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A high order splitting method for
time-dependent domains

Tormod Bjøntegaard and Einar M. Rønquist

March 31, 2008

We present a temporal splitting scheme for the semi-discrete convection-
diffusion equation and the semi-discrete incompressible Navier-Stokes equations
in time-depedent geometries. The proposed splitting scheme can be consid-
ered as an extension of the OIF-method proposed in [22] in the sense that it
can be interpreted as a semi-Lagrangian method for time-dependent domains.
The semi-discrete equations are derived from an arbitrary Lagrangian-Eulerian
(ALE) formulation of the governing equations, and are discretized in space us-
ing high order spectral elements. The proposed splitting scheme has been tested
numerically on model problems with known analytical solutions, and first, sec-
ond, and third order convergence in time has been obtained. We also show that
it is not necessary for the interior mesh velocity to be obtained through the use
of an elliptic solver. Numerical tests show that it is sufficient that the mesh
velocity is regular within each spectral element and only C0-continuous across
element boundaries; this is consistent with the theoretical results presented in
[9]. In addition, the mesh velocity should be regular in the time direction.

Keywords: Time-dependent domains; ALE-formulation; operator splitting; spectral ele-
ments

1 Introduction

Numerical solution of the Navier-Stokes equations in time-dependent geometries has found
wide-spread use in science and engineering, both in the context of basic understanding
of fluid flow phenomena, as well as for predictive purposes in engineering. A powerful
framework is provided by the arbitrary Lagrangian-Eulerian (ALE) formulation [13, 16, 6,
15]. Even though this framework is quite mature and is currently used in many commercial
codes, it is still a subject of active research; e.g., see [15].

Part of the current research in ALE methods is related to time integration. One issue is
the importance of satisfying the so-called geometric conservation law [18, 12, 10, 7]. The
conclusion is not quite clear for general Navier-Stokes problems. One complicating factor
in all this effort is the fact that it is not easy to measure and verify the overall temporal
accuracy during a transient simulation. This is partially due to the lack of analytical
solutions for moving boundary problems, in particular, for general free surface problems
where both normal and tangential stress boundary conditions are imposed.

The evolution of the surface of a time-dependent domain is typically determined via
a kinematic condition which says that the normal domain velocity must coincide with
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the normal fluid velocity along the surface. Assuming that this surface evolution can be
tracked in an accurate and efficient way, it still remains to extend the surface deformation
to the interior of the domain. A smooth extension of the mesh velocity to the interior is
most commonly used, e.g., using an harmonic extension, a Stokes solver, or an elasticity
solver. However, other possible choices do not seem to have been fully explored; see [9] for
a theoretical discussion of this issue.

The purpose of this paper is to present recent results on developing high order splitting
methods for problems in time-dependent domains. Our long term goal is to be able to
study large-scale free surface applications like three-dimensional Bénard-Marangoni con-
vection including deformed surfaces [3], or problems involving fluids enclosed in flexible
membranes on much larger length scales than typically associated with surface-tension-
dominated effects. The latter problem is motivated by the transportation of fresh water
using elastic fabric containers; see [19, 2].

In Section 2, we first present the governing equations for incompressible fluid flow and
heat transfer problem in time-dependent domains. The ALE-formulation presented in
Section 3 is the natural point of departure for the spatial discretization. In Section 4, we
present a set of semi-discrete equations based on the spectral element method, however,
any finite element method can in principle be used for the spatial discretization.

In Section 5, we present an operator splitting method for the temporal treatment of the
convection-diffusion problem. The approach represents an extension of the OIF-method
proposed in [22] to time-dependent domains. We conclude this section by showing numer-
ical results for a two-dimensional test problem involving a moving front.

In Section 6, we discuss the proposed splitting scheme in the context of solving incom-
pressible fluid flow problems. The splitting scheme represents a convection-Stokes splitting,
which can also be interpreted as a semi-Lagrangian scheme. We present numerical evidence
of first, second, and third order convergence in time for a three-dimensional ALE test prob-
lem with a known analytical solution. The issue of global regularity requirement for the
mesh velocity is also illuminated.

In Section 7, we conclude our study and comment on future extensions.

2 Governing equations: strong form

In the following we consider the numerical solution of unsteady fluid flow and heat transfer
problems in time-dependent domains. Specifically, we consider the incompressible Navier-
Stokes equations and the convection-diffusion equation in a domain Ω(t),

∂uj

∂xj
= 0, in Ω(t), (1)

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=

∂σij

∂xj
+ fi, in Ω(t), i = 1, 2, 3, (2)

ρ cp

(
∂Θ
∂t

+ uj
∂Θ
∂xj

)
= k

∂2Θ
∂xj∂xj

+ g, in Ω(t). (3)

In (1) and (2), ui is the i-th component of the fluid velocity in an inertial reference frame,
xj is the j-th coordinate, fi is the i-th component of a volumetric body force, and ρ is the
density of the fluid. Summation over repeated indices is assumed. The stress tensor σij is
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Figure 1: The time-dependent domain Ω(t) can be regarded as a one-to-one mapping A of
a reference configuration Ω(t0). The outward unit normal vector along ∂Ω(t) is
denoted as n.

here given as

σij = −pδij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3, (4)

where p is the pressure, µ is the dynamic viscosity, and δij is the Kronecker delta symbol.
In (3), Θ is the temperature, cp is the specific heat capacity, k is the thermal conductivity,
and g is a volumetric heat source.

