
norges teknisk-naturvitenskapelige universitet

A combined Filon/asymptotic quadrature method for
highly oscillatory problems

by

Andreas Asheim

preprint

numerics no. 9/2007

norwegian university of

science and technology

trondheim, norway

This report has URL http://www.math.ntnu.no/preprint/numerics/2007/N9-2007.pdf

Address: Department of Mathematical Sciences, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway.





A combined Filon/asymptotic quadrature
method for highly oscillatory problems

Andreas Asheim

September 27, 2007

A cross between the asymptotic expansion of an oscillatory integral and the
Filon-type methods is obtained by applying a Filon-type method on the error term
in the asymptotic expansion, which is in itself an oscillatory integral. The efficiency
of the method is investigated through analysis and numerical experiments. The
case of multivariate oscillatory integrals is treated with an example.

1 Introduction

The quadrature of highly oscillatory integrals has been perceived as a hard problem. Tra-
ditionally one would have to resolve the oscillations by taking several sub intervals for each
period, resulting in a scheme whose complexity would grow linearly with the frequency of
the oscillations. More careful analysis will however reveal that by exploiting the structure of
certain classes of oscillatory integrals better discretisation schemes can be devised, schemes
where the error actually decreases when the period of the oscillations increase. Examples of
such methods are Filon-type methods[8, 9] Levin-type methods[10, 11] and numerical steepest
descent[4].

We are considering oscillatory integrals on the form

Ig[f ] =

∫ 1

−1
f(x)eiωg(x)dx, (1)

where ω is a large parameter. It is well known that an ordinary Gauss quadrature applied
to this integral will have an error of O(1) as ω grows large. A much better approach to
approximating Ig[f ] when ω is large is found through an asymptotic expansion: Assume g is
strictly monotone, then applying integration by parts on Ig[f ] yields

Ig[f ] =
1

iω

[

f(1)

g′(1)
eiωg(1) − f(−1)

g′(−1)
eiωg(−1)

]

− 1

iω

∫ 1

−1

f(x)

g′(x)
eiωg(x)dx. (2)

When ω becomes large the integral in equation (2) vanishes faster than the boundary terms
(by an extension of Riemann-Lebesgue’s lemma), so the boundary terms can approximate the
integral. Furthermore the process can be repeated on the integral remainder to obtain a full
asymptotic expansion. This expansion will however not be optimal; as is often the case with
asymptotic expansions the method will break down for moderately sized ω.
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Perhaps an even better approach, in its most basic form first proposed by Louis Napoleon
Filon[3] is to choose a set of quadrature nodes c1, . . . , cν , interpolate the function f by a
polynomial f̃ at these points and let

QF
1 [f ] =

∫ 1

−1
f̃(x)eiωg(x)dx =

ν
∑

j=1

bj(ω)f(cj),

where bj(ω) =
∫ 1
−1 lj(x)eiωg(x)dx for lj(x) the j-th Lagrange cardinal polynomial. Construct-

ing bj(ω) requires the moments
∫ 1
−1 xmeiωg(x)dx. Moments are oscillatory integrals themselves,

hopefully these can be calculated by analytical means or approximated. Iserles proved[8] that
as long as the endpoints of the interval are included as quadrature nodes and g is strictly
monotone, this approach will carry an error

QF
1 [f ] − Ig[f ] ∼ O(ω−2), ω → ∞.

The superiority of this approach over the asymptotic expansion can be understood by realising
that the method is exact for a class of problems, regardless of the size of ω. As for the behaviour
for large ω it was proved by Iserles and Nørsett[6] that by interpolating f(x) with a number
of its derivatives at the endpoints the asymptotic behaviour of the error can be expressed as

QF
p [f ] − Ig[f ] ∼ O(ω−s−1), ω → ∞,

for any s. The theory can be expanded to the cases where g has stationary points, that means
points ξ with g′(ξ) = 0. What must be done to achieve good asymptotic properties is basically
to include the stationary points among the quadrature nodes[9].

This report will suggest a variation on the Filon-type quadrature, or rather a mix between
the asymptotic expansion and the Filon-type quadrature. The idea is based on the observation
that the remainder term in the asymptotic expansion (2) is an oscillatory integral on the
same form as the original oscillatory integral (1). Using a Filon-type quadrature QF

p on this
remainder term yields a method

QFA[f ] =
1

iω

[

f(1)

g′(1)
eiωg(1) − f(−1)

g′(−1)
eiωg(−1)

]

− 1

iω
QF

p [f/g′],

which in the following will be called a combined Filon/asymptotic method. This method
will require fewer moments than Filon-type methods to achieve high asymptotic order, while
retaining accuracy for moderately sized ω, in this sense appearing as a true marriage between
the asymptotic method and the Filon-type methods. The aim of this report is to explore the
properties of this method and assess the efficiency of the method compared to that of the
classical Filon-type method.



