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Plane wave stability of some conservative
schemes for the cubic Schrödinger

equation

Morten Dahlby and Brynjulf Owren

January 8, 2009

The plane wave stability properties of the conservative schemes of Besse and
Fei et al. for the cubic Schrödinger equation are analysed. Although the two
methods possess many of the same conservation properties, we show that their
stability behaviour is very different. An energy preserving generalisation of the
Fei method with improved stability is presented.

1 Introduction
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Figure 1: The plot shows the numerical solution of the cubic Schrödinger equation pro-
duced by the method of Fei et al. [6] and the method of Besse [3], in two con-
secutive time steps. Here u0(x) = esinx, t = 1.9, time step τ = 0.01, space step
h = 2π/1024, λ = 2.

Figure 1 shows the numerical approximation in two consecutive time steps with two
well-known schemes applied to the cubic Schrödinger equation (CSE).

iut + ∆u = λ|u|2u, λ ∈ R. (1.1)
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Both schemes have order 2, are symmetric, and conserve mass and energy in a way to
be made precise below. They are both linearly implicit. Whereas the method of Besse
exhibits a continuous behaviour, the method of Fei et al. has an unstable spurious solution
with eigenvalue near −1 which causes the numerical solution to alternate in each time step.

We begin by briefly describing some properties of the CSE and some numerical methods
which have been proposed for approximating its solution. In one space dimension, d = 1,
(1.1) is completely integrable and for the sake of notational simplicity we shall assume in
the rest of this paper that there is just one space dimension. All the numerical methods
we consider can be easily generalised to arbitrary d > 1. We may also add that the
integrability which is particular to the case d = 1 will not be important for the issues
discussed here. Generally, the density

ρ[u] =
∫
|u|2 dx, (1.2)

is a conserved quantity, and it is also usual to work with the Hamiltonian structure

H[u] =
∫ (

1
2
|∇u|2 +

λ

4
|u|4

)
dx. (1.3)

In the literature, there exists a large variety of numerical schemes for the integration of
(1.1), see for instance [1, 2, 3, 4, 5, 6, 8, 9, 10, 11]. Frequently one sees examples of numerical
schemes that are conservative, by this we mean that they exactly preserve some discretised
version of (1.2), (1.3), or both. In addition, it is often desirable to have schemes that are
symmetric, see e.g. Hairer et al. [7] for a proper definition. One favourable consequence of
having a conservative scheme, is that it can be used to control the growth of the numerical
solution over long times. Generally, most conservative schemes are implicit in the time
step. But the class of implicit schemes can be further divided into schemes that are fully
implicit, and those that are linearly implicit or semi-explicit. In the former case, a system
of nonlinear equations must be solved in every time step, the size of which is equal to the
number of spatial degrees of freedom. It is often necessary to use a Newton-type iteration
for solving this nonlinear system, and especially for large time steps the convergence may
be slow or the iteration may not converge at all. However, using a linearly implicit scheme
guarantees that the cost is roughly the same in each time step, therefore such schemes are
attractive from the point of view of computational efficiency. Examples of linearly implicit
schemes which are symmetric and conserve some discretised version of the energy when
applied to the cubic Schrödinger equation are the method of Besse [3] and that of Fei et
al. [6], the latter being derived also in [9]. The former scheme is formulated continuously
in space, i.e. for each time 0 = t0 < t1 < · · · the method produces an approximation Un

to u(x, tn) as follows

φn+1/2 + φn−1/2

2
= |Un|2, (1.4)

i
Un+1 − Un

τ
+ ∆

(
Un+1 + Un

2

)
= λφn+1/2

(
Un+1 + Un

2

)
. (1.5)

This method can alternatively be written as a two-step scheme, and thus an auxiliary ap-
proximation is needed for the first step. Besse proposes to set (U0, φ−1/2) = (u(x, 0), |u(x, 0)|2),
and shows that the following two versions of (1.2) and (1.3)

Dn =
∫
|Un|2 dx,



Hn =
∫ (

1
2
|∇U |2 +

λ

4
φn+1/2φn−1/2

)
dx,

are preserved in the sense that Dn = D0 and En = E0 for all n.
The method of Fei et al. is different from the Besse method in that it is discretised both

in time and space, in [6] the scheme is given for one space dimension as follows:

i
Un+1
m − Un−1

m

2τ
+

1
h2

δ2
x

(
Un+1
m + Un−1

m

2

)
= λ |Un

m|
2

(
Un+1
m + Un−1

m

2

)
, (1.6)

where δx is the centered difference in space, that is, δxU
n
m = Un

m+ 1
2

−Un
m− 1

2

. Here Un
m is an

approximation to u(xm, tn). The associated discretised density and energy of this scheme
are

Dn =
h

2

∑
m

(
|Un
m|2 + |Un+1

m |2
)
,

Hn =
1
4
h

∑
m

∣∣∣∣∣Un+1
m+1 − Un+1

m

h

∣∣∣∣∣
2

+
∣∣∣∣Un

m+1 − Un
m

h

∣∣∣∣2 + λ|Un+1
m |2|Un

m|2
 .