We consider here the stress formulation for incompressible fluid flow because our intended
use of the proposed splitting scheme is to be able to accurately simulate time-dependent
free surface flows with very general boundary conditions (including thermo-capillary ef-
fects). The particular boundary conditions used in the numerical tests in this paper will
be discussed later.

3 ALE-formulation

In this section we briefly discuss the governing equations for fluid flow and heat transfer in
time-dependent domains. In particular, we follow the arbitrary Lagrangian-Eulerian (ALE)
framework which represents a powerful starting point for the numerical approximation of
such problems [13, 16, 6, 15].

One of the key ingredients in the ALE-framework is the introduction of a domain velocity
w. Following closely the notation of [10] and [5], we can regard the time-dependent domain
Ω(t) as a mapping A of a reference configuration Ω(t0), e.g., the domain at an earlier time
t0; see Figure 1. We assume that A is a continuous and one-to-one mapping, i.e., a unique
point x̂ in Ω(t0) maps to a unique point x in Ω(t),

A ∈ C0(Ω(t0), t),
x = A(x̂, t).

In particular,

∂Ω(t) = A(∂Ω(t0), t).

The domain velocity w at a point x, corresponding to a particular location x̂ in the
reference configuration, can then be defined as

w =
(

∂A
∂t

) ∣∣∣∣
x̂

◦ A−1(x, t).
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If u represents the fluid velocity in Ω(t), it follows from the continuum hypothesis that

w · n = u · n along ∂Ω(t). (5)

The condition (5) is called the kinematic condition.
The ALE-formulation can be derived from the weak form of the governing equations

using an Eulerian framework, and then apply the Reynolds’ transport theorem and Euler’s
expansion formula [1]. Following this approach, the ALE-formulation of the heat transfer
problem can be expressed as: Find Θ (the temperature) ∈ X ⊂ H1(Ω) such that

d
dt

(v,Θ) + c(v,Θ)− e(v,Θ) = −aΘ(v,Θ) + (v, g) + `Θ(v), ∀v ∈ X, (6)

where we have defined the following bilinear forms,

(v, φ) =
∫

Ω(t)
vφ dV, (7)

c(v, φ) =
∫

Ω(t)
v(uj − wj)

∂φ

∂xj
dV, (8)

e(v, φ) =
∫

Ω(t)
vφ

∂wj

∂xj
dV, (9)

aΘ(v, φ) =
∫

Ω(t)
k

∂v

∂xj

∂φ

∂xj
dV, (10)

as well as the linear form

`Θ(v) =
∫

∂Ω(t)
v
∂Θ
∂n

dS. (11)

With no loss in generality, we have set ρcp equal to unity, and we have assumed homoge-
neous Dirichlet boundary conditions for Θ along part of, or all of, the boundary ∂Ω(t).

One advantage with the form (6) is that the time-derivative appears outside the integral
over Ω(t); this will prove very useful for the subsequent numerical treatment. Second,
the contribution from convection appears in two terms: a standard convection term where
a relative convection velocity (u − w) appears (see (8)), as well as an "expansion" term
involving the divergence of the domain velocity (see (9)). The first term on the right
hand side represents the standard diffusion term resulting from integration by parts, while
the third term represents the associated surface term allowing for a convenient imposition
of flux boundary conditions; as usual, this term vanishes wherever essential boundary
conditions are prescribed. The second term on the right hand side represents a prescribed
heat source (which we assume is square integrable).

A similar procedure for the fluid problem yields the ALE-formulation of the incompress-
ible Navier-Stokes equations: find u ∈ X ⊂ (H1(Ω))3 and p ∈ Y ⊂ L2(Ω) such that

d
dt

(v,u) + c(v,u)− e(v,u) = −aσ(v,u) + d(p,v) + (v, f) + `σ(v), ∀v ∈ X, (12)

d(q,u) = 0, ∀q ∈ Y, (13)



where we have introduced the bilinear forms

(v,u) =
∫

Ω(t)
viui dV, (14)

c(v,u) =
∫

Ω(t)
vi(uj − wj)

∂ui

∂xj
dV, (15)

e(v,u) =
∫

Ω(t)
viui

∂wj

∂xj
dV, (16)

aσ(v,u) =
∫

Ω(t)
µ

∂vi

∂xj

(
∂ui

∂xj
+

∂uj

∂xi

)
dV, (17)

d(q,u) =
∫

Ω(t)
q
∂uj

∂xj
dV, (18)

as well as the linear form

`σ(v) =
∫

∂Ω(t)
viσijnj dS. (19)

With no loss in generality, we have here set ρ equal to unity. In the above definitions of
the bilinear and linear forms, summation over repeated indices is assumed. Similar to the
heat transfer problem, we have assumed homogeneous Dirichlet boundary conditions for
the velocity u along part of, or all of, the boundary ∂Ω(t).

The linear form (19) follows from integration by parts of the term
∫
Ω(t) vi

∂σij

∂xj
dV ; this

surface term allows for a convenient imposition of stress boundary conditons (both nor-
mal and tangential), while the surface term vanishes wherever essential velocity boundary
conditions are prescribed.