2 The Asymptotic method and Filon-type methods

Assume for the time being that there are no stationary points in the interval of interest, that
means g′(x) 6= 0, −1 ≤ x ≤ 1. An asymptotic expansion of the highly oscillatory integral
(1) is obtained by successively applying integration by parts. This approach gives us a full
expansion trough the following partial expansion

Ig[f ] = −
s
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

+
1

(−iω)s

∫ 1

−1
σs[f ](x)eiωg(x)dx, (3)

where

σ0[f ](x) = f(x)

σk+1[f ](x) =
d

dx

σk[f ](x)

g′(x)
, k = 0, 1, . . . . (4)

The full asymptotic expansion of the highly oscillatory integral (1) is then

Ig[f ] ∼ −
∞
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

. (5)

Truncating the series after s terms, yields the asymptotic method

QA
s [f ] = −

s
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

. (6)

This method has an asymptotic order of s, that means for large ω and smooth f the error
goes like

QA
s [f ] − Ig[f ] ∼ O(ω−s−1).

This can be seen by writing out the remainder term, which is an oscillatory integral O(ω−1)
multiplied by (−iω)−s. Note that the concept of asymptotic order is rather useless for not-so-
large ω. In fact the asymptotic method will break down for smaller ω.

The Filon-type methods will be accurate also for smaller ω, but at the cost of moments.
We define the moments

µk(ω) =

∫ b

a
xkeiωg(x)dx,

and assume these can be computed, possibly at a significant cost, then the Filon-type method
is obtained by choosing a set of nodes −1 = c1 < c2 ≤ · · · < cν = 1 and integer multiplicities
m1, . . . ,mν ≥ 1 associated with each node. Let n =

∑ν
j=1 mj−1 and f̃ be the unique Hermite

interpolation polynomial of degree n obtained by interpolating f at the points {cj}ν
j=1 with

the corresponding multiplicities

f̃(x) =

ν
∑

l=1

ml
∑

j=0

αl,j(x)f (j)(cl).
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The Filon-type method is defined as

QF
s [f ] =

∫ 1

−1
f̃(x)eiωg(x)dx =

ν
∑

l=1

ml
∑

j=0

βl,j(ω)f (j)(cl), (7)

where βl,j(ω) =
∫ b
a αl,j(x)eiωg(x)dx is obtained from linear combinations of moments

Now we state a theorem due to Iserles and Nørsett[6] regarding the asymptotic order of this
method:

Theorem 1. Suppose m1,mν ≥ s, then for every smooth f and smooth strictly monotonous
g

QF
s [f ] − Ig[f ] ∼ (ω−s−1)

The proof is obtained by expanding f − f̃ as in equation (5) and observing that the first s
terms will cancel due to the interpolation criteria. This theorem can be summarised by saying
that only by adding derivative information at the endpoints of the interval can the asymp-
totic order of the method be improved. Note that increasing the order of the interpolating
polynomial f̃ should normally increase the accuracy of the method for fixed ω, at least when
no Runge-phenomena are present. This is indeed confirmed by numerical experiments (see for
example [5]).

2.1 Generalised Filon and asymptotic method in the presence of stationary
points

When g has stationary points Theorem 1 is no longer valid, a fact which is suggested by
the singularity introduced in the integral in remainder term of the asymptotic expansion (2).
Assume in the following that g(x) has only one stationary point ξ, which amounts to saying
g′(ξ) = 0, g′(x) 6= 0, x ∈ [−1, 1]\{ξ}. Furthermore assume that g ′(ξ) = · · · = g(r)(ξ) = 0, and
g(r+1)(ξ) 6= 0, this means that ξ is a rth order stationary point. The method of stationary
phase(see for example [2]) states that in this case the leading order behaviour of the highly
oscillatory integral (1) is on the form

Ig[f ] ∼ Cω−1/(r+1), ω. → ∞ (8)

This means that the main contribution to the value of the integral comes from the stationary
point, suggesting that the interpolation nodes for the Filon-type methods should include sta-
tionary points as well as the endpoints.

Assume for simplicity that ξ is a first order stationary point, g ′′(ξ) 6= 0. Writing

Ig[f ] = f(ξ)Ig[1] + Ig[f − f(ξ)],

then integrating by parts gives the following expression

Ig[f ] = f(ξ)Ig[1] +
1

iω

[

f(1) − f(ξ)

g′(1)
eiωg(1) − f(−1) − f(ξ)

g′(−1)
eiωg(−1)

]

− 1

iω

∫ 1

−1

f(x) − f(ξ)

g′(x)
eiωg(x)dx. (9)



Now, since g′′(ξ) 6= 0, the singularity is removable. The expansion can be continued giving
a full expansion reminiscent of the expansion (5). More generally, for a rth order stationary
point we introduce the generalised moments

µk(ω; ξ) = Ig[(· − x)k] =

∫ 1

−1
(x − ξ)keiωg(x)dx, k ≥ 0,

and write

Ig[f ] =

r−1
∑

j=0

1

j!
f (j)(ξ)µj(ω; ξ) + Ig



f(x) −
r−1
∑

j=0

1

j!
f (j)(ξ)(x − ξ)j



 . (10)