In a similar way as for the Besse scheme, (1.6) can be formulated continuously in space as

i
Un+1 − Un−1

2τ
+ ∆

(
Un+1 + Un−1

2

)
= λ |Un|2

(
Un+1 + Un−1

2

)
. (1.7)

The rest of the paper is organised as follows; in section 2 we analyse the plane wave
stability properties of the two schemes (1.5) and (1.6). We illustrate the results using
various plots. In section 3 we introduce a two parameter energy conserving generalisation
of the Fei method that improves stability.

2 Plane wave solutions, dispersion relations and stability

Most of this section is inspired by the analysis of [11] where dispersion relations for the exact
and some numerical solutions of (1.1) are derived and their linear stability is analysed.

2.1 The exact solution

The cubic Schrödinger equation (1.1) with periodic boundary conditions supports plane
wave solutions of the form

v(x, t) = aei(kx−ωt),

where ω is determined by the dispersion relation

ω = k2 + λ|a|2. (2.1)

We then consider small perturbations of such a solution, substituting u(x, t) = (1 +
ε(x, t))v(x, t) into (1.1), and ignoring O(ε2) terms. We get

iεt + 2ikεx + εxx − λ|a|2(ε + ε) = 0. (2.2)

The perturbation ε(x, t) is periodic, thus we invoke its Fourier expansion

ε(x, t) =
∑
`∈Z

ε̂`(t)ei`x.
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Substitute this expansion into (2.2) to obtain

d
dt

ε̂` = i
(
(−2k`− `2 − λ|a|2)ε̂` − λ|a|2ε̂−`

)
.

We take the complex conjugate of this last equation and replace ` by −`, the result is the
linear system of ODEs

d
dt

[
ε̂`
ε̂−`

]
= iG`

[
ε̂`
ε̂−`

]
, G` =

[
−`2 − 2k`− λ|a|2 −λ|a|2

λ|a|2 `2 − 2k` + λ|a|2
]

.

The eigenvalues of G` are

λ` =
(
−2k ±

√
`2 + 2λ|a|2

)
`.

If λ` is complex, then one eigenvalue of (iG`) will have a positive real part, and the
corresponding mode will be unstable. This happens if

`2 < −2λ|a|2,

thus instability may only occur when λ < 0, usually referred to as the focusing case.

2.2 The scheme of Fei et al.

We now consider again the scheme

i
Un+1
m − Un−1

m

2τ
+

1
h2

δ2
x

(
Un+1
m + Un−1

m

2

)
= λ |Un

m|
2

(
Un+1
m + Un−1

m

2

)
. (2.3)

Substituting a sequence of the form V n
m = aei(kxm−ωtn) in which xm = mh, tn = nτ , we

get the dispersion relation

tanωτ = λτ |a|2 + 4ρ sin2 kh

2
, ρ =

τ

h2
. (2.4)

We perturb this plane wave solution, substituting Un
m = (1 + εnm)V n

m into (2.3) and after
ignoring quadratic and higher order terms in εnm we get

a1ε
n+1
m+1 + a0ε

n+1
m + a−1ε

n+1
m−1 = b(εnm + εnm)− a−1ε

n−1
m+1 − a0ε

n−1
m − a1ε

n−1
m−1. (2.5)

Here

a1 = ρ ei(kh−ωτ) b = 2q cos ωτ

a0 = e−iωτ (i− 2ρ− q) q = λτ |a|2

a−1 = ρ e−i(kh+ωτ).

We expand εnm in a Fourier series εnm =
∑
`∈Z

ε̂n` e
i`xm and substitute this into (2.5) to obtain

c`ε̂
n+1
` = b(ε̂n` + ε̂

n
−`)− c`ε̂

n−1
` , c` = a1ei`h + a0 + a−1 e−i`h.

We now take the complex conjugate of this equation and replace ` by −` to obtain a system

of difference equations for En =
[
ε̂n` , ε̂

n
−`

]T
,[

c` 0
0 c−`

]
En+1 =

[
b b
b b

]
En −

[
c` 0
0 c−`

]
En−1.