4 Semi-discrete problem

The weak form presented above will be our point of departure for the spatial and temporal
discretization. Our goal is to achieve high order accuracy both in the space and time. We
start with a brief discussion of the spatial discretization which will be based on spectral
elements [21]. Following this approach, we decompose the domain into disjoint elements
and approximate all the field variables as high-order polynomials within each element. Ap-
propriate C0-continuity conditions are imposed across interelement boundaries for second-
order problems as considered here. We assume that a high-order, tensor-product nodal
basis is used. Following this approach, we arrive at a system of semi-discrete equations for
the heat transfer problem (6) on the form

d
dt

(BΘ) + CΘ = −AΘ + EΘ + b, (20)

dx
dt

= w. (21)

5



Equation (20) represents the semi-discrete convection-diffusion equation derived from the
ALE-formulation, while equation (21) represents the system of ordinary differential equa-
tions governing the mesh evolution. All the lower case symbols represent vectors of nodal
values at a particular time: Θ represents the temperature, x represents the coordinates
of the grid points, u and w represent the fluid velocity and mesh velocity, respectively,
and b represents the known data (source term and boundary conditions). Furthermore, B
represents the time-dependent mass matrix derived from (7), which in our case is diagonal
because of the fact that the quadrature points and nodal points that we use within each
spectral element coincide [21]. The matrix A represents the discrete Laplacian derived
from (10), which is time-dependent because the computational domain is time-dependent.
The matrix C represents the convection operator derived from (8); this will again depend
on time through the time-dependent computational domain, but also via the fluid velocity
u and the mesh velocity w. Finally, the matrix E represents the discrete "expansion" term
associated with the bilinear form (9).

In a similar way we can derive a set of semi-discrete equations for the incompressible
fluid flow problem (12)-(13); these equations can be expressed as

d
dt

(Bu) + Cu = −Aσ u + DT p + Eu + b, (22)

Du = 0, (23)
dx
dt

= w. (24)

Here, B represents the time-dependent mass matrix derived from (14) (i.e., for the vector
case), C represents the time-dependent convection operator derived from (15) (which is now
nonlinear and couples all the velocity components), Aσ represents the symmetric, viscous
operator derived from (17) (which couples all the velocity components), D represents the
discrete divergence operator derived from (18), while DT is the corresponding discrete
gradient operator, E represents the discrete "expansion" operator derived from (16) (i.e.,
for the vector case), and b is a known right hand side derived from (14) and (19).

We remark that other finite-element-based discretization methods could also have been
used for the spatial discretization; the resulting semi-discrete equations could still be ex-
pressed on the form (20)-(21), or (22)-(24), and thus the following discussion regarding the
temporal treatment also applies to such discretizations.

5 A convection-diffusion splitting scheme

Our goal is here to propose a high order temporal splitting scheme for (20)-(21); with
high order we shall here mean higher than first order, in particular, second and third order
convergence in time. Our point of departure will be the Operator-Integration-Factor (OIF)
procedure proposed in [22]. The computational approach we propose in this paper can be
viewed as an extension of the OIF-method to time-dependent domains.

5.1 Fixed domain

Before we discuss the details of the new scheme, let us first revisit some aspects of the
original OIF-approach applied to the convection-diffusion problem. First, we assume a
fixed domain Ω. Following a standard Eulerian description, the semi-discrete equations for
the convection-diffusion problem can be expressed as

B
dΘ
dt

+ CΘ = −AΘ + b, (25)



where now all the discrete spatial operators are time-independent. Although the OIF-
method presented in [22]Ê offers a quite general framework for deriving temporal splitting
methods, this method applied to the particular convection-diffusion problem (25) can also
be interpreted as a particular semi-Lagrangian method. Specifically, a first order splitting
scheme reads

B
(

Θn+1 − Θ̃
n+1

∆t

)
= −AΘn+1 + bn+1, (26)

where the expression inside the parentheses on the left hand side represents a first order
approximation to the total derivative DΘ/Dt at time tn+1. With this interpretation Θ̃

n+1

represents the values of Θ at time tn for those fluid particles which at time tn+1 coincide
with the fixed grid points used in a pure Eulerian formulation; note that the position these
fluid particles had at time tn do not coincide with the grid points.

An attractive aspect with the OIF-method is the fact that it is possible to find the values
Θ̃

n+1
only by using information at the fixed grid points. This is in contrast to other semi-

Lagrangian schemes where the positions of the fluid particles at earlier times first have to
be computed by following the characteristics backwards in time, and then the solution at
an earlier time needs to be interpolated at these points; see [23, 11]. In the OIF-method
[22], however, the values Θ̃

n+1
are found by solving the following pure convection problem

defined in the interval tn to tn+1,

B
dΘ̃
dt

= −C Θ̃, Θ̃
n

= Θn, tn ≤ t ≤ tn+1. (27)

In essence, the values Θ̃
n+1

we are interested in are being convected to the fixed grid points
through the solution of (27).