Again the singularity is removable, and the expansion can be formed. We will later need the
expansion with the remainder term, so this will be formulated as a lemma1:

Lemma 1. Suppose ξ is a stationary point of order r, and that ξ is the only stationary point
in the interval [−1, 1]. Then for every smooth f

Ig[f ] =

r−1
∑

j=0

1

j!
µj(ω; ξ)

s−1
∑

m=0

1

(−iω)m
ρ(j)

m [f ](ξ)

−
s−1
∑

m=0

1

(−iω)m+1

[

eiωg(1)

g′(1)

(

ρm[f ](1) −
r−1
∑

j=0

1

j!
ρm[f ](j)(ξ)(1 − ξ)j

)

(11)

− eiωg(−1)

g′(−1)

(

ρm[f ](−1) −
r−1
∑

j=0

1

j!
ρm[f ](j)(ξ)(−1 − ξ)j

)

]

+
1

(−iω)s
Ig

[

ρs[f ]
]

,

where

ρ0[f ](x) = f(x)

ρk+1[f ](x) =
d

dx

ρk[f ](x) −∑r−1
j=0

1
j!ρk[f ](j)(ξ)(x − ξ)j

g′(x)
, k = 0, 1, . . . (12)

Proof. This is proved by induction. The Lemma is certainly true for s = 0. Now

Ig

[

ρs[f ]
]

=

r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)µj(ω; ξ)

+
1

iω

∫ 1

−1

ρs[f ](x) −∑r−1
j=0

1
j!ρs[f ](j)(ξ)(x − ξ)j

g′(x)

d

dx
eiωg(x)dx.

Integration by parts gives

Ig

[

ρs[f ]
]

=

r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)µj(ω; ξ) − 1

(−iω)

[

eiωg(1)

g′(1)

(

ρs[f ](1) −
r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)(1 − ξ)j

)

− eiωg(−1)

g′(−1)

(

ρs[f ](−1) −
r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)(−1 − ξ)j

)

]

+
1

(−iω)
Ig

[

ρs+1[f ]
]

.

1Note that the conclusion in this lemma is different from that of Iserles & Nørsett in [6], Theorem 3.2, which
we suggest is flawed.
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Inserting into equation (11) proves the Lemma.

As before, ignoring the remainder term yields the asymptotic method. The asymptotic
behaviour of the error in this method depends on the asymptotic properties of of the generalised
moments, which in turn are obtained trough the method of stationary phase (as in equation
(8).) Thus we get for the asymptotic method(see [6] for details)

QA
s − Ig[f ] ∼ O(ω−s−1/(r+1)).

For an even more general case, in the presence of more than one stationary point, the interval
can be partitioned such that each sub interval contains only one stationary point, and then
expanding. As before, truncating the expansion after s terms yields the asymptotic method.

Let now ξ be a unique stationary point of order r: g ′(ξ) = 0 and g′(x) 6= 0 for x ∈
[−1, 1]\{ξ}, g′(ξ) = · · · = g(r)(ξ) = 0, and g(r+1)(ξ) 6= 0. The generalised Filon method
is constructed by choosing nodes −1 = c1 < c2 < · · · < cν = 1 such that the stationary
point is among the nodes, that is cq = ξ for some q ∈ {1, 2, . . . , ν}. Given multiplicities
m1,m2, . . . ,mν ≥ 1 corresponding to each node, we let f̃ be the unique Hermite interpolation
polynomial of degree n =

∑ν
j=1 mj − 1 obtained by interpolating f at the points {cj}ν

j=1 with
the corresponding multiplicities. The method is now simply

QF [f ] =

∫ 1

−1
f̃(x)eiωg(x)dx. (13)

The above integral is computed from linear combinations of both moments and generalised
moments.

We present another theorem by Iserles and Nørsett[6] regarding the asymptotic error be-
haviour of the generalised Filon method.

Theorem 2. Let m1,mν ≥ s and mq ≥ s(r + 1). Then

QF
s [f ] − Ig[f ] ∼ O(ω−s−1/(r+1)).

This theorem is, like Theorem 1 proved by expanding f − f̃ and showing that terms up
to order s cancel. The method is trivially expanded to cater for several stationary points,
possibly of different order.



3 A combined Filon/asymptotic method

Let us for the moment assume that there are no stationary points of g in [−1, 1], this assump-
tion will be relaxed later on. A combined Filon/asymptotic method is constructed from the
asymptotic expansion with the remainder term (3) by applying a Filon-type method on the
remainder term, which is in itself an oscillatory integral. Thus we obtain the method

QFA
p,s [f ] = −

s
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

+
1

(−iω)s
QF

p

[

σs[f ]
]

, (14)

where the σm[f ] are defined as in equation (4). We call this a combined Filon/asymptotic
method.