We find that this difference equation is stable if and only if the polynomial

p(z) = c`c−`z
4 − b(c` + c−`)z3 + (c`c−` + c`c−`)z2 − b(c−` + c`)z + c−`c` (2.6)

has all its roots in the closed unit disc. Note that p(z) is self-reciprocal, meaning that its
set of roots is invariant under the transformation z 7→ 1/z. Each root on the unit circle
is invariant under this transformation, but any root in the open unit disc is mapped to a
root outside the unit circle. Thus, for self-reciprocal polynomials, stability is equivalent to
all roots lying on the unit circle. Note that when we use the scheme which is continuous
in space (1.7), we get again the stability polynomial (2.6), but where c` is replaced by

c` = e−iωτ
(
i− (K + L)2 − q

)
, K = k

√
τ , L = `

√
τ .

The case k = 0 is particularly simple, since the stability polynomial in this case will have
real coefficients. In that case one may easily derive that p(z) has all its root on the unit
circle for all values of ` if and only if

λ|a|2 ≤ 1− cos h

h2
.

Note that this condition is independent of τ , and in the limit when h tends to zero, one
simply gets the condition λ|a|2 ≤ 1

2 . This does however not imply that the scheme does not
converge on finite time intervals [0, t∗]. Suppose that λ|a|2 > 1

2 . For small perturbations,
one may expect that the error is roughly amplified with a factor in each step that equals
the magnitude of the largest root of (2.6), which for k = 0 and in the limit case h → 0 is
of the form

z∗ = −
(
1 + τ`

√
2λ|a|2 − `2

)
+O(τ2),

thus locally the size of the spurious solution grows exponentially, the growth factor of the
unit frequency over the interval [0, t∗] being approximately exp(Ct∗) with C =

√
2λ|a|2 − 1.

2.3 The scheme of Besse

In one space dimension the scheme of Besse (1.4), (1.5) is

φn+ 1
2 + φn−

1
2

2
= |Un|2 , (2.7)

i
τ

(
Un+1 − Un

)
+

Un+1
xx + Un

xx

2
= λφn+ 1

2

(
Un+1 + Un

2

)
. (2.8)

We use the plane wave solution V n = aei(kx−ωtn), which now is continuous in space, to get
the following relation for ω.

tan
ωτ

2
=

1
2

(
λτ |a|2 + τk2

)
. (2.9)

As for the Fei scheme we consider the perturbations

Un = V n (1 + εn) , φn+ 1
2 = |a|2

(
1 + δn+ 1

2

)
.

Substituting these expressions into (2.7) and ignoring higher order terms yields

δn+ 1
2 = −δn−

1
2 + 2 (εn + εn) . (2.10)
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We now plug the last three expressions into (2.8) to obtain

i
τ

(
e−iωτεn+1 − εn

)
+

1
2
e−iωτ

(
εn+1
xx + 2ikεn+1

x −
(
k2 + λ |a|2

)
εn+1

)
+

1
2

(
εnxx + 2ikεnx −

(
k2 + λ |a|2

)
εn

)
=

1
2
λ |a|2

(
e−iωτ + 1

)
δn+ 1

2 . (2.11)

Expand εn(x) and δn+ 1
2 (x) in a Fourier series and insert into (2.10) and (2.11) to get the

system


c` 0 −b 0
0 c−` 0 −b
0 0 1 0
0 0 0 1

En+1 =


−c` 0 0 0
0 −c−` 0 0
2 2 −1 0
2 2 0 −1

En, En =


ε̂n`
ε̂
n
`

δ̂
n− 1

2
`

δ̂
n− 1

2

`

 ,

where we have defined

c` = (2i− (L + K)2 − q)e−iωτ

b = 2q cos
ωτ

2
,

and where L =
√

τ` and K =
√

τk as before. Notice that c` and b are defined differently
than in the Fei case. We find that the characteristic polynomial is (z + 1)p̃(z) with

p̃(z) = c`c−`z
3 + (c`c−` + c`c−` + c`c−` − 2b (c` + c−`)) z2

+ (c`c−` + c`c−` + c`c−` − 2b (c` + c−`)) z + c`c−`.

To shorten the notation we divide by c`c−` and define f and g such that

p(z) = z3 + gz2 + gz + f,

and p(z) has the same roots as p̃(z). The polynomial is self-reciprocal and we have stability
only if all three roots lie on the unit circle. We proceed to express the stability region S in
terms of g for a given f . The key observation is that for points on the boundary ∂S at least
two of the roots are coalescing. For such values of f and g, we can write the polynomial as

p(z) =
(
z − eiθ

)2 (
z − eiψ

)
.