The extension to second order in time is quite natural. We now use a second-order
(Backward Differentiation) approximation of the total derivative DΘ/Dt at time tn+1,

B
( 3

2Θn+1 − 2Θ̃
n+1

+ 1
2
˜̃Θn+1

∆t

)
= −AΘn+1 + bn+1. (28)

The values of Θ at times tn and tn−1 for those fluid particles which at time tn+1 coincide
with the fixed grid points are now found by solving the two pure convection problems

B
dΘ̃
dt

= −C Θ̃, Θ̃
n

= Θn, tn ≤ t ≤ tn+1, (29)

B
d ˜̃Θ
dt

= −C ˜̃Θ,
˜̃Θn−1

= Θn−1, tn−1 ≤ t ≤ tn+1. (30)

We now discuss the temporal discretization of the pure convection problems defined
above. First, the discrete convection operator C depends on the given convection velocity.
In practice, this velocity field is typically coming from a Navier-Stokes solver and is only
known at discrete times tn, tn−1, etc. We therefore approximate the convection velocity in
time by using a polynomial interpolant/extrapolant. Specifically, for a first order approx-
imation, see (26) and (27), the convection velocity is set equal to un for the entire time
interval tn ≤ t ≤ tn+1 in (27). For a second order approximation, the convection velocity
used in (29) and (30) is approximated linearly between tn−1 and tn+1; see Figure 2.

In order to solve the single initial value problem (27), or the two initial value problems
(29) and (30), we use the classical fourth order explicit Runge-Kutta scheme (ERK4).
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u
n

u
n−1

Figure 2: The convecting velocity field is approximated linearly in time in the interval
[tn−1, tn+1] for a second order OIF-scheme. In particular, the convecting velocity
field is constructed as the linear interpolant between tn−1 and tn, and as the
linear extrapolant between tn and tn+1.

An explicit scheme avoids the need to solve non-symmetric (and in the case of solving
the Navier-Stokes equations, nonlinear) equation systems. Second, the ERK4 scheme is
attractive to use since it is accurate and the associated stability region encloses a significant
part of the imaginary axis. The time step used for these "inner" convection problems can
be the same as for the "outer" diffusion problem, however, this is not a requirement. On
the other hand, we are required to honor the Courant stability criterion and we also need
to honor a final integration time equal to tn+1.

Finally, we mention that the OIF-approach presented above may also be extended to
third order in time. In this case, we use a third order Backward Differentiation approx-
imation of the total derivative, and we need to solve three separate convection prob-
lems. Furthermore, the given convection field is now constructed as a second order in-
terpolant/extrapolant in the interval between tn−2 and tn+1.

5.2 Time-dependent domain

We now consider the extension of the OIF-approach to time-dependent domains. In par-
ticular, we consider the solution of (20) and (21). As mentioned earlier, all the discrete
spatial operators are now time-dependent.

In order to more easily apply the OIF formalism to this problem, we first define the new
variable

Φ = BΘ. (31)

The convection-diffusion equation (20) can then be expressed as

dΦ
dt

+ CB−1Φ = −(A−E)B−1Φ + b. (32)

Next, we apply the OIF-method to the system (32). Treating the expansion term as part
of the "outer" problem, a first order splitting scheme can be expressed as(

Bn+1Θn+1 − Φ̃
n+1

∆t

)
= −(An+1 −En+1) Θn+1 + bn+1. (33)

The values Φ̃
n+1

are obtained through the solution of the following ("inner") convection
problem,

dΦ̃
dt

= −CB−1 Φ̃, Φ̃
n

= BnΘn, tn ≤ t ≤ tn+1. (34)



Finally, we solve the system (21) using an explicit multi-step scheme; for a first order
approximation in time, we simply use a first order Adams-Bashforth scheme (i.e, Euler
Forward), (

xn+1 − xn

∆t

)
= wn. (35)

We now make a few remarks concerning this splitting scheme. Similar to the standard
OIF-scheme for fixed domains, we use a Backward-Differentiation (BD) scheme for the
"outer" problem. This is mainly due to the convenience of only having to evaluate all the
associated operators on the right hand side at time level tn+1. The associated "Operator
Integrating Factor" is defined to be the identity operator at tn+1 [22], and the use of a
BD-scheme thus avoids having to solve additional "inner" problems.

Second, we note that the introduction of the new variable Φ in (31) necessitates a
modified "inner" convection problem in (34) compared to the corresponding problem (27)
for time-independent domains. This modification is necessary due to the fact that the mass
matrix is time-dependent.

Third, the discrete operator CB−1 in (34) depends on the convecting velocity field u,
on the mesh velocity w, and on the computational domain Ω. All these quantities are
approximated as constants, and equal to the the corresponding values at time tn for a first
order splitting scheme.

Fourth, similar to the system (27), the system (34) is solved using ERK4. An important
observation here is the following. In the ALE formulation the convection operator C is
derived from the associated bilinear form (8). This form includes an "effective" convection
velocity u−w. However, using integration-by-parts, we can easily show that this form is
skew-symmetric, i.e.,

c(v, φ) = −c(φ, v). (36)

This follows by noticing that the boundary integral over ∂Ω vanishes either due to essential
boundary conditions or due to the kinematic condition (5). Hence, we are guaranteed that
all the eigenvalues of the matrix CB−1 are pure imaginary, and the ERK4 scheme is thus
appropriate to use.