Theorem 3. Let g be strictly monotonous. For the combined Filon/asymptotic method QFA
p,s

constructed with a Filon-type method QF
p of asymptotic order p applied to any smooth f it is

true that
QFA

p,s [f ] − Ig[f ] ∼ O(ω−p−s−1), ω → ∞

Proof. Writing out the asymptotic expansion of QFA
p,s [f ] − Ig[f ] gives

QFA
p,s [f ] − Ig[f ] ∼ 1

(−iω)s
QF

p [σs[f ](x)] +
∞
∑

m=s+1

1

(iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

=
1

(−iω)s

(

QF
p [σs[f ](x)] −

∞
∑

j=1

1

(iω)j

[

eiωg(1)

g′(1)
σj−1[σs[f ]](1) − eiωg(−1)

g′(−1)
σj−1[σs[f ]](−1)

])

∼ 1

(−iω)s
O(ω−p−1) = O(ω−p−s−1),

where the last line appears by applying Theorem 1.

Example 1. For the simplest, and perhaps most useful case, set s = 1 and get

QFA
p,1 [f ] =

1

iω

[

eiωg(1)

g′(1)
f(1) − eiωg(−1)

g′(−1)
f(−1)

]

− 1

iω
QF

p

[

d

dx

f

g′

]

, (15)

which is a method of asymptotic order p + 1.

Example 2. We wish to compute
∫ 1

−1

eiωx

2 + x
dx.

Choosing to interpolate f(x) = 1/(2 + x) and its derivatives at x = −1 and x = 1 will
give us a Filon-type method with asymptotic order p = 2. Interpolating the function value of
σ1(x) = −1/(2 + x)2 at the two endpoints and approximating the integral as in equation (15)
gives the combined Filon/asymptotic scheme which is also of asymptotic order 2. The classical
Filon-type method requires four moments to be computed, whereas the Filon/asymptotic scheme

7



�
��� ��� ��� ��� 	�� 
�� ��� ��� �� �����

����


�����

�����

�����

�����

����


�����

Figure 1: The absolute value of the error for the combined Filon/asymptotic method (black)
and the classical Filon-type method (grey), scaled by ω3.

only needs two. We expect this to be at the cost of not that good approximation properties,
this is indeed confirmed by experiments, see figure 1. Note that the crests of the curve of one
method seems to correspond with the troughs of the other, much like what was pointed out by
Iserles & Nørsett in [5]. This behaviour will be explained in section 5.

The key element in a discussion of the efficiency of this method is the need for moments.
Recall that a classical asymptotic method needs no moments, but it breaks down for small
ω. On the other hand a classical Filon-type method can be made precise also for moderately
sized ω, but at the cost of moments. Moreover a Filon-type method needs a minimum of 2p
moments to obtain asymptotic order p. The combined Filon/asymptotic method is situated
between the Filon-type method and the asymptotic method, both in spirit and in terms of
requirements. For example can this method obtain any asymptotic order as well as accuracy
for moderately sized ω with the use of only two moments, whereas the asymptotic nature of
the method ensures that it will break down for ω → 0(altough not so dramatically as the
asymptotic method). The usefulness is here dictated by the cost of calculating moments, as
well as the cost of calculating σm[f ] and its derivatives. Moreover, by using the same number of
moments, we postulate that a combined Filon/asymptotic method can attain higher accuracy
than a classical Filon-type method, this will be discussed in section 5.1. Example 3 shows
how a combined Filon/asymptotic method performs better that a classical Filon-type method
with approximately the same input data.

Example 3. Once again we wish to compute

∫ 1

−1

eiωx

2 + x
dx,

but this time we include internal nodes. Interpolating σ1(x) = −1/(2 + x)2 at the nodes
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Figure 2: The absolute value of the error for the combined Filon/asymptotic method with
interpolation nodes [−1, 0, 1](black), and [−1,−1/3, 1/3, 1](grey). Error for the classical Filon-
type method is plotted as a dotted line. In (a) error is scaled by ω3 to show asymptotic
behaviour, whereas in (b) no scaling is done.

[−1, 0, 1], and [−1,−1/3, 1/3, 1] will result in schemes requiring three and four moments re-
spectively, that means comparable to the classical Filon-type method from example 2. Both
methods have asymptotic order 2. Comparing this to the pure Filon-type method shows that
the first method has almost exactly the same behaviour as ω increases(this will be explained in
section 5), whereas the second one has significantly smaller error, see figure 2. From figure 2
(b) we also see that the combined Filon/asymptotic methods perform well for moderately sized
ω, but as ω approaches zero the methods will inevitably fail.