By comparing coefficients we get that for a given value of f we can parametrise the stability
boundary for g as follows

g(θ) = e2iθ − 2fe−iθ.

Since |f | = 1 we have that |g| ≤ 3 is necessary for stability while |g| ≤ 1 is sufficient.
For k = 0 the latter condition becomes `2 < −2λ|a|2, which is the same as for the exact
solution.

For k = 0 the two roots of p(z) with the largest magnitude are on the form

z∗ = 1± τ`
√
−2λ|a|2 − `2 +O(τ2).

In this case the eigenvalue is near 1, not −1 as in the Fei case, which explains why the
Besse scheme does not exhibit an alternating behaviour for k = 0.



Extension to more space dimensions. The scheme of Fei (2.3) has an obvious general-
isation to d space dimensions with corresponding energy and density functions. We may
also consider the general form of the Besse scheme (1.4), (1.5), and introduce plane wave
solutions in d dimensions

u(x, t) = aei(k·x−ωt)

for space variables x = (x1, . . . , xd) and wave numbers k = (k1, . . . , kd). Exact solutions
of this form satisfy the dispersion relation

ω = |k|2 + λ|a|2,

and these solutions are stable with respect to perturbations

ε`(x, t) = ε̂`(t)ei `·x,

whenever |`|2 ≥ −2λ|a|2.
For the method of Fei et al. one finds again that for k = 0 the scheme is stable to

perturbations only if λ|a|2 ≤ 1
2 in the limit h → 0, the critical perturbation wavenumber

vectors being the canonical unit vectors in Rd. The dispersion relation is now

tanωτ = λτ |a|2 + 4ρ

d∑
j=1

sin2 kjh

2
h=0−→ λτ |a|2 + τ |k|2.

Also the method of Besse generalizes similarly in more space dimensions, the dispersion
relation being

tan
ωτ

2
=

1
2
(λτ |a|2 + τ |k|2),

and the stability polynomial is obtained simply by replacing c` by

c` = (2i− τ |` + k|2 − dq)e−iωτ .

2.4 Numerical results

We compare the schemes of Besse and Fei et al. in the limit h → 0, in which case p(z)
depends on the three parameters K, L and q. In figure 2 we compare the exact dispersion
relation (2.1) with Fei (2.4) and Besse (2.9). Both relations express ωτ in terms of k2+λ|a|2
and for the Besse method it is obtained by replacing the time step τ by τ/2 in the Fei
method.

Figure 3 shows a numerical computation of the stability region for both Besse and Fei
when fixing K = k = 0 in p(z). These plots are obtained from the explicit expressions in
the analysis of the previous sections. The case K = k

√
τ = 1 is shown in figure 4. For

reference, we have included the stability boundary of the exact solution as a broken line.
The stability of the Besse scheme differs slightly from that of the exact solution when λ is
negative, however, the stability is retained for positive λ. The Fei scheme is again unstable
in the defocusing case. We have observed that when K is further increased, then also the
Besse method becomes unstable for small modes in the defocusing regime.

For a numerical plane wave solution to be stable, none of its Fourier modes ` should
be amplified by the method. The plot in figure 5 shows the stability region in the qK-
plane for the Besse method. A pair (q, K) is unstable if the largest root of the stability
polynomial exceeds 1 in modulus for some real value of L. It is then only of interest to
consider the defocusing case (q ≥ 0) since the exact solution itself is unstable in this sense
for all negative q. The Fei scheme is unstable for all (q, K) where q 6= 0.
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Figure 2: A comparison of the dispersion relations.
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Figure 3: Stability for K = 0 (grey is unstable).

3 An energy preserving modification of the Fei scheme

Using the procedure in [9] one can derive the following symmetric 2-step scheme.

i
Un+1 − Un−1

2τ
+

(
θ

2
Un+1
xx + (1− θ)Un

xx +
θ

2
Un−1
xx

)
=

λγ

2
|Un|2

(
Un+1 + Un−1

)
+

λ(1− γ)
2

(Un)2
(
U
n+1 + U

n−1
)

.
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Figure 5: Stability for all `.

