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Abstract

In this paper, we consider the evaluation of flux integral outputs
from reduced basis solutions to second-order PDE’s. In order to evalu-
ate such outputs, a lifting function v⋆ must be chosen. In the standard
finite element context, this choice is not relevant, whereas in the re-
duced basis context, as we show, it greatly affects the output error. We
propose two “good” choices for v⋆, and illustrate their effect on the out-
put error by examining a numerical example. We also make clear the
role of v⋆ in a more general primal-dual reduced basis approximation
framework.

1 Introduction

For many practical applications, one is interested in certain physical aver-
ages, or outputs of interest, which can be defined as functionals of the solution
to a partial differential equation (PDE) that describes an underlying physical
problem. For example, the output of interest may be the average heat flux
through (or average temperature on) a surface, or the average force acting
on a wall due to fluid flow. In this paper, we are concerned with outputs
of flux integral type, i.e., outputs that can be written as surface integrals of
the normal derivative of the solution to the underlying PDE. We consider
second-order equations, for which it is possible to evaluate flux integral out-
puts directly via the weak problem formulation, and in particular without
the need for any numerical differentiation.

Mathematically, we consider a weakly written problem defined on a do-
main Ω: Find u ∈ X(Ω) such that

a(u, v) = f(v), ∀v ∈ X(Ω), (1)

where a is a coercive, continuous and for simplicity also symmetric bilinear
form derived from some second-order differential operator, f is a linear and
bounded functional, X(Ω) = {v ∈ H1(Ω) : v|ΓD

= 0} is our exact space, and
ΓD ⊂ ∂Ω denotes the parts of the boundary of Ω on which we impose (for
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simplicity homogeneous) Dirichlet boundary conditions. As usual, H1(Ω)
denotes the Sobolev space of functions with square integrable first order
derivatives. Henceforth, the Ω-dependence of our spaces is understood when
no ambiguity may arise.

Our output of interest shall be the integral of the flux through Γ0
D ⊆ ΓD.

We thus define the output functional

l̃out(w) ≡

∫

Γ0
D

∂w

∂n
ds, (2)

where ∂/∂n denotes the outward normal derivative and s is the surface mea-
sure on ΓD. When solving e.g. Poisson or Helmholtz problems with the finite
element (FE) method, it is preferable [1, 2, 5, 9] to evaluate flux integral out-
puts through the functional

lout(w) ≡ a(w, v⋆) − f(v⋆), (3)

where v⋆ ∈ H1 is any function that is equal to unity on Γ0
D and equal to zero

on ΓD \ Γ0
D. Of course, even though (2) and (3) make sense for any w ∈ X,

they are only of interest for w ≈ u, where u is the solution of (1). One way
to derive (3), is to recast the original problem (1) as a “Neumann problem”
for which there are no restrictions on the test functions on Γ0

D. Thus, if we
suppose (1) is a Poisson or Helmholtz problem, this modified problem reads:
Find u ∈ X̃ such that

a(u, v) = f(v) +

∫

Γ0
D

∂u

∂n
v ds, ∀v ∈ X̃, (4)

where X̃ = {v ∈ H1 : v|ΓD\Γ0
D

=0} ⊃ X. Moving f(v) to the left hand side

and choosing v = v⋆ ∈ X̃, we see that l̃out(u) = lout(u).
Suppose we solve (1) numerically to obtain a FE approximation to u,

uN ∈ XN , satisfying

a(uN , v) = f(v), ∀v ∈ XN . (5)

Here, XN ⊂ X is our discrete FE space with N degrees of freedom. Our
output of interest can now be evaluated in two ways, either as l̃out(uN ) or
as lout(uN ). In the latter case, we assume uN is a good approximation to u,
and we thus substitute uN for u and ≈ for = in (4). With v = v⋆, we get

lout(uN ) ≈
∫

Γ0
D

∂uN

∂n ds. Hence, in general, lout(uN ) 6= l̃out(uN ).

We shall refer to v⋆ as a flux lifting function, and we shall denote the set
of possible such functions as V ⋆, i.e.,

V ⋆ ≡ {v ∈ H1 : v|ΓD\Γ0
D

= 0, v|Γ0
D

= 1}. (6)

In [1, 2], v⋆ is called an extraction function, and the method described above
for flux integral output evaluation is an example of an extraction method, as
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similar techniques may be used for other types of output. In [9], the method
– although with emphasis on pointwise quantities, rather than on surface
integrals – is called the consistent Galerkin FEM. In any event, lout(uN )
typically converges to lout(u) quadratically with the energy-norm error of
the field variable, ‖u − uN ‖, in contrast to l̃out(uN ), which exhibits only
linear convergence [2, 5]. Another advantage of lout over l̃out is that the
former requires no calculation of normal derivatives, which is particularly
convenient in higher dimensions and for problems on domains with curved
boundaries.

Aside from the essential boundary condition in (6), we have not made
any particular choice for v⋆ ∈ H1. In fact, within a standard finite element
framework, this choice is not a big issue due to the richness of the approx-
imation spaces used [2, 5]. (It is, however, important that v⋆ be a smooth
function on each element [1].) In contrast, as we will show numerically and
theoretically, one should take a little more care when evaluating flux integral
outputs by way of the method described above within the reduced basis (RB)
framework. Confer e.g. [14] for a thourough introduction to RB methods.