3.1 The combined Filon/asymptotic method with stationary points

Extending the method to cater for stationary point is fairly straightforward given Lemma 1.
Assume in the following that ξ is the only stationary point of order r in [−1, 1]. This require-
ment is not crucial, it will just simplify otherwise horrific expressions. Applying the generalised
Filon method QF

p on the expansion (11) yields the generalised combined Filon/asymptotic
method

QFA
p,s [f ] =

r−1
∑

j=0

1

j!
µj(ω; ξ)

s−1
∑

m=0

1

(−iω)m
ρ(j)

m [f ](ξ)

−
s−1
∑

m=0

1

(−iω)m+1

[

eiωg(1)

g′(1)

(

ρm[f ](1) −
r−1
∑

j=0

1

j!
ρm[f ](j)(ξ)(1 − ξ)j

)

(16)

− eiωg(−1)

g′(−1)

(

ρm[f ](−1) −
r−1
∑

j=0

1

j!
ρm[f ](j)(ξ)(−1 − ξ)j

)

]

+
1

(−iω)s
QF

p

[

ρs[f ]
]

9



ρm[f ] are defined as in equation (12). Recall that QF
p is constructed by interpolating f in

the endpoints and ξ (c1, cν and cq) with multiplicities m1, mν and mq respectively. For the
proposed method we have the following theorem:

Theorem 4. Assume g′(ξ) = · · · = g(r)(ξ) = 0, g(r+1)(ξ) 6= 0 and g′(x) 6= 0 for x ∈
[−1, 1]\{ξ}. Let QF

p be a generalised Filon method where m1,mν ≥ p and mq ≥ p (r +1). For

the generalised combined Filon/asymptotic method QFA
p,s constructed with QF

p , applied to any
smooth f it is true that

QFA
p,s [f ] − Ig[f ] ∼ O(ω−p−s−1/(r+1)), ω → ∞

Proof. Completely analogous to the proof of Theorem 3 we get

QFA
p,s [f ] − Ig[f ] ∼ 1

(−iω)s

(

QF
p [ρs[f ]] −

∫ 1

−1
ρs[f ](x)eiωg(x)dx

)

∼ 1

(−iω)s
O(ω−p−1/(r+1)) = O(ω−p−s−1/(r+1)),

where the last line is an application of Theorem 2.

Example 4. The simplest case is a problem with only one stationary point ξ of order one,
expanded with one term(as in equation (9)). The combined Filon/asymptotic method (16)
written out is then

QFA
p,1 [f ] =µ0(ω)f(ξ) +

1

iω

(

f(1) − f(ξ)

g′(1)
eiωg(1) − f(−1) − f(ξ)

g′(−1)
eiωg(−1)

)

(17)

− 1

iω
QF

p

[

d

dx

f(x) − f(ξ)

g′(x)

]

Example 5. The oscillator of the integral

∫ 1

−1
exeiω 1

2
x2

dx

has an order one stationary point at x = 0. We interpolate ρ1[f ](x) = d
dx

f(x)−f(ξ)
g′(x) = xex−ex+1

x2

at the nodes [−1, 0, 1] (using l’Hospital’s rule to obtain the value at the stationary point). The
interpolant gives a combined Filon/asymptotic scheme on the form of (17). This scheme has a
theoretical asymptotic order of 3/2, which seems to be confirmed by experiments (see figure 3).
The proposed scheme needs three moments for the computation whereas a classical Filon-type
method requires a total of eight to obtain the same asymptotic order. Figure 3 (a) shows that
the proposed method has a much higher asymptotic error constant than the classical Filon-type
method, however do we only need to add two interpolation nodes to beat it, see figure 3 (b).
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Figure 3: The absolute value of the error for the combined Filon/asymptotic method(black)
with (a) c = [−1, 0, 1] (logarithmic scale) and (b) c = [−1,−1/2, 0, 1/2, 1], and a classical

Filon-type method(grey), all methods of order 3/2, applied to the problem
∫ 1
−1 exeiω 1

2
x2

dx.

All curves are scaled by ω
5
2 . Logarithmic scale is used in (a) in order to properly represent

both curves in the same plot.

4 Extension to the multivariate case

Taking the step into the multivariate case presents us with a whole set of complications. For
example will we have to take into account not only stationary points, x s.t ∇g(x) = 0, but also
points of resonance, boundary points where ∇g is orthogonal to the boundary. For general
smooth boundaries resonance will necessarily be a problem, in this case theory is not yet fully
developed. For oscillatory integrals on simplices and polygons we refer to [7] for a theoretical
treatment.

We will restrict our treatment of the multivariate case to an example to demonstrate the
feasibility of the Filon/asymptotic approach. Our model problem is the oscillatory integral on
a square with an affine oscillator:

I[f ] =

∫ 1

−1

∫ 1

−1
f(x, y)eiω(κ1x+κ2y)dydx (18)

In this case the non-resonance condition becomes simply κ1, κ2 6= 0. Subject to the non-
resonance condition the asymptotic behaviour of the integral will, analogous to the univariate
case, be determined by information at the corner points.

The simplest possible Filon-type method is obtained by interpolating f in the four corners
of the domain(four unknowns), resulting in a method of asymptotic order 2. Stepping up
a level in asymptotic order requires us to interpolate f and its gradient at the corners(12
unknowns), resulting in a method of asymptotic order 3.