θ and γ are real parameters. Note that θ = γ = 1 yields the method of Fei et al. This
method is by construction energy preserving, and its energy function is given as

Hn =
θh

4

∑
m

(
|δ+Un+1

m |2 + |δ+Un
m|2

)
+

(1− θ)h
4

∑
m

(
(δ+Un

m)(δ+U
n+1
m ) + (δ+U

n
m)(δ+Un

m)
)

+
γh

4

∑
m

λ|Un
m|2|Un+1

m |2

+
(1− γ)h

16

∑
m

λ
(
(Un+1

m )2 + (Un+1
m )2

) (
(Un

m)2 + (Un
m)2

)
− (1− γ)h

16

∑
m

λ
(
(Un+1

m )2 − (Un+1
m )2

) (
(Un

m)2 − (Un
m)2

)
.
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The last two lines comes from the relation |u|4 = 1
4

(
u2 + u2

)
− 1

4

(
u2 − u2

)
. We are only

aware of a conserved density function in the Fei case, we will however see that some of the
parameters yield improved stability compared to Fei.

The dispersion relation is

sinωτ = K2 (θ cos ωτ + (1− θ)) + q cos ωτ.

Using the same procedure as in chapter 2.2 we get the stability polynomial

p(z) =
(
c`c−` − (1− γ)2q2

)
z4

+
(
γ(γ − 1)b2 − ((2− γ)b + d`) c−` − ((2− γ)b + d−`) c`

)
z3

+
(
b(2− γ)(d` + d−`) + d`d−` + c`c−` + c`c−` + 2(1− γ)2q(b− q) + 4(1− γ)b2

)
z2

+
(
γ(γ − 1)b2 − ((2− γ)b + d`) c−` − ((2− γ)b + d−`) c`

)
z

+
(
c`c−` − (1− γ)2q2

)
,

where
c` =

(
i− γq − θ(K + L)2

)
e−iωτ and d` = 2(1− θ)(K + L)2.

The scheme is stable provided that all zeroes of the self-reciprocal polynomial p(z) is on
the unit circle. In figure 6 we see that the stability region is almost the same size as for
Besse, compare with figure 5. These parameters clearly yield an improvement over the Fei
method.
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Figure 6: Stability for the modified scheme.

4 Conclusion

We have seen that two schemes which have essentially the same conserving properties and
are both symmetric and linearly implicit show a rather different behaviour when applied
to the cubic Schrödinger equation. This behaviour is analysed in terms of plane wave
solutions. Both schemes can be interpreted as two-step schemes and thus have a spurious
solution, in the Fei scheme this solution is unstable even for small time steps contrary to
the scheme of Besse. We show however that the scheme by Fei et al. can be stabilised
without losing the symmetry or the energy preservation property.



It is interesting to observe that two different schemes, designed to be conservative in
a very similar way, turns out behave completely differently with respect to stability. It
remains to be seen if this phenomenon appears also in other PDE models than the cubic
Schrödinger equation.

References

[1] M. J. Ablowitz and J. F. Ladik. A nonlinear difference scheme and inverse scattering.
Studies in Appl. Math., 55(3):213–229, 1976.

[2] H. Berland, B. Owren, and B. Skaflestad. Solving the nonlinear Schrödinger equation
using exponential integrators. Modeling, Identification and Control, 27(4):201–218,
December 2006.

[3] C. Besse. A relaxation scheme for the nonlinear Schrödinger equation. SIAM J.
Numer. Anal., 42(3):934–952 (electronic), 2004.

[4] E. Celledoni, D. Cohen, and B. Owren. Symmetric Exponential Integrators with an
Application to the Cubic Schrödinger Equation. Found Comput Math, 8:303–317,
2008.

[5] A. Durán and J. M. Sanz-Serna. The numerical integration of relative equilibrium
solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal., 20(2):235–261,
2000.

[6] Z. Fei, V. M. Pérez-García, and L. Vázquez. Numerical simulation of nonlinear
Schrödinger systems: a new conservative scheme. Appl. Math. Comput., 71(2-3):165–
177, 1995.

[7] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second
edition, 2006. Structure-preserving algorithms for ordinary differential equations.

[8] A. L. Islas, D. A. Karpeev, and C. M. Schober. Geometric integrators for the nonlinear
Schrödinger equation. J. Comput. Phys., 173(1):116–148, 2001.

[9] T. Matsuo and D. Furihata. Dissipative or conservative finite-difference schemes for
complex-valued nonlinear partial differential equations. J. Comput. Phys., 171(2):425–
447, 2001.

[10] T. R. Taha and J. Ablowitz. Analytical and numerical aspects of certain nonlinear
evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys.,
55(2):203–230, 1984.

[11] J. A. C. Weideman and B. M. Herbst. Split-step methods for the solution of the
nonlinear Schrödinger equation. SIAM J. Numer. Anal., 23(3):485–507, 1986.

11