In the next section, we shall consider a very simple numerical example
that illustrates how lout may be superior to l̃out in terms of numerical ac-
curacy within the FE framework. In Section 3, we first briefly review the
RB method and then elaborate on the discrepancy between the FE and RB
methods with respect to the choice of v⋆. We then propose two “good” choices
for v⋆ to use in the RB context. We also make clear the role of v⋆ in the more
general primal-dual RB approximation procedure that is used to speed up
the convergence of non-compliant problems [12, 14]. In Section 4, we remain
in the RB context and illustrate the effect of different v⋆’s by examining
yet another numerical example, and in Section 5 we end our discussion with
some concluding remarks.

2 Flux Output Evaluation: a 1D Example

We consider a one-dimensional Helmholtz problem on Ω = (0, 2) with homo-
geneous Dirichlet boundary conditions. The weak formulation of the problem
reads: Find u ∈ H1

0 such that

∫ 2

0

(
∂u

∂x

∂v

∂x
+ uv

)

dx

︸ ︷︷ ︸

=a(u,v)

=

∫ 2

0
qv dx

︸ ︷︷ ︸

=f(v)

, ∀v ∈ H1
0 , (7)

where we choose the source term q(x) = x2/3 to make u weakly singular.
Our output of interest is the derivative of u at x = Γ0

D = {2}, and our two
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output functionals now reduce to

l̃out(w) =
∂w

∂x

∣
∣
∣
∣
x=2

(8)

and

lout(w) = a(w, v⋆) − f(v⋆), (9)

where v⋆ ∈ V ⋆.
With a spectral (high order polynomial) method, we discretise (7) and

find uN ∈ XN such that

a(uN , v) = f(v), ∀v ∈ XN , (10)

where

XN = {v ∈ P
N+1 : vΓD

= 0} (11)

is our discrete space. Here, ΓD = {0, 2} and P
N+1 denotes the space of

polynomials of degree N + 1 (note that dim(XN ) = N due to the Dirichlet
boundary conditions).

We shall also consider the dual problem: Find ψ ∈ H1
0 such that

a(v, ψ) = −a(v, v⋆), ∀v ∈ H1
0 . (12)

The spectral discretisation of (12) reads: Find ψN ∈ XN such that

a(v, ψN ) = −a(v, v⋆), ∀v ∈ XN . (13)

Note that the linear functional part of lout, which is bounded, enters on
the right hand side in the dual problem (with a minus sign). Thus, v⋆

also plays the role of a Dirichlet lifting function for the dual problem, with
Dirichlet data equal to unity on Γ0

D (i.e. at x = 2). Also note that the
dual problem exhibits no (singular) source term. Provided v⋆ is smooth
(deliberately choosing v⋆ singular seems somewhat peculiar), we expect ψ to
be a smooth function and thus the convergence of ψN to ψ to be of infinite
order.

We are interested in the errors in the output of interest, which we define
for each of our two output functionals as

ẽN ,out ≡

∣
∣
∣
∣

∂u

∂x

∣
∣
x=2

− l̃out(uN )

∣
∣
∣
∣
, (14)

and

eN ,out ≡

∣
∣
∣
∣

∂u

∂x

∣
∣
x=2

− lout(uN )

∣
∣
∣
∣
=

∣
∣
∣
∣
lout(u) − lout(uN )

∣
∣
∣
∣
, (15)

4



N

E
rr

o
rs
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Figure 1: Energy error (×) and output errors eN ,out (△) and ẽN ,out (◦) for
increasing polynomial degree, N , of the underlying numerical solution.

respectively. For eN ,out, we deduce that

eN ,out = |a(u− uN , v⋆)|

= |a(u− uN , ψ)|

= |a(u− uN , ψ − ψN )|

≤ ‖u− uN ‖‖ψ − ψN ‖, (16)

by using the definition of eN ,out, the fact that uN −u ∈ H1
0 and the definition

of the dual problem (12), Galerkin orthogonality of u−uN and the Cauchy-
Schwarz inequality, respectively. Here, ‖·‖ =

√

a(·, ·) denotes the energy
norm. A consequence of this estimate is that if ψ happens to be a smooth
function, eN ,out will decay exponentially with N , even if u is singular. Note
that in practice, we never actually compute the discrete solution ψN to the
dual problem.

In Figure 1, we plot the energy norm error ‖u − uN ‖ and the output
errors ẽN ,out and eN ,out for 1 ≤ N ≤ 50. As our flux lifting function, we
have made the choice v⋆ = x/2. As expected, the error ‖u − uN ‖ decays
algebraically, while eN ,out decays at an infinite rate due to the smoothness
of ψ. We note that for our simple one-dimensional problem, ẽN ,out decays
as fast as the error ‖u− uN ‖.

Let us make a few remarks concerning the above results. Firstly, since
q(x) = x2/3 is not a smooth function over Ω, the integrand on the right hand
side of the primal problem is singular. As a result, we must make sure that
we compute the integral f(v) with sufficient accuracy in order to maintain
the exponential convergence of the output. Otherwise, uN would carry an
additional numerical integration error compromising Galerkin orthogonality,
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which we exploited in the error bound (16). In our numerical experiment,
we have computed the integral f(v) using Gauss-Lobatto-Legendre (GLL)
quadrature [4] over nq ≫ N + 1 quadrature points.