11



Applying integration by parts twice, first on the inner integral in (18), yields

I[f ] =
1

(iω)2κ1κ2

[

f(1, 1)eiω(κ1+κ2) − f(−1, 1)eiω(−κ1+κ2)

− f(1,−1)eiω(κ1−κ2) + f(−1,−1)eiω(−κ1−κ2)
]

(19)

− 1

(iω)2κ1κ2

[

∫ 1

−1

∂

∂x
f(x, 1)eiω(κ1x+κ2)dx −

∫ 1

−1

∂

∂x
f(x,−1)eiω(κ1x−κ2)dx

]

− 1

iωκ2

∫ 1

−1

∫ 1

−1

∂

∂y
f(x, y)eiω(κ1x+κ2y)dydx.

This is the first step in an asymptotic expansion of the integral (18), the integral remainders
all decay like ω−3. This calculation presents us with several ways of applying Filon quadrature
on the remainder term to arrive at a combined Filon/asymptotic method.

• We could apply Filon quadrature on all terms, that is two univariate, and one bivariate
integral.

• The univariate integrals can be expanded, and a Filon-type quadrature applied to the
bivariate integral.

• The bivariate integral could be expanded further, which would leave us with four uni-
variate integrals on which a Filon-type method could be used.

• Finally, by switching the order of integration before expanding the variables will be
permuted.

As we see, the possibilities are virtually endless, and so is the potential complexity of the re-
sulting expressions. Example 6 shows the application of a combined Filon/asymptotic method
on a simple 2-D problem.

Example 6. Expanding the univariate integrals in equation (19) and applying the most basic
Filon-type quadrature QF

2 on the bivariate remainder integral gives us a combined Filon/asymptotic
method with asymptotic order 3.

QAF [f ] =
1

(iω)2κ1κ2

[

f(1, 1)eiω(κ1+κ2) − f(−1, 1)eiω(−κ1+κ2)

− f(1,−1)eiω(κ1−κ2) + f(−1,−1)eiω(−κ1−κ2)
]

− 1

(iω)3κ2
1κ2

[ ∂

∂x
f(1, 1)eiω(κ1+κ2) − ∂

∂x
f(−1, 1)eiω(−κ1+κ2)

− ∂

∂x
f(1,−1)eiω(κ1−κ2) +

∂

∂x
f(−1,−1)eiω(−κ1−κ2)

]

− 1

iωκ2
QF

2

[ ∂

∂y
f(x, y)

]

Applying the method on the problem with f(x, y) = ex+y

∫ 1

−1

∫ 1

−1
ex+yeiω(x+y)dydx
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Figure 4: The absolute value of the error for the Filon/asymptotic method(top) and the

classical Filon-type method(bottom) applied to the problem
∫ 1
−1

∫ 1
−1 ex+yeiω(x+y)dydx scaled

by ω4.

we get

QAF [f ] = (e2+2iω + e−2−2iω − 2)
( 1

ω2
− i

ω3

)

− 1

iω
QF

2

[

f
]

Figure 4 shows how this method compares to the classical Filon-type method QF
3 obtained by

interpolating function values and gradients in all four corners. The asymptotic error constant
of the classical Filon-type method is much smaller, but at the cost of 12 moments, compared
to 4 for the combined Filon/asymptotic method.

5 Error estimates

In Example 2 we observed how the troughs in the error plot for a particular Filon/asymptotic
method seems to correspond with the peaks of a classical Filon-type method. This is exactly
the same observation Iserles and Nørsett made in [5], but then for two different Filon-type
methods. The behaviour we have observed can be explained in a similar way.

Assume in the following that g′(x) 6= 0, −1 ≤ x ≤ 1. From the discussion on the asymptotic
order of a Filon-type method and equation (5) it is clear that

QF
p [f ] − Ig[f ] ∼

eF
p [f ]

ωp+1
+ O(ω−p−2).

eF
p [f ] is basically the next term in the expansion of f − f̃ :

eF
p [f ] =

eiωg(1)

g′(1)
[σp[f̃ ](1) − σp[f ](1)] − eiωg(−1)

g′(−1)
[σp[f̃ ](−1) − σp[f ](−1)]. (20)
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By arguing that σp[f ] = f(p)

(g′)p + a linear combination of f (k), k = 0, . . . , p− 1, one states that

for a Filon-type method the asymptotic error constant |eF
p | can be estimated by

ΛF
−[f ] ≤ |eF

p [f ]| ≤ ΛF
+[f ],

where

ΛF
±[f ] =

∣

∣

∣

∣

∣

|f̃ (p)(1) − f (p)(1)|
|g′(1)|p+1

± |f̃ (p)(−1) − f (p)(−1)|
|g′(−1)|p+1

∣

∣

∣

∣

∣

.