We now discuss the choice of including the "expansion" term En+1 Θn+1 in the outer
problem (33). First, this term is derived from the associated bilinear form (9). This
bilinear form is symmetric, but has a "coefficient" ∇ · w which can be either positive or
negative definite depending on whether the domain is locally expanding or contracting.
The matrix E is therefore symmetric, but the definiteness is not determined. If we include
the term EΘ in the "inner" problem, the discrete operator in (34) changes from CB−1 to
(C−E)B−1. In this case, we cannot guarantee that all the eigenvalues will remain inside
the absolute stability region of ERK4 (or inside the stability region of other explicit time
integration schemes) since some eigenvalues may end up with positive real parts.

We remark that the "expansion" term vanishes if we insist on having a divergence free
mesh velocity. Such a constraint has been proposed as a way to honor the so-called Ge-
ometric Conservation Law (GCL); see [12, 7, 10]. For example, the work presented in [4]
honors the GCL condition through the computation of a divergence free mesh velocity,
which can be achieved through the solution of a Stokes problem. However, since the sig-
nificance of the GCL condition is not quite clear for general problems, we will here not
assume such a constraint, and we therefore have to treat the additional term appropriately.
Our goal with this study is also to gain more insight into the global regularity requirements
for the mesh velocity.
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From (33) it follows that we need to solve a system of equations for Θn+1 of the form(
An+1 +

1
∆t

Bn+1 −En+1

)
Θn+1 = bn+1, (37)

where bn+1 represents a known right hand side (we assume that we already have solved
the "inner" problem for Φ̃n+1). The first two terms inside the parentheses represent the
discrete Helmholtz operator. As mentioned earlier, the matrix E is symmetric (and, in
our case, diagonal), but we cannot guarantee the definiteness of this matrix. On the other
hand, by combining the last two terms inside the parantheses in (37), we conclude that we
are guaranteed positive definiteness if

(1−∆t∇ ·w) > 0.

However, from the basic definition of the divergence, this is the same as saying that the
relative change in a small volume element in one single time step should be less than one.
This is typically always true: a local volume element will generally not double in size in
a single time step. Hence, we can assume that the system matrix in (37) is symmetric
and positive definite, and that we can use iterative solvers for such systems, typically, the
conjugate gradient method.

The extension to second and third order in time is quite similar to the corresponding
extension for fixed domains. For example, a second order splitting scheme will read

( 3
2B

n+1Θn+1 − 2Φ̃
n+1

+ 1
2
˜̃Φn+1

∆t

)
= (−An+1 + En+1) Θn+1 + bn+1. (38)

where

dΦ̃
dt

= −CB−1Φ̃, Φ̃
n

= (BΘ)n, tn ≤ t ≤ tn+1, (39)

d˜̃Φ
dt

= −CB−1 ˜̃Φ,
˜̃Φn−1

= (BΘ)n−1, tn−1 ≤ t ≤ tn+1. (40)

In addition, the system (21) is now solved using a second order Adams-Bashforth scheme,(
xn+1 − xn

∆t

)
=

3
2

wn − 1
2

wn−1. (41)

A special remark is required when solving the "inner" convection problems (39) and (40).
For a fixed geometry, we recall that we need to use a first order polynomial approximation
in time for the convecting velocity field; see Figure 2. For time-dependent geometries, we
need to use a first order approximation in time for the convecting velocity field, for the
mesh velocity, as well as for the geometry. Again, the approximations are based on linear
interpolations/extrapolations of the values at tn−1 and tn.

Finally, the approach presented above can readily be extended to a third order splitting
scheme. Similar to the fixed geometry case, we need to solve three separate ("inner")
convection problems. In addition, the convecting velocity field, the mesh velocity, as well
as the geometry are now all constructed as second order interpolants/extrapolants in the
interval between tn−2 and tn+1. The problem (21) is in this case solved using a third order
Adams-Bashforth scheme.



x2 = H(t)

x1

Ω(t)

x2

∂Ω4(t)

∂Ω3(t)

∂Ω2(t)

∂Ω1(t)

Figure 3: The rectangular domain used for the moving front problem. The height of the
domain is given as H(t).

5.3 Numerical results

One difficulty with assessing the accuracy of a discretization scheme in time-dependent
domains is the lack of analytical solutions, especially for problems in general domains. We
now present a two-dimensional convection-diffusion problem we have designed in order to
verify the proposed computational approach in the context of a moving front. Specifically,
we consider the solution of the time-dependent convection-diffusion equation

∂Θ
∂t

+ u · ∇Θ = ∇2Θ + g, in Ω(t),

where Ω(t) = (0, 1) × (0,H(t)) is the rectangular domain depicted in Figure 3. The
boundary conditions are

Θ = 0, on ∂Ω1(t), ∂Ω3(t),
∂Θ
∂n

= 0, on ∂Ω2(t), ∂Ω4(t).

We impose a two-dimensional convecting velocity field u = (u1, u2), with

u1(x1, x2, t) = π sin
(

2πx2

H(t)

)
sin2(πx1) sin(t),

u2(x1, x2, t) = −H(t)π sin(2πx1) sin2

(
πx2

H(t)

)
sin(t),

and we choose the right hand side g(x1, x2, t) such that the exact solution Θ(x1, x2, t) of
the two-dimensional convection-diffusion equation is given as

Θ(x1, x2, t) = sin
(

πx2

H(t)

)
.