Secondly, we would expect similar results were we to use a linear finite
element method. In fact, if uh denotes a linear FE approximation to u on
a mesh with elements of size h, we would from standard error estimates
[13] expect convergence of order O(h2) for the output lout(uh), and of order
O(h) for the energy norm ‖u − uh‖ (note that for our particular problem,
the singularity in u is weak enough that full linear convergence is achieved).
Based on the preceeding results, we would also expect convergence of order
O(h) for the output l̃out(uh). Indeed, such results are presented in [5] for a
very similar example as the one discussed above.

Thirdly, as noted in [2], any two choices of v⋆ ∈ (V ⋆ ∩ X̃N ) produce
the same result for lout(uN ). To see this, let v⋆

1, v
⋆
2 ∈ (V ⋆ ∩ X̃N ). Then

w⋆ = v⋆
1 − v⋆

2 ∈ XN , and

[
a(uN , v⋆

1) − l(v⋆
1)

]
−

[
a(uN , v⋆

2) − l(v⋆
2)

]
= a(uN , w⋆) − l(w⋆) = 0, (17)

by (10). A convenient choice for v⋆, then, is the function that is equal to
unity at the node at x = 2 and equal to zero at every other node (or, in the
low-order finite element case, the function that is equal to unity at x = 2
with support only on the element adjacent to the boundary). For this reason,
we do not specifically emphasise our choice for v⋆ when considering outputs
from FE approximations.

In the next section, we turn our focus to flux integral outputs in the
Reduced Basis context.

3 Flux Output Evaluation within the Reduced Ba-

sis Framework

3.1 Reduced basis formulation

Within the reduced basis (RB) framework, one is interested in the solution
of parameterised PDE’s, and the corresponding outputs of interest, in the
“real time” or “many query” situation [14]. The underlying PDE is configured
by one or more parameters, governing e.g. boundary conditions, material or
geometrical properties, or loads. Given any parameter vector µ ∈ D, where
D ⊂ R

P is some admissible parameter domain, we consider the parameterised
problem on a domain Ω: Find u(µ) ∈ X such that

a(u(µ), v; µ) = f(v;µ), ∀v ∈ X, (18)

where a(·, ·; µ) is a µ-dependent affine, coercive and continuous bilinear form
originating from a second-order differential operator, and f(·;µ) is a µ-
dependent affine, linear and bounded functional (in addition, we still assume
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for simplicity that a(·, ·;µ) is symmetric). By affine, we here understand
that, for all v, w ∈ X, we may expand a(v, w;µ) and f(v;µ) as

a(v, w;µ) =

Qa∑

q=1

aq(v, w)Θq
a(µ), f(v; µ) =

Qf∑

q=1

f q(v)Θq
f (µ), (19)

for finite numbers Qa and Qf , where the aq and f q are parameter indepen-
dent bilinear and linear forms, respectively, and the Θq

a and Θq
f are parameter

dependent functions.
We still impose homogeneous Dirichlet boundary conditions on ΓD ⊂ ∂Ω,

and take as our exact output of interest the flux integral

s̃(µ) =

∫

Γ0
D

∂u(µ)

∂n
ds, (20)

where Γ0
D ⊆ ΓD.

Next, we define a “truth” finite element discretisation of (18) as: For
µ ∈ D, find uN (µ) ∈ XN such that

a(uN (µ), v;µ) = f(v;µ), ∀v ∈ XN . (21)

By the appellation “truth”, we here understand that N is chosen large enough
that we cannot practically distinguish between the finite element solution,
uN (µ), and the exact solution, u(µ). Correspondingly, our “truth” output
of interest is

sN (µ) ≡ lout(uN (µ);µ) ≡ a(uN (µ), v⋆;µ) − f(v⋆; µ). (22)

Given a set of N wisely selected [14] parameter vectors µ1,µ2, . . . ,µN ∈
D, we define our RB approximation space as

XN = span{uN (µ1), . . . , u
N (µN )}. (23)

The reduced basis problem now becomes: Given µ ∈ D, find uN (µ) ∈ XN

such that

a(uN (µ), v;µ) = f(v; µ), ∀v ∈ XN , (24)

and evaluate the RB flux integral output

sN (µ) ≡ lout(uN (µ);µ) = a(uN (µ), v⋆;µ) − f(v⋆;µ). (25)

Note that we have assumed evaluation of the “truth” and RB flux integral
outputs in (22) and (25), respectively, by using a flux lifting function v⋆ ∈ V ⋆,
although we have not yet made any particular choice for v⋆.

Of interest within the RB context is the concept of a compliant prob-
lem. A problem is said to be compliant if, for all µ ∈ D, i) the output
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functional lout(·;µ) (more generally, in the case of lout(·;µ) affine, the linear
functional part of lout(·;µ)) is equal to the right-hand-side f(·; µ) of (18),
and ii) a(·, ·;µ) is symmetric. In the compliant case, the error in the RB
output of interest is equal to the square of the energy-norm error of the
primary field variable [14].

In our case, lout(·;µ) as defined above is a non-compliant output func-
tional since its linear functional part a(·, v⋆; µ) is, in general different from
the right-hand-side f(·; µ) of (18), and that it is, strictly speaking, not lin-
ear, but affine, due to the translation term f(v⋆;µ). We make a comment in
Section 4 on a very particular case in which lout(·;µ) is, in fact, compliant.

Due to the assumptions (19) on affinity (in functions of µ), a desirable
offline-online computational approach for uN and sN may straightforwardly
be developed [14]. The offline stage, which is performed only once, is com-
putationally very costly, whereas the online stage – in which, given any new
µ ∈ D, the RB solution uN (µ) and RB output of interest sN (µ) are com-
puted – is very fast. In particular, the computational complexity of the online
stage is independent of N , the number of degrees of freedom associated with
the “truth” approximations uN (µn), 1 ≤ n ≤ N .