The exact same reasoning can be used to estimate the asymptotic error constant for a combined
Filon/asymptotic method QAF

p,s . Keeping in mind that the asymptotic order of this method is
p + s we can write

QFA
p,s [f ] − Ig[f ] ∼

eFA
p,s [f ]

ωp+s+1
+ O(ω−p−s−2),

where

eF
p,s[f ] =

eiωg(1)

g′(1)
[σ̃s[f ](p)(1) − σs[f ](p)(1)] − eiωg(−1)

g′(−1)
[σ̃s[f ](p)(−1) − σs[f ](p)(−1)], (21)

giving
ΛFA
− [f ] ≤ |eFA

p,s [f ]| ≤ ΛFA
+ [f ]

with

ΛFA
± [f ] =

∣

∣

∣

∣

∣

|σ̃s[f ](p)(1) − σs[f ](p)(1)|
|g′(1)|p+1

± |σ̃s[f ](p)(−1) − σs[f ](p)(−1)|
|g′(−1)|p+1

∣

∣

∣

∣

∣

.

Example 7. Example 2 concerns the problem
∫ 1
−1

eiωx

2+xdx, whereby applying a Filon-type
method we obtain

f̃(x) = −1

9
x3 +

2

9
x2 − 2

9
x +

4

9
and [ΛF

−,ΛF
+] = [

16

27
,
32

27
].

The combined Filon/asymptotic method has

σ̃1[f ](x) =
4

9
x − 5

9
and [ΛFA

− ,ΛFA
+ ] = [

32

27
,
52

27
].

These estimates explain the most significant features of Figure 1. For the schemes in Example
3 we have:

c = [−1, 0, 1] : σ̃1[f ](x) = − 11
36x2 + 4

9x − 1
4 , [ΛFA

− ,ΛFA
+ ] = [1927 , 32

27 ]
c = [−1,− 1

3 , 1
3 , 1] : σ̃1[f ](x) = 248

1225x3 − 391
1225x2 + 2668

11025x − 2606
11025 , [ΛFA

− ,ΛFA
+ ] = [1241633075 , 21472

33075 ]

These calculations fits well with what has been observed, note in particular how the method
with c = [−1, 0, 1] closely matches the classical Filon-type method.



5.1 Comparing the classical Filon and Filon/asymptotic methods

Now we must address one particular question: Will a combined Filon/asymptotic method
get better accuracy than the classical Filon-type method from the same information? For
simplicity, consider the case where g(x) = x, and also assume derivatives of f are cheaply
available. The maximum error for a Filon-type method and a combined Filon/asymptotic
method, both of asymptotic order p, as ω becomes large are then

ΛF
+[f ] = |f̃ (p)(1) − f (p)(1)| + |f̃ (p)(−1) − f (p)(−1)|

ΛFA
+ [f ] = |σ̃s[f ](p−s)(1) − σs[f ](p−s)(1)| + |σ̃s[f ](p−s)(−1) − σs[f ](p−s)(−1)|

= |σ̃s[f ](p−s)(1) − f (p)(1)| + |σ̃s[f ](p−s)(−1) − f (p)(−1)|

where σ̃s[f ] is the interpolant of f (s). We see that both methods have an error which is de-
termined by the interpolant’s ability to approximate the pth derivative of f at the endpoints.
The error constant in the Filon-type method comes from interpolating f and differentiating
the interpolant, the combined approach takes s derivatives, interpolates, then differentiates.
It seems reasonable that when interpolating, the ability to more freely chose placement of the
nodes will also result in a better approximation of the pth derivative. We wish to explore this
a bit further.

What can we gain by using 2p nodes distributed equidistantly, including endpoints, to
approximate the error in a p − 1 term asymptotic expansion, that is a QAF

1,p−1-type method,

compared to a Filon-type method of asymptotic order p of minimum complexity QF
p ? These

are two methods that both are of asymptotic order p and use 2p moments. QF
p requires p data

at each endpoint, then it is well known that the error of the Hermite interpolation is

f̃(x) − f(x) =
f (2p)(c1)

(2p)!
(x + 1)p(x − 1)p,

where c1 ∈ [−1, 1]. Then from the Rodrigues’ formula[1]

f̃ (p)(x) − f (p)(x) =
f (2p)(c1)

(2p)!
Pp(x)2pp!,

with Pp(x) being the pth Legendre polynomial. As |Pn(±1)| = 1 we have

ΛF
+[f ] = 2p+1p!

|f (2p)(c1)|
(2p)!

= |f (2p)(c1)|
21−p√π

Γ(p + 1
2)

(22)

For the QAF
1,p−1-type method, we consider the case with n + 1 equidistant nodes, including

endpoints. We interpolate σp−1[f ], and the interpolation error is now:

σ̃p−1[f ](x) − f (p−1)(x) =
f (p−1+n+1)(c2)

(n + 1)!

n
∏

i=0

(x − 1 + i
2

n
),

for c2 ∈ [−1, 1]. This simplifies to

σ̃p−1[f ](x) − f (p−1)(x) =
f (p+n)(c2)

(n + 1)!

2n+1Γ(n
2 (x + 1))

nn+1Γ(n
2 (x − 1))

.
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Differentiating gives

σ̃p−1[f ]′(x) − f (p)(x) =
f (p+n)(c2)

(n + 1)!

