) together with
residuals and interpolation errors. Since the residuals Rε1 , Rε2 dominate we neglect com-
putations of all the other residuals in the a posteriori error estimator and compute the a
posteriori error in step 5 of the adaptive algorithm as

(Rε1 +Rε2)σε > tol. (9.3)

In the current work, the refinement is based on the residuals, since they already give good
indications of where to refine the mesh. The interpolation errors and thus exact value of the
computational error in the already reconstructed parameter can be obtained by computing
the Hessian of the Lagrangian using the iterative procedure in Section 8.

We should note that the regularization parameter should be small and not disturb the
reconstruction by too much regularization. The value of γ will depend on the actual values
of the reconstructed parameter ε.

10 Numerical Results

In this section we present several numerical examples to show performance of the adaptive
hybrid method and the usefulness of the a posteriori error estimator (6.4).

The computational domain in all our tests Ω = ΩFEM ∪ΩFDM is set as Ω = [−4.0, 4.0]×
[−5.0, 5.0], which is split into a finite element domain ΩFEM = [−3.0, 3.0]× [−3.0, 3.0] with
an unstructured mesh and a surrounding domain ΩFDM with a structured mesh, see Fig. 2.
The space mesh in ΩFEM consists of triangles and in ΩFDM of squares, with mesh size in the
overlapping regions h = 0.25 and h = 0.125, in Example 1 and Example 2, correspondingly.
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(a) Ωl (b) Ωh (c) ΩFEM

Figure 1: We show the square lattice of a crystal where the material to be reconstructed is a square lattice of
columns.

(a) ΩFDM (b) Ω = ΩFEM ∪ ΩFDM (c) ΩFEM

Figure 2: The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is applied, and a mesh
(c), where we use FEM, with a thin overlapping of structured elements.



opt.it. 625 nodes 809 nodes 1263 nodes 2225 nodes
1 0.0118349 0.0108764 0.0108764 0.010476
2 0.0095824 0.00987447 0.00965067 0.00954041
3 0.00822312 0.00709372 0.00558728 0.00769998
4 0.00748565 0.00318215 0.00273809 0.00313069
5 0.00619674 0.00291434
6 0.00528474
7 0.00471419
8 0.00354939

Table 1: ||E−Eobs|| on the adaptively refined meshes in the reconstruction of the lower columns in square lattice.
Number of stored corrections in quasi-Newton method is m = 15. Computations was performed with
noise level σ = 0 and regularization parameter γ = 0.1.

We apply the hybrid finite element/difference method presented in [9] where finite elements
are used in ΩFEM and finite differences in ΩFDM . At the top and bottom boundaries of
Ω we use first-order absorbing boundary conditions [13]. At the lateral boundaries, mirror
boundary conditions allow us to assume an infinite space-periodic crystal in the lateral
direction.

For simplicity, we assume that material is nonmagnetic, or µ = 1 in Ω, and ε = µ = 1
in ΩFDM . Thus, we need only to reconstruct electric permittivity ε in ΩFEM .

First we present tests on reconstruction of the parameter ε inside the domains Ωl and
Ωh, see Fig. 1-a), b), respectively, and then we present computational results on the re-
construction of the structure of the photonic crystal given in Fig. 1-c).

10.1 Example 1

We start to test the adaptive finite element/difference method on the reconstruction of the
structures given in Fig. 1-a), b), where our goal is to find the parameter ε in the small
square lattices inside the domains Ωl and Ωh, respectively.

We solve the forward problem (2.3)-(2.4) with a plane wave pulse given as

∂nE
∣

∣

Γ1

= ((sin (ωt− π/2) + 1)/10), 0 ≤ t ≤
2π

ω
. (10.1)

The field initiates at the boundary Γ1 - in our examples this boundary represents the top
boundary of the computational domain - and propagates in normal direction n into Ω in
time t = (0, T ). The trace of the forward problem is measured at the observation points
which are placed on the lower boundary of the computational domain ΩFEM .