Finally, we also define the now parameter dependent “energy” norm

‖·‖µ ≡
√

a(·, ·;µ), (26)

and the equivalent parameter-independent X-norm

‖·‖X ≡
√

a(·, ·; µ̄), (27)

where µ̄ ∈ D is some fixed, preselected reference parameter.

3.2 Relevance of the flux lifting function

In Section 2, we saw that any two choices for v⋆ belonging to (V ⋆ ∩ X̃N )
produced the same output lout(uN ) within a standard FE framework. This is
of course a consequence of the richness and generality of the FE space, XN .
Within the RB framework however, the choice of flux lifting function does
affect the numerical value of the output. To see this, let v⋆

1, v
⋆
2 ∈ (V ⋆ ∩ X̃N ),

and define w⋆ ≡ v⋆
1 − v⋆

2. To emphasise a particular choice for v⋆, we write

sN (µ; v⋆) ≡ a(uN (µ), v⋆; µ) − f(v⋆;µ). (28)

Hence, the outputs corresponding to v⋆
1 and v⋆

2 are given by

sN (µ; v⋆
1) = a(uN (µ), v⋆

1; µ) − f(v⋆
1;µ), (29)

sN (µ; v⋆
2) = a(uN (µ), v⋆

2;µ) − f(v⋆
2;µ), (30)
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respectively. But then,

sN (µ; v⋆
1) − sN (µ; v⋆

2) = a(uN (µ), v⋆
1;µ) − f(v⋆

1;µ)

−
(
a(uN (µ), v⋆

2;µ) − f(v⋆
2; µ)

)

= a(uN (µ), w⋆;µ) − f(w⋆; µ), (31)

which by (24) is equal to zero for all w⋆ ∈ XN . However, for an arbitrary
w⋆ ∈ XN , a(uN (µ), w⋆;µ) − f(w⋆; µ) is nonzero. Otherwise, uN (µ) would
have been identical to uN (µ), which is provably not the case for a general
µ ∈ D. In conclusion, the two evaluations sN (µ, v⋆

1) and sN (µ, v⋆
2) are not in

general equivalent (unless v⋆
1 −v

⋆
2 happens to belong to XN ). Naturally, this

raises the question of which v⋆ we should choose within the RB framework.

3.3 A posteriori error estimation

Before we proceed to our actual choices for “good” RB flux lifting functions,
we shall consider the a posteriori error upper bound associated with the
output sN (µ). To arrive at such a bound, we first require a bound for the
error in the field variable. We assume that we have available a lower bound
αLB(µ) > 0 for the coercivity constant of a(·, ·;µ) with respect to the X-
norm, i.e., for all µ ∈ D,

αLB(µ) ≤ α(µ) = inf
v∈XN

a(v, v;µ)

‖v‖2
X

. (32)

We also define the residual

rN (v;µ) ≡ f(v;µ) − a(uN (µ), v; µ) (33)

for all v ∈ X. Then, it can be shown that

‖uN (µ) − uN (µ)‖µ ≤
‖êNN (µ)‖X

(
αLB(µ)

)1/2
≡ ∆N (µ), (34)

where êNN (µ) belongs to XN and satisfies a(êNN (µ), v; µ̄) = rN (v;µ) for all
v ∈ XN . Thus, ‖êNN (µ)‖X = supv∈XN (rN (v; µ)/‖v‖X) is the dual norm
of the residual. Again, due to the affinity assumptions (19), an efficient
offline-online computational approach for ∆N (µ) can be developed. For a
proof of (34) and a detailed derivation of the corresponding computational
procedure, we refer to [14].

Now, we let X̃N ⊃ XN be a discrete FE space identical to XN except
for the restriction on its members vanishing on Γ0

D. Then we let ψN (µ) ∈
(V ⋆ ∩ X̃N ) be the solution of the problem

a(v, ψN (µ);µ) = 0, ∀v ∈ XN . (35)
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Note that since ψN (µ) ∈ (V ⋆ ∩ X̃N ), we impose the essential Dirichlet
condition ψN |Γ0

D
(µ) = 1.

Next, if we choose any v⋆ ∈ (V ⋆ ∩ X̃N ), our “truth output” – to which
the RB output will be compared – is given from (22) as

sN (µ) = a(uN (µ), v⋆;µ) − f(v⋆;µ), (36)

and we obtain the error estimate

|sN (µ) − sN (µ; v⋆)| = |a(uN (µ), v⋆;µ) − a(uN (µ), v⋆; µ)|

= |a(eN (µ), v⋆;µ)|

= |a(eN (µ), v⋆ − ψN (µ);µ)|

≤ ‖eN (µ)‖µ‖v
⋆ − ψN (µ)‖µ, (37)

by using the fact that eN (µ) = uN (µ) − uN (µ) ∈ XN , that ψN (µ) and
eN (µ) are orthogonal, and the Cauchy-Schwarz inequality. Thus, |sN (µ) −
sN (µ; v⋆)| ≤ ∆N (µ)‖v⋆ − ψN (µ)‖µ, and a good v⋆ is also a good approxi-
mation to ψN (µ), making the term ‖v⋆ − ψN (µ)‖µ small.