2n

nn

(Ψ(n
2 (x + 1) + 1) − Ψ(n

2 (x − 1))Γ(n
2 (x + 1) + 1)

Γ(n
2 (x − 1))

,

with Ψ being the digamma function. The limit of the above expression as x tends to ±1 can
be found with a bit of effort:

lim
x→±1

[σ̃p−1[f ]′(x) − f (p)(x)] = f (p+n)(c2)(±1)n 2n

(n + 1)nn
.

Now

ΛAF
+ [f ] = |f (p+n)(c2)|

2n+1

(n + 1)nn
(23)

For the case where the two methods use the same moments n = 2p − 1, and then

ΛAF
+ [f ] = |f (3p−1)(c2)|

22p

2p · (2p − 1)2p−1

Now we investigate the relative sizes of the two asymptotic error constants

ΛAF
+ [f ]

ΛF
+[f ]

=
|f (3p−1)(c2)| 22p

(2p)(2p−1)2p−1

|f (2p)(c1)|2
1−p

√
π

Γ(p+ 1
2
)

=
|f (3p−1)(c2)|
|f (2p)(c1)|

8p

4

Γ(p + 1/2)√
πp(2p − 1)2p−1

.

For p = 1, ignoring the derivatives, the ratio is one, and for increasing p it is decreasing.
Stirling’s formula gives the behaviour for large p.

ΛAF
+ [f ]

ΛF
+[f ]

=
|f (3p−1)(c2)|
|f (2p)(c1)|

8p

2
√

2

(2p + 1)p+1

p(2p − 1)2p−1
e−p−1, p → ∞

The significance of the above calculations is most easily appreciated through a plot. Figure 5.1
shows that, assuming the derivatives of f are of the same order of magnitude, the combined
Filon/asymptotic method will have a smaller error constant when using the same number of
moments.

Example 8. As a final little calculation we once again investigate Example 3 and the close
match between the c = [−1, 0, 1] combined Filon/asymptotic method and the classical Filon-
type method of asymptotic order 2. Assuming derivatives are of order 1 equation (22) gives

ΛF
+[f ] ∼

√
π

23
4

√
π

=
2

3

Equation (23) gives for the c = [−1, 0, 1] combined Filon/asymptotic method

ΛAF
+ [f ] ∼ 23

3 · 22
=

2

3

This shows that what we observe is really an embodiment of a more general phenomenon
regarding the relative strengths of these methods.

We must remark that although the proposed method apparently performs better, it is by
no means optimal. The freedom to choose interpolation nodes could be used to minimise the
error, placing nodes closer to the boundary would generally be better, but this depends on
the size of ω. In the limit ω → ∞, placing all the nodes at the boundary, increasing the
asymptotic order would be best. This makes the whole discussion about asymptotic error
constants sligthly artificial.
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Figure 5: Log-plot of the ratio 8p

4
Γ(p+1/2)√

πp(2p−1)2p−1 . The dotted line is Stirling’s approximation.

6 Conclusion

We have demonstrated the feasibility of combining the asymptotic expansion of highly oscil-
latory integrals and Filon-type methods. Experiments as well as theoretical calculations show
that the combined method can achieve better precision than the classical Filon-type method
with more or less the same information. The extra cost of the combined method lies mainly
in more complicated expressions, especially for cases with several stationary points or in the
multivariate case. In order to make a combined method for more general oscillatory integrals
we must have an asymptotic expansion with an oscillatory integral remainder, this might also
be a shortcoming of the approach.

17



References

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover printing,
tenth gpo printing edition, 1964.

[2] C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists and
Engineers. 1978.

[3] L. N. G. Filon. On a quadrature formula for trigonometric integrals. Proc. Roy. Soc,
40:38–47, 1929.

[4] Daan Huybrechs and Stefan Vandewalle. On the evaluation of highly oscillatory integrals
by analytic continuation. SIAM J. Numer. Anal., 44(3):1026–1048, 2006.

[5] A. Iserles and S.P. Nørsett. On quadrature methods for highly oscillatory integrals and
their implementation. BIT Numerical Mathematics, 44(4):755–772, December 2004.

[6] A. Iserles and S.P. Nørsett. Efficient quadrature of highly oscillatory integrals using
derivatives. Proc. Roy. Soc. A., 461(2057):1383–1399, 2005.

[7] A. Iserles and S.P. Nørsett. Quadrature methods for multivariate highly oscillatory inte-
grals using derivatives. Math. Comp., 75:1233–1258, 2006.

[8] Arieh Iserles. On the numerical quadrature of highly-oscillating integrals. I: Fourier trans-
forms. IMA Journal of Numerical Analysis, 24(3):365–391, July 2004.

[9] Arieh Iserles. On the numerical quadrature of highly-oscillating integrals II: Irregular
oscillators. IMA Journal of Numerical Analysis, 25(1):25–44, January 2005.

[10] D. Levin. Fast integration of rapidly oscillatory functions. J. Comput. Appld Maths,
67:95–101, 1996.

[11] Sheehan Olver. Moment-free numerical integration of highly oscillatory functions. j-IMA-
J-NUMER-ANAL, 26(2):213–227, apr 2006.