To generate the data at the observation points, we solve the forward problem (2.3)-(2.4)
with a plane wave (10.1) in the time interval t = (0, T ) with T = 10.0 and with the exact
value of the parameter ε = 10.0 inside the square lattices and ε = 1.0 everywhere else.
Since the explicit scheme (3.4) is used for solution of the forward and adjoint problems, we
chose a time step τ according to the Courant-Friedrich’s-Levy (CFL) stability condition
to provide a stable time discretization.

We start the adaptive algorithm in Section 9 with guess values of the parameter ε = 1.0 at
all points in the computational domain ΩFEM and with regularization parameter γ = 0.1.

To reconstruct the lower and upper square lattices in ΩFEM the computations were
performed on the four adaptively refined meshes shown in Fig. 3-a)-d) and Fig. 4-a)-
d), respectively. The meshes was refined by computing the residual in the reconstructed
parameter ε using the adaptive algorithm.

Table 1 shows computed L2-norms of ||E−Eobs||L2
for the best value of the reconstructed

parameter ε in lower square lattices with ω = 25 in (10.1). We present norms on different

11



a) 625 nodes b) 809 nodes c) 1263 nodes d) 2225 nodes
1152 elements 1520 elements 2428 elements 4352 elements

e) 8 Q.N. it. f) 4 Q.N. it. g) 5 Q.N. it. h) 6 Q.N.it.
625 nodes 809 nodes 1263 nodes 2225 nodes

Figure 3: a)-d) Adaptively refined meshes in the reconstruction of the lower square lattices; e)-h) Reconstructed
parameter ε(x) on the correspondingly refined meshes at the final optimization iteration computed with
ω = 25 and noise level 5% in the observed data.

a) 625 nodes b) 844 nodes c) 1592 nodes d) 1945 nodes
1152 elements 1590 elements 3086 elements 3792 elements

e) 9 Q.N. it. f) 10 Q.N. it. g) 10 Q.N. it. h) 10 Q.N.it.
625 nodes 844 nodes 1592 nodes 1945 nodes

Figure 4: a)-d) Adaptively refined meshes in the reconstruction of the upper square lattices; e)-h) Reconstructed
parameter ε(x) on the correspondingly refined meshes at the final optimization iteration computed with
ω = 25 and noise level 5% in the observed data.



σ, γ 10−5 10−4 10−3 10−2 10−1

0 0.00630036 0.00630536 0.00475773 0.0046071 0.00313069
1 0.00650122 0.00642409 0.00489691 0.00425432 0.00317147
3 0.00671315 0.00644934 0.00572624 0.00427946 0.00317955
5 0.0068622 0.00661597 0.00639352 0.00428971 0.00318703
7 0.00731985 0.00598225 0.00631647 0.00462458 0.00312281
10 0.00672832 0.00618862 0.00673036 0.00467998 0.00331152
20 0.00702925 0.00696454 0.00640261 0.00448304 0.0037926

Table 2: ||E −Eobs|| for the best reconstruction of the lower columns in the square lattice. We present results for
different noise levels σ and regularization parameters γ.

σ, γ 10−5 10−4 10−3 10−2 10−1

0 0.00548847 0.00549544 0.00549544 0.00512397 0.00340977
1 0.00547518 0.00549755 0.00489691 0.0055677 0.00345097
3 0.00545709 0.00550747 0.00572624 0.0055182 0.0040041
5 0.00548414 0.00548424 0.00639352 0.0055076 0.00357293
7 0.00544183 0.00544645 0.00631647 0.00552189 0.00353966
10 0.00543398 0.00548045 0.00673036 0.00552947 0.00430008
20 0.00561054 0.00561999 0.00640261 0.00566159 0.00386997

Table 3: ||E − Eobs|| for the best reconstruction of the upper columns in the square lattice. We present results
for different noise levels σ and regularization parameters γ.

adaptively refined meshes at each optimization iteration as long as the norms decrease.
The computational tests show that the best results are obtained on a finest mesh, where
||E − Eobs|| is reduced approximately by a factor four between first and last optimization
iterations.