To bound the term ‖v⋆ − ψN (µ)‖µ, we view v⋆ as an approximation to
ψN , and define the residual rv⋆(µ) ≡ −a(v⋆, v;µ). It can then be shown
that

‖v⋆ − ψN (µ)‖µ ≤
‖êNv⋆(µ)‖X

(
αLB(µ)

)1/2
≡ ∆v⋆(µ), (38)

where êNv⋆(µ) belongs to XN and solves a(êNv⋆(µ), v; µ̄) = rv⋆(v;µ) for all
v ∈ XN [14]. We thus arrive at

|sN (µ) − sN (µ; v⋆)| ≤ ∆N (µ)∆v⋆(µ) ≡ ∆out
N,v⋆(µ) (39)

as an upper bound for our output of interest.
Note that if we write ψN (µ) = ψN ,0(µ) +ψD, where ψD ∈ (V ⋆ ∩ X̃N ) is

some chosen Dirichlet lift, we can write (35) as: Given µ ∈ D, find ψN ,0(µ) ∈
XN such that

a(v, ψN ,0(µ);µ) = −a(v, ψD;µ), ∀v ∈ XN . (40)

Thus, if we choose ψD equal to v⋆, (40) is in fact the dual problem corre-
sponding to the primal problem (21) with the output functional lout(·;µ)
given in (22), since a(·, v⋆; µ) is the linear functional part of lout(·;µ). We
elaborate on this in Section 3.5.

3.4 “Good” flux lifting functions

We must keep two things in mind when choosing our flux lifting function v⋆.
Firstly, it is important that the term ‖v⋆ − ψN (µ)‖µ in the estimate (37) is

10



small. Secondly, we must make sure that the computational cost associated
with the computation of v⋆ is small in the RB online stage.

Note that actually solving (35) for every new µ and setting v⋆ = ψN (µ)
will result in a zero error in the RB output, but obviously also in an unaf-
fordable “truth FE complexity” online computational cost.

We next consider two alternative choices of “good” v⋆’s which both meet
the two requirements mentioned above.

3.4.1 Coarse finite element approximation

Our first choice is to construct a coarse finite element approximation to
ψN (µ). That is to say, we first find ψM(µ) ∈ (V ⋆∩ X̃M) ⊂ (V ⋆∩ X̃N ) such
that

a(v, ψM(µ);µ) = 0, ∀v ∈ XM, (41)

where the coarse FE space X̃M ⊂ X̃N has M ≪ N degrees of freedom. We
then choose v⋆ = ψM(µ) as our flux lifting function. In particular, M should
here be chosen small enough that it is affordable to compute ψM(µ) in the
RB online stage, without compromising the rapid online output evaluation.

Now, to bound the term ‖ψM(µ) − ψN (µ)‖µ, we use the result (38) to
arrive at ‖ψM(µ)−ψN (µ)‖µ ≤ ∆M(µ) (we here use M to indicate that the
v⋆ in (38) is now a coarse FE approximation to ψN (µ)). Then, we define
∆out

N,M(µ) ≡ ∆N (µ)∆M(µ), and conclude that for all µ ∈ D,

∣
∣sN (µ) − sN (µ;ψM(µ))

∣
∣ ≤ ∆out

N,M(µ). (42)

3.4.2 Reference parameter approximation

Alternatively, we may take v⋆ = ψN (µ̄) as our approximation of ψN (µ) for
any µ ∈ D. Thus, our v⋆ is the solution to (35) for the reference parameter,
which we precompute in the RB offline stage and reuse every time we evaluate
our output of interest, without any additional online cost.

From (38), an upper bound for the term ‖ψN (µ)−ψN (µ̄)‖µ is given by
∆µ̄(µ) (where we substitute µ̄ for v⋆ to remember our particular choice for
v⋆). We thus get

|sN (µ) − sN (µ;ψN (µ̄))| ≤ ∆N (µ)∆µ̄(µ) ≡ ∆out
N,µ̄(µ) (43)

as an upper bound for the output of interest.

3.5 Primal-dual RB approximation

Evidently, one way to approximate ψN (µ) is by way of a reduced basis
approximation ψM (µ). The RB problem corresponding to (40) (and (35))

11



reads: Find ψ0
M (µ) ∈ Xdu

M such that

a(v, ψ0
M (µ);µ) = −a(v, ψD;µ), ∀v ∈ Xdu

M , (44)

and set ψM (µ) = ψ0
M (µ) +ψD. Here, Xdu

M denotes the RB dual approxima-
tion space, given by

Xdu
M = span{ψN (µm) − ψD}M

m=1, (45)

where the ψN (µm) are snapshots taken of ψN at M different points in pa-
rameter space. In fact, the formulation of the two problems (24) and (44),
together with the output of interest given in (25), corresponds to a standard
RB primal-dual formulation [12, 14], which is the standard way of speeding
up the convergence of general non-compliant problems. Let us spend a few
lines elaborating on this.