In order to mimic a "melting-front" problem (a Stefan problem), we assume that the speed
of the front is determined through the condition

dH

dt
= − ∂Θ

∂x2

∣∣∣∣
x2=H(t)

. (42)

From the above information we can derive an analytical solution for the front,

H(t) =
√

2πt + H2
0 , (43)

11



where H0 is the "height" of the domain at time t = 0.
We first discretize the domain Ω using two spectral elements, Ω1 and Ω2. Next, we solve

the semi-discrete equations using the splitting method proposed in Section 5.2. Note that
we never use our knowledge about the exact solution (43) to advance the front. Instead,
we use (42) to compute the x2-component of the grid velocity, w2, along the front directly
from the numerical solution. This grid velocity is then extended to the interior of the
domain by requiring that: (i) the x1-component of the grid velocity is zero, i.e., w1 = 0 in
Ω; (ii) the x2-component of the grid velocity is extended smoothly from the front to the
interior of the domain; specifically, w2 ∈ P1(Ω), i.e., w2 varies linearly with x2 in Ω.

The linear extension used here can also be regarded as an harmonic extension of the
grid velocity along the boundary to the interior of the domain. Such a regular extension of
the grid velocity is quite common to use in the context of the ALE-formulation. Another
common approach is to use an elasticity solver [14, 8] or a Stokes solver [4].

We now integrate the governing equations until a final time, T , where we compare
the numerical solution with the exact solution. The initial and final domain is depicted in
Figure 4. Note that we start the simulation with two equal-sized spectral elements and that
these will remain equal-sized due to the linearly varying grid velocity in the x2-direction.
In Figure 5 we show the temporal and spatial convergence behavior. The discretization
error is measured in the energy-norm by first mapping the solution back to the initial
configuration, and then performing the error calculation over Ω(t0). When the temporal
error is dominating, we clearly see first, second, and third order convergence. When the
spatial error is dominating, we obtain exponential convergence until we reach the temporal
error level, at which point increasing degree, N , of the polynomial approximation within
each spectral element does not have any effect.

Let us now revisit this problem, but this time change the global regularity of the mesh
velocity. In particular, let us extend the mesh velocity derived from the numerical solution
along the front to the interior of the domain in the following way: As earlier, we set the
x1-component equal to zero, i.e., w1 = 0. However, this time we extend the x2-component
such that w2 = 0 in Ω1 and w2 ∈ P1(Ω2). Hence, w2 is very regular within each spectral
element (in fact, piecewise linear), but w2 is globally only C0(Ω); see Figure 6. The x2-
component of the grid velocity has a sharp jump in the x2-derivative along the element
boundary. Again, we integrate the equations until a final time T and compare with our
earlier results. We limit our comparison to the second order splitting scheme, and when
the temporal error is dominating. The convergence results are shown in Figure 7. We
observe that it is not necessary to require the ALE mapping to be C∞(Ω), or even C1(Ω);
in this case, C0-continuity of the mesh velocity suffices. These results are in agreement
with the theoretical analysis and comments given in [9].

6 A convection-Stokes splitting scheme

For the case with a fixed domain, the treatment of (22)-(23) is precisely the OIF-method
described in [22]. The extension to time-dependent domains follows a similar approach as
for the convection-diffusion equation. The "inner" convection problems are treated simi-
larly to the scalar case. However, we remark that the convection problems now represent
nonlinear problems, even in fixed geometries. The "outer" problem can be expressed as



H(t)

Ω2

Ω1

x1x1

Ω1

Ω2

x2 x2

H(0) = H0

Figure 4: The initial computational domain (left) and the final computational domain
(right). The two spectral elements used to solve this problem are denoted as
Ω1 and Ω2. The mesh velocity computed along the front is extended linearly to
zero in the interior of the domain.
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Figure 5: Discretization error in the energy-norm for the moving front test problem. The
left plot shows the spatial discretization error as a function of the polynomial
degree, N , when the spatial error is dominating. The right plot shows the tem-
poral discretization error as a function of the time step, ∆t, when the temporal
error is dominating. Results are reported for the first, second, and third order
splitting scheme discussed in Section 5.2.
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H(0) = H0

x2 x2

Figure 6: The initial computational domain (left) and the final computational domain
(right). The two spectral elements used to solve this problem are denoted as
Ω1 and Ω2. The mesh velocity computed along the front is here extended lin-
early to zero in the interior of Ω2, while the mesh velocity in Ω1 is identically
zero during the entire simulation.
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Figure 7: Discretization error in the energy-norm at a final time, T , for the moving front
problem. A second order splitting scheme has been used, and the temporal error
is dominating. The convergence results using a globally regular mesh velocity
(in fact, w2 ∈ C∞(Ω)) is compared with using a mesh velocity which varies
linearly within each spectral element, but is globally only C0-continuous (with a
significant jump in the derivative across the element boundary).



(e.g., for a second order splitting scheme):

( 3
2B

n+1un+1 − 2Ψ̃
n+1

+ 1
2

˜̃Ψn+1

∆t

)
= (−An+1

σ + En+1)un+1 + DT pn+1 + bn+1, (44)

Dun+1 = 0, (45)

where Ψ = Bu corresponds to the transformation (31) for the convection-diffusion case.
The Stokes system (44)-(45) can be solved for the velocity un+1 and pn+1 via a standard
Uzawa decoupling procedure; e.g., see [20]. In the following, we will focus on such a pure
convection-Stokes decoupling approach; the alternative is to also include a pressure-velocity
decoupling in the Stokes operator.