We performed tests again with adding relative noise to the observed data. The relative
disturbation, or noise, in data, Eσ, is computed by adding relative error to computed data
Eobs using expression

Eσ = Eobs + α(Emax −Emin)σ/100. (10.2)

Here, α is an random number on the interval [−1; 1], Emax and Emin are maximal and
minimal value of the computed data Eobs, and σ is noise in percents.

Using the results in Tables 2, 3 we can conclude that we have still good reconstruction
for the parameter ε in optimization method even with noise in the data. Fig. 3-e)-h) and
Fig. 4-e)-h) confirm obtained results where we show the reconstructed parameter ε at
the final optimization iteration computed with ω = 25 and noise level 5% in the observed
data. We show the parameter field ε(x), indicating domains with a given parameter value.
We see that although the qualitative reconstruction on the coarse grid already allows the
recovery of the location of the square lattices from limited boundary data, the quantitative
reconstruction becomes acceptable only on the refined grids.

Fig. 5 presents comparisons of the L2-norms in space in the reconstruction of the lower
square lattices of the adjoint problem solution λh over the time interval (0, 10.0). We show
norms on different optimization iterations on the mesh with 2225 nodes without and with
adding 7% noise in the data. We observe that norms decreases with an increasing number
of optimization iterations as it should. We also note that the behavior of the adjoint
problem solution is stable to small perturbation in the data. Fig. 6 shows similar results
for reconstruction of the upper square lattices.
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Figure 5: L2-norms in space of the adjoint problem solution λh in reconstruction of the lower columns in square
lattice on different optimization iterations. Here the x-axis denotes time steps on (0, 10.0).
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Figure 6: L2-norms in space of the adjoint problem solution λh in the reconstruction of the upper columns in the
square lattice on different optimization iterations. Here the x-axis denotes time steps on (0, 10.0).



a) 6082 elements b) 8806 elements c) 10854 elements d) 18346 elements

e) 6082 elements f) 8806 elements g) 10854 elements h) 18346 elements

i) 6082 elements j) 8806 elements k) 10854 elements l) 18346 elements

Figure 7: a)-d) Adaptively refined meshes ; e)-h) Reconstructed parameter ε(x), indicating domains with a given
parameter value: red color corresponds to the maximum parameter value on the corresponding meshes,
and blue color - to the minimum.

10.2 Example 2

Now we seek to reconstruct the structure of the two-dimensional photonic crystal given
in Fig. 1-c). The electric field initiates at the top boundary of the computational domain
ΩFDM and consists of a plane wave E given as in (10.1) - and propagates in normal
direction n into Ω in time t = (0, 12.0) with ω = 6.

First we performed tests when the trace of the forward problem is measured at the
observation points only on the lower boundary, and then - tests when the reflected trace
is also measured on the lower and top boundaries of the computational domain ΩFEM .

To achieve better results in the reconstruction, we performed tests letting the incoming
wave from the top boundary of ΩFDM be equal to the reflected non-plane measured wave
from the lower boundary ΩFDM . Thus, to generate the data at the observation points,
first we solve the forward problem (2.3)-(2.4) with a plane wave (10.1) in the time interval
t = (0, T ) with the exact value of the parameter ε = 4.0 inside the square lattices and
ε = 1.0 everywhere else, and values of the solution of the forward problem are registered
at the lower boundary of the ΩFDM . Then, using these registered values at the lower
boundary, a non-plane wave is initialized in the time interval t = (T, 2T ). Again, a time
step τ is chosen according to CFL stability condition.