First, we choose a v⋆ ∈ (V ⋆ ∩ X̃N ) and let ψD = v⋆. The standard
“dual-corrected” RB output reads

ŝM,N (µ) ≡ sN (µ;ψD) − rN (ψ0
M (µ);µ), (46)

where rN (v;µ) = f(v; µ)−a(uN (µ), v;µ)
)

is the primal residual and ψ0
M (µ)

is the homogeneous part of the solution to (44). In the below expression, we
drop the argument µ of functions in all intermediate steps for brevity. With
eN (µ) = uN (µ) − uN (µ), we see that

|sN (µ) − ŝM,N (µ)| = |sN (µ) − sN (µ;ψD) + rN (ψ0
M ;µ)|

= |a(eN , ψ
D;µ) + rN (ψ0

M ;µ)|

= |a(eN , ψ
N ,0;µ) − rN (ψ0

M ;µ)|

= |a(eN , ψ
N ,0;µ) − a(uN , ψ

0
M ;µ) + f(ψ0

M ;µ)|

= |a(eN , ψ
N ,0;µ) − a(uN , ψ

0
M ;µ) + a(uN , ψ0

M ;µ)|

= |a(eN , ψ
N ,0 − ψ0

M ;µ)|

≤ ‖eN‖µ(µ)‖ψN ,0(µ) − ψ0
M (µ)‖µ, (47)

where we in the first step use the arbitrarity (up to functions in (V ⋆ ∩
X̃N )) of the flux lifting function for the “truth” output, and thus sN (µ) −
ŝM,N (µ;ψD) = a(eN (µ), ψD;µ) is precisely the right-hand-side of (40) for
v = −eN (µ). Hence, if we solve the RB primal and dual problems in parallel
with M ≈ N , we get a quadratic effect in the convergence of the output of
interest.

Next, it is straightforward to deduce that ŝM,N (µ) = sN (µ;ψM (µ)),
i.e., that these two output evaluations are equivalent. We start with the
expression (46), and then appeal to the (bi)linearity of a(·, ·;µ) and f(·,µ).

12



Again, we drop the µ-dependence of functions for typesetting convenience:

ŝM,N (µ) = sN (µ;ψD) − rN (ψ0
M ;µ)

= a(uN ;ψD;µ) + a(uN , ψ
0
M ; µ) − f(ψD; µ) − f(ψ0

M ;µ)

= a(uN ;ψD + ψ0
M ) − f(ψD + ψ0

M ; µ)

= sN (µ;ψM ). (48)

In other words, the standard dual-corrected output with v⋆ = ψD produces
the same result as the non-corrected output with v⋆ = ψM (µ). Thus, for
flux integral outputs, the standard RB primal-dual approximation framework
may be viewed as a technique for improving upon any initial choice made
for v⋆. Hence, we recognise v⋆ as the Dirichlet lifting function for the dual
problem.

Up to this point, we have only considered a single output of interest.
Surely, it could in a practical application be desirable to evaluate several
outputs of interest, all being functionals of the solution of the same under-
lying PDE. For example, we might want the flux through K distinct parts
Γ0

D,Γ
1
D, . . . ,Γ

K−1
D of the boundary, resulting in K different output function-

als and thus in turn K different dual problems. Of coarse, in the case of
multiple outputs, no more than one can be compliant.

When K is small, solving the primal and dual problems in parallel with
(say) M ≈ N basis functions may drastically reduce the RB output error(s)
and error bound(s). However, for many outputs (large K), online computa-
tion of the solution to every corresponding dual problem (when M ≈ N) may
be impracticable – O(N3) and O(M3) operations are required for direct com-
putation of the solutions to the primal and dual RB problems, respectively –
and we are thus forced to trade numerical accuracy for computational speed.
In this situation, choosing good flux lifting functions seems important. On
the other hand, if we do proceed with RB approximations to the solution(s)
to the dual problem(s) as well, making good choices for the dual Dirichlet
liftings would surely be of interest (obviously, ψD = ψN (µ) would be the
optimal, though an impractical, choice).

3.6 Computational approach for output evaluation

In the RB online stage, and without regard to our particular choice for v⋆,
we need to compute

sN (µ) = lout(uN (µ)) = a(uN (µ), v⋆; µ) − f(v⋆;µ), (49)

once the RB solution coefficients are obtained. Note that also when we
pursue a primal-dual approximation, we are still left with an evaluation on
this form, due to the result (48).

Since, for µ ∈ D, a(·, ·; µ) and f(·; µ) are linear and, by assumption,
affine, lout(·;µ) will also be linear and affine (i.e., affine in functions of µ).

13



Hence, we can compute the RB output at an additional computational cost
of O(N) operations. To see this, we write a(v, w; µ) and f(v;µ) in their
affine expansions (19) as

a(v, w;µ) =

Qa∑

q=1

aq(v, w)Θq
a(µ), f(v;µ) =

Qf∑

q=1

f q(v)Θq
f (µ), (50)

for any v, w ∈ X. With uN (µ) =
∑N

n=1 uN,n(µ)ζn, where the ζn are the
orthogonalised RB basis functions (in order to get a reduced system of equa-
tions that is well conditioned, the basis functions uN (µn), 1 ≤ n ≤ N , are
orthogonalised with respect to the norm ‖·‖X , c.f. [14]) and uN,n(µ) are the
RB solution coefficients, we get

lout(uN (µ)) =

Qa∑

q=1

aq(uN (µ), v⋆)Θq
a(µ) −

Qf∑

q=1

f q(v⋆)Θq
f (µ)

=
N∑

n=1

uN,n(µ)

Qa∑

q=1

aq(ζn, v
⋆)Θq

a(µ) −

Qf∑

q=1

f q(v⋆)Θq
f (µ), (51)

which is a QaN + Qf operations summation, assuming that the values
aq(ζn, v

⋆), 1 ≤ q ≤ Qa, and f q(v⋆), 1 ≤ q ≤ Qf are precomputed in the
RB offline stage, and that the function values Θq

a(µ) and Θq
f (µ) are readily

computable.
In the more general case of a non-affine problem, we can construct affine

expansions that are good approximations of a(·, ·; µ) and f(·;µ) for any
µ ∈ D by invoking the empirical interpolation method [3, 8]. In this case,
the computational cost for output evaluation is still only O(N) in the RB
online stage, but for a slightly modified problem.