We remark that the operator splitting scheme presented here, i.e., the convection-Stokes
splitting scheme for the semi-discrete Navier-Stokes equations, or the convection-diffusion
splitting scheme presented in the previous section, will include temporal splitting errors at
steady state (for problems where a steady state solution exists). This is similar to the OIF-
method applied to problems in fixed geometries. The reason for this can be understood by
interpreting the splitting scheme as a semi-Lagrangian scheme were the total derivative is
approximated along the characteristics in the upwind direction via a first, second, or third
order backward differentiation scheme. In particular, the left-hand side of (38) and the
left hand side of (44) both represent a streamline-upwind approximation to the convective
term.

Note also that, similar to the convection-Stokes splitting presented in [22] for fixed
geometries, no interpolation between the grid points is needed in order to determine the
necessary field values along the characteristics; the solution of the "inner" convection
subproblems will give us the necessary information only using values at the current and
previous time steps, and only using the nodal values (i.e., the values at the grid points) at
the current and previous time steps.

6.1 Numerical results

We now verify our discretization approach by solving the three-dimensional Navier-Stokes
equations in a cube. The domain boundary is fixed at all times, however, we specify an
artificial time-periodic mesh velocity in the interior. The mesh velocity is a function of both
space (all the coordinates) and time, and is zero on the domain boundary. We also specify
a forcing function in the momentum equations by requiring that the following analytic
solution satisfies the incompressible Navier-Stokes equations:

u1(x1, x2, x3, t) =
π

5
sin2(πx1) sin(2πx2) sin(2πx3) sin(t), (46)

u2(x1, x2, x3, t) = − π

10
sin(2πx1) sin2(πx2) sin(2πx3) sin(t), (47)

u3(x1, x2, x3, t) = − π

10
sin(2πx1) sin(2πx2) sin2(πx3) sin(t), (48)

p(x1, x2, x3, t) = cos(πx1) sin(πx2) sin(πx3) sin(t). (49)

Note that the prescribed mesh velocity is only C0-continuous in space. Inside each
spectral element, the mesh velocity is analytic in both space and time. However, the
gradient of the mesh velocity is not continuous across element boundaries; in fact, the
mesh velocity is identically zero in one of the spectral elements. On the other hand, we
impose a mesh velocity which is very regular in time; see Figure 8. Finally, we remark
that the mesh velocity is not divergence free. The convergence results in Figure 9 show the
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anticipated behavior: first, second, and third order convergence in time, and exponential
convergence in space for problems with analytic solutions and data.

Even though we are using isoparametric spectral elements, the geometry representation
is in this case effectively built upon using a trilinear approximation within each element;
this is due to the fact that all element edges (internal and external) are straight. The
mesh velocity is here constructed in the following way: we first define some non-trivial
motion of the internal element vertices. We then define the mesh velocity in such a way
that a numerical integration of (24) using Adams-Bashforth methods results in straight
spectral element edges. One reason for doing this is to ensure a perfect distribution of all
the spectral element nodes during the simulation.

The test reported here is obviously a very artificial one; the natural choice is to use
a fixed geometry since the external boundary of the cube is fixed. However, aside from
providing information about the discretization error using the ALE formulation and a
splitting approach, this test also allows us to repeat the numerical experiment using a fixed
geometry and compare the discretization errors. In Figure 10 we compare the temporal and
spatial errors when using a fixed geometry (i.e., w = 0), and when imposing the artificial
mesh velocity depicted in Figure 8. For example, for a fixed ∆t, this plot indicates "the
price" we have to pay for using an ALE-formulation where we could have expressed the
governing equations in a fixed geometry. For the particular test problem we have chosen
here, our numerical results indicate that this "price" is about one order or magnitude for
a second order scheme and about two orders of magnitude for a third order scheme.

(a) t = 0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 8: The three-dimensional box used in the convergence study of the ALE scheme.
The domain is decomposed into seven spectral elements, one in the middle of
the domain and one connected to each of the six faces of the box. The external
boundary of the box is fixed. However, we specify a mesh velocity in the interior
of the cube which is a function of both space and time (periodic in time). The
plot indicates the grid-configuration at a few time levels for five of the spectral
elements during one single period. The exact flow solution in the domain is given
by (46)-(49).
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Figure 9: The left plot depicts the discretization error in the energy norm at time T = 3
as a function of the time step, ∆t, for a first, second, and third order temporal
splitting scheme; the spatial error is here subdominant the temporal error. The
right plot depicts the discretization error as a function of the polynomial degree,
N , used in each spectral element; the temporal error is here subdominant the
spatial error for N < 12.
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Figure 10: A comparison of the discretization error in the energy norm at time T = 3 with
and without imposing an artificial mesh velocity in the interior of the domain;
see Figure 8. The left plot shows the temporal error for the second order OIF
splitting scheme, while the right plot shows the corresponding results for a third
order scheme. The spatial discretization error is here on the order of 10−8.
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6.2 Comparison with other schemes

We now compare the OIF splitting approach for the convection-Stokes splitting with two
other schemes: the scheme discussed in [14] (the HP scheme), and a slightly modified
version of the scheme discussed in [17] (the KIO scheme) and used for moving boundary
problems in [4]. The difference between the KIO scheme and the scheme used in this work
is that we do not split the Stokes operator into a separate pressure step and a separate
viscous step.