10.2.1 Test1

First we performed tests when the trace of the incoming wave was measured at the obser-
vation points at the lower boundary of ΩFEM in time (0, T ), and then at the observation
points at the top boundary in time (T, 2T ).
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Figure 8: ||E − Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 0, 1, 3
and 5% and with regularization parameter γ = 0.01. Here the x-axis denotes number of optimization
iterations.
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Figure 9: ||E − Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 0, 7 and
10% and with regularization parameter γ = 0.01. Here the x-axis denotes number of optimization
iterations.
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Figure 10: ||E − Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 0%,
and with regularization parameters γ = 0.1, 0.01, 0.001, 0.0001, Here the x-axis denotes number of
optimization iterations.
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Figure 11: ||E − Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 3%,
and with regularization parameters γ = 0.1, 0.01, 0.001, 0.0001, Here the x-axis denotes number of
optimization iterations.
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Figure 12: ||E − Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 0, 1, 3
and 5% and with regularization parameter γ = 0.01. Here the x-axis denotes number of optimization
iterations.
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Figure 13: ||E −Eobs|| on adaptively refined meshes. Computations was performed with noise level σ = 0, 7 and
10% and with regularization parameter γ = 0.01. Here the x-axis denotes number of optimization
iterations.
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Figure 14: ||E − Eobs|| on adaptively refined meshes. We show computational results with noise level σ = 1%
and with regularization parameters γ = 0.1, 0.01, 0.001, 0.0001. Here the x-axis denotes number of
optimization iterations.
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Figure 15: ||E − Eobs|| on adaptively refined meshes. We show computations: on a) with noise level σ =
0% and with regularization parameter γ = 0.01 for Test 1; on b) with noise level σ = 1% and
with regularization parameter γ = 0.01 for Test 2. Here the x-axis denotes number of optimization
iterations.
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In Fig. 8-9 we present a comparison of the computed L2-norms of ||E−Eobs||L2
depending

on the relative noise σ on different adaptively refined meshes while the norms decrease.
Relative noise σ in the data is computed using the expression (10.2). From these results
we conclude that the reconstruction is stable with small values of the noise (see Fig. 8),
and unstable with adding more than 5% noise to the data (Fig. 9).

In Fig. 10-11 we show a comparison of the computed L2-norms of ||E−Eobs||L2
depending

on the different regularization parameters γ. We see that we obtain the smallest value of
the difference ||E−Eobs||L2

with regularization parameter γ = 0.01 while choosing γ = 0.1
is too large and involve too much regularization. The computational tests show that the
best results are obtained on the finest mesh, where ||E − Eobs|| is reduced approximately
by a factor seven between first and last optimization iterations. Fig. 7-e)-h) shows the
corresponding to Fig. 15-a) reconstructed parameter field ε(x) at the final optimization
iteration indicating domains with a given parameter value.

10.2.2 Test2

Tests, described in this section, was performed when the reflected trace of the incoming
wave was also measured at the observation points on the lower and top boundaries of the
computational domain ΩFEM . Thus, we have twice more information at the observation
points then in the previous test, and thus, we expect to get more quantitative reconstruction
of the photonic crystal.

In Fig. 12-13 we present comparison of the computed L2-norms of ||E − Eobs||L2
de-

pending on the relative noise σ on different adaptively refined meshes while the norms
decrease. Relative noise σ in data is computed using expression (10.2). From these results
we conclude that the reconstruction is stable even with adding 10% noise to the data on
two, three and four times refined meshes.

In Fig. 14 we show a comparison of the computed L2-norms of ||E−Eobs||L2
depending on

the different regularization parameters γ. We see that the smallest value of the difference
||E −Eobs||L2

we obtain with regularization parameter γ = 0.01 while choosing γ = 0.1 is
again too large and involve too much regularization. The computational tests show that
the best results are obtained on the finest mesh, where ||E−Eobs|| is reduced approximately
by a factor seven between first and last optimization iterations, see Fig. 15-b). Fig. 7-
i)-l) shows the corresponding to Fig. 15-b) reconstructed parameter field ε(x) at the final
optimization iteration indicating domains with a given parameter value.

11 Conclusions and Remarks

We have devised an explicit, adaptive hybrid FEM/FDM method which can be applied to
the reconstruction of the structure of the two-dimensional photonic crystal. The method is
hybrid in the sense that different numerical methods, finite elements and finite differences,
are used in different parts of the computational domain. The adaptivity is based on a
posteriori error estimates for the associated Lagrangian in the form of space-time integrals
of residuals multiplied by dual weights. We illustrated their usefulness for adaptive error
control on an inverse scattering problem for recovering electric permittivity from boundary
measured data.
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