4 An Illustrative Example

4.1 Problem formulation

We consider the electrostatic potential u inside a square domain Ω which
contains an “insulating” anomaly, Ωan, as depicted in Figure 2. Attached to
the boundary of Ω, ∂Ω, are four electrodes, which constitute the Dirichlet
boundary ΓD ≡ Γsouth∪Γnorth∪Γeast∪Γwest. Here, the electrostatic potential
is prescribed as

u =

{

1, on Γsouth,

0, on Γnorth ∪ Γeast ∪ Γwest.
(52)

14



Γsouth

Γeast

Γnorth

Γwest

ΓN

Ω
Ωbg

Ωan

Figure 2: Physical domain Ω with an electrode attached to each edge.

On the Neumann boundary, ΓN ≡ ∂Ω \ ΓD, we assume electrostatic insula-
tion, i.e.

∂u

∂n
= 0, on ΓN. (53)

We define the “background material” as Ωbg ≡ Ω \Ωan. The electric permit-
tivity, ǫ, inside Ω is given as

ǫ ≡

{

ǫbg ≡ 1, in Ωbg,

ǫan ≡ 0.1, in Ωan.
(54)

Finally, in Ωbg ∪ Ωan, the electrostatic potential is governed by the Laplace
equation,

−∆u = 0. (55)

Our problem is parameterised by the parameter vector µ ≡ (µ1, µ2) ∈
D ⊂ Ω, which determines the centre of Ωan. Hence, our domains are
parameter-dependent. For typesetting convenience however, we do not ex-
plicitly denote this dependence in formulas. Now, with the boundary condi-
tions (52) and (53), together with the assumption of flux continuity on the
interior boundary and global continuity of the solution, the parametric weak
form of our problem reads: Given µ ∈ D and a lifting uD of the Dirichlet
data (52), find u0(µ) ∈ X such that

a(u(µ), v;µ) = 0, ∀v ∈ X, (56)

where u(µ) = u0(µ) + uD,

a(u, v;µ) = ǫbg

∫

Ωbg

∇u · ∇v dΩ + ǫan

∫

Ωan

∇u · ∇v dΩ (57)
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(3, 3)

1

0.6

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7
Ω8

Ω9

µ

Figure 3: Decomposition of the physical domain into nine (deformed square)
spectral elements.

and X = {v ∈ H1 : v|ΓD
= 0}.

Finally, we are interested in evaluating the accumulated charge (capaci-
tance) on the eastern electrode, given by the flux integral

s̃(µ) ≡ −ǫbg

∫

Γeast

∂u(µ)

∂n
ds. (58)

4.2 RB treatment

In order to compute a good set of “truth” snapshots upon which to build our
RB approximations, we start our RB treatment by a standard discretisation
of (56). To this end, we use a spectral element method based on high order
polynomials [10]. Our domain is decomposed into nine spectral elements, as
depicted in Figure 3, and we rewrite our problem in terms of the reference
variables (ξ, η) on the reference domain Ω̂ ≡ (−1, 1)2 via standard transfinite
mappings Fi : Ωi → Ω̂ [7]. We may thus write

a(u, v;µ) =

9∑

i=1

ǫi

∫

Ω̂
(∇̂û)TGi(µ)∇̂v̂ dΩ̂, (59)

where v̂i(ξ, η) ≡ v(x, y)|Ωi
◦ Fi, and the Gi are parametric and spatial de-

pendent 2 × 2 matrices comprising geometrical factors.
As our discrete “truth” spaces, we define

XN ≡ {v ∈ H1(Ω) : v|ΓD
= 0, v̂i ∈ PP (Ω̂), 1 ≤ i ≤ 9}, (60)

X̃N ≡ {v ∈ H1(Ω) : v|ΓD\Γeast
= 0, v̂i ∈ PP (Ω̂), 1 ≤ i ≤ 9}, (61)

where PP (Ω̂) denotes the space of polynomials of degree P in each direction
over Ω̂. As basis functions for XN , we use the Lagrange polynomials over
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the (P + 1)2 tensorised GLL nodes [4]. As N = dim(XN ), we note that
N ∼ P 2.

Our “truth” problem is thus: Given µ ∈ D, find uN ,0(µ) ∈ XN such that

a(uN (µ), v;µ) = 0, ∀v ∈ XN , (62)

where uN (µ) = uN ,0(µ) + uD and uD is some chosen lifting of the Dirichlet
data (52). As our “truth” output of interest, we take

sN (µ) = lout(uN (µ)) = a(uN (µ), v⋆;µ), (63)

for any v⋆ ∈ (V ⋆ ∩ X̃N ), where now

V ⋆ ≡ {v ∈ H1 : v|ΓD\Γeast
= 0, v|Γeast

= 1}. (64)

In (63), we have omitted the minus sign (that appeared in (58) since the
capacitance is positive by definition). Also note that for the “truth” problem,
any two v⋆ ∈ (V ⋆ ∩ X̃N ) will produce the same numerical output, as we saw
in Section 2.