Similar to the OIF-scheme, both these schemes treat the convection term explicitly,
while the Stokes operator is treated implicitly using a backward difference scheme. With
reference to the semi-discrete equations (24), these two schemes can be expressed succinctly
as

1
∆t

s∑
k=0

βk(Bu)n+1−k = −(Aσ u)n+1 + (DT p)n+1 +
s∑

k=0

αk((C + E)u)n−k + bn+1. (50)

Here, s is the order of the scheme. The treatment of the divergence constraint and the
mesh evolution is similar to the OIF-scheme.

In [14], αk, k = 0, 1, 2, where chosen to be modified AB-coefficients for a second order
scheme, while in [17], αk, k = 0, 1, were chosen such that they correspond to a linear
extrapolation of the convection term at time tn+1. In Table 1 we also give the corresponding
coefficients for a third order approach.

In Figure 11 we report numerical results showing a comparison of the three methods.
We see that all methods give the correct order, and also give very similar results (with the
OIF scheme proposed in this work giving a marginally better constant).

First order Second order Third order

BD

β0 1 3
2

11
6

β1 −1 −2 −3
β2 0 1

2
3
2

β3 0 0 −1
3

HP

α0
8
3

15
4

α1 −7
3 −21

4

α2
2
3

13
4

α3 0 −3
4

KIO

α0 2 3
α1 −1 −3
α2 0 1
α3 0 0

Table 1: Backward Differentiation (BD) coefficients βk, together with the coefficients αk;
see (50). The coefficients αk for the HP scheme are taken from [14] (second order
scheme only), while the coefficients for the KIO scheme are taken from [17].

7 Conclusions

We have presented a temporal splitting scheme for the semi-discrete convection-diffusion
equation and the semi-discrete incompressible Navier-Stokes equations in time-dependent
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Figure 11: A comparison of the temporal error in the energy norm as a function of the time
step, ∆t, for the following second order (left plot) and third order (right plot)
schemes: the OIF scheme presented in this paper, the HP splitting scheme
discussed in [14] (also extended to third order in this study), and the KIO
splitting scheme discussed in [17] (here used in a slightly modified form). For
all these results, the spatial error is subdominant the temporal error.

domains. The proposed splitting scheme can be considered as an extension of the OIF-
method proposed in [22] in the sense that it can be interpreted as a semi-Lagrangian method
for time-dependent domains. The computational approach has been tested numerically
on model problems with known analytical solutions, for which first, second, and third
order convergence has been obtained. Based on the experience so far, the results for the
OIF splitting scheme compares favorably with two alternative approaches proposed in the
literature. The approach has been used successfully in the context of simulating three-
dimensional Bénard-Marangoni flows with a deformable free surface [3].

We remark that all the splitting schemes discussed in this paper for the Navier-Stokes
equations fundamentally focus on two types of splittings: (i) splitting the treatment of
the geometry evolution from the treatment of the interior Navier-Stokes calculation; and
(ii) splitting the treatment of the (ALE) convection operator in the fluid problem from the
Stokes operator. We have not considered splitting the Stokes operator itself into a pressure
step and a viscous step; this would have introduced an additional splitting error. Instead,
we have solved the unsteady Stokes problem via a standard Uzawa algorithm, which does
not correspond to a rediscretization of the Stokes operator, but rather a decoupling algo-
rithm.

The numerical results show that the mesh velocity introduced in the ALE-formulation
does not have to be globally smooth in space. In the context of the isoparametric spectral
element discretization used in this study, it is sufficient that the mesh velocity is regular
within each spectral element, and C0-continuous across element boundaries. Hence, the
extension of the mesh velocity from the boundary to the interior does not necessarily have
to be obtained through the use of an elliptic solver which is commonly the case. This
observation is consistent with the theoretical discussion and comments in [9]. This could
allow for the use of faster and more flexible ways of updating the mesh velocity at each time
step; we plan to explore this opportunity in a future study. Note that, in order to obtain
high order temporal accuracy, the mesh velocity should be regular in the time direction.

The proposed splitting method does not appear to satisfy the Geometric Conservation
Law. Based on the tests we have done so far, we have thus not been able to conclude to what
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extent the quality of a general Navier-Stokes solution will improve if the GCL condition is
satisfied. We remark that the mesh velocity used in this study is not divergence free.

Despite the encouraging results obtained in this study, more quantitative comparisons
still need to be done in the context of free surface problems with larger and more com-
plex deformations (i.e., free surfaces with significant curvature). An obvious challenge
is to derive analytical solutions in more complex time-dependent domains. However, we
believe it is necessary to obtain quantitative results for more complex problems in order
to discriminate the quality of different ALE-solvers used in a more realistic setting. For
example, controlling the accuracy of a moving interface with a varying (mean) curvature
is a non-trivial task which we feel has not yet been treated satisfactorily in the literature;
the interface-tracking issue is currently under investigation in a separate study.
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