Our RB problem reads, with the Dirichlet lifting term moved to the
right-hand-side, as follows: Given µ ∈ D, find u0

N (µ) ∈ XN such that

a(u0
N (µ), v;µ) = −a(uD, v;µ), ∀v ∈ XN , (65)

and set uN (µ) = u0
N (µ) + uD. We then evaluate our output of interest as

sN (µ; v⋆) ≡ a(uN (µ), v⋆;µ), (66)

where we choose v⋆ ∈ (V ⋆ ∩ X̃N ). For 1 ≤ N ≤ Nmax, our RB spaces are
defined as

XN ≡ span{uN0 (µn)}N
n=1, (67)

where the µn are chosen greedily based on a posteriori upper bounds ∆N (µ)
for the energy errors ‖uN ,0(µ) − u0

N (µ)‖µ, 1 ≤ N ≤ Nmax [14].
Once a coercivity lower bound αLB(µ) is established, we can compute

an energy-norm error bound ∆N (µ) and output error bounds ∆out
N,M(µ) and

∆out
N,µ̄(µ) as described above (c.f. Sections 3.3, 3.4.1 and 3.4.2). In fact, if we

let σk(µ) denote the set of eigenvalues of the matrix Gk(µ) of geometrical
factors, 1 ≤ k ≤ 9, and define

λ−(µ) ≡ min
(ξ,η)∈Ω̂
1≤k≤9

σk(ξ, η; µ), λ+(µ) ≡ max
(ξ,η)∈Ω̂
1≤k≤9

σk(ξ, η;µ), (68)

it can be shown [6] that a coercivity lower bound for our particular problem
is given by

αLB(µ) =
λ−(µ)

λ+(µ̄)
. (69)
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We make a remark here that the maximum and minimum of the σk(·, ·; µ)
are in practice realised over the tensorised GLL nodes.

Unfortunately, the elements of the matrices Gk will be such that a does
not admit an affine expansion as in (19). For this reason the computations
do not immediately decouple to offline and online stages. However, as com-
mented in the previous section, the empirical interpolation method provides
means to this end [3, 8]. In fact, we can make the empirical interpolation
error negligible if we make sure to include enough terms in the approximate
affine expansion of a. Moreover, the additional term in the a posteriori error
estimators that accounts for the empirical interpolation error (see [3, 11])
will vanish as the interpolation error goes to zero. Hence, under the as-
sumption of a negligible interpolation error, the estimators above are still
valid. However, in the numerical tests that follow, we have chosen to not
use an offline-online decoupling approach, since this is not critical for our
conclusions.

4.3 Numerical results

Define the RB output error

eout
N (µ; v⋆) ≡ |sN (µ; v⋆) − sN (µ)|. (70)

For v⋆ ∈ (V ⋆ ∩ X̃N ), we shall make use of three different functions: The ref-
erence parameter approximation ψN (µ̄) discussed in 3.4.2, the coarse finite
element approximation ψM2(µ) discussed in 3.4.1, which corresponds to the
solution of (41) using polynomials of second degree as basis functions, and a
“naive” choice, v⋆

naive, given as

v⋆
naive ≡

{

1, on Γeast,

0, at every other GLL node.
(71)

Note that in a spectral element context, the naive choice would be the natural
and computationally convenient choice to make for v⋆.

We also introduce a test sample Ξtest ⊂ D consisting of 200 randomly
distributed points.

In Figure 4, we plot the maximum (to the left) and mean (to the right)
of the output errors eout

N (µ;ψN (µ̄)), eout
N (µ;ψM2(µ)) and eout

N (µ; v⋆
naive) over

all µ ∈ Ξtest as a function of the number reduced basis functions, N . We
conclude that the two “good” choices for v⋆ in general perform about an
order of magnitude better than the naive choice.

Next, for all µ ∈ Ξtest, and for the particular case of N = 25, we compute
the effectivity associated with our output error estimator ∆out

N,µ̄, defined as

νout
N,µ̄(µ) ≡

∆out
N,µ̄(µ)

eout
N (µ;ψN (µ̄))

. (72)
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Figure 5: Output error bound effectivity νout

N,µ̄(µ) for all µ ∈ Ξtest for N = 25 (in
no particular order).
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Associated with the other two choices for v⋆, we define the effectivities
νout

N,M2
(µ) and νout

N,v⋆
naive

(µ) in a similar way. For most µ ∈ Ξtest, the ef-

fectivity νout
N,µ̄(µ) is in the range O(100) < νout

N,µ̄(µ) < O(1000), as shown

in Figure 5. For the other two effectivities, νout
N,M2

(µ) and νout
N,v⋆

naive
(µ), the

results are similar (not shown). We also find that, for most µ ∈ Ξtest,
νout

N,M2
(µ) < νout

N,µ̄(µ) < νout
N,v⋆

naive
(µ). This is, however, not generally true for

other choices of N .
The reason for the output error estimators being rather conservative is

the large “angle” between the error of the primal problem, uN (µ) − uN (µ),
and the error of the dual problem, ψN (µ̄) − ψN (µ). Thus, the Cauchy-
Schwarz inequality, used in (37), becomes unsharp. This point is readily
verified for the estimator ∆out

N,µ̄ by separate computation of the effectivities
associated with the estimators ∆N (µ) and ∆µ̄(µ) for the primal and dual
problems, respectively, which are indeed close to unity (of course, the same
argument works for the other estimators as well). For N = 25, we find

max
µ∈Ξtest

∆N (µ)

‖uN (µ) − uN (µ)‖µ

≈ 2.68 (73)

and (irrespective of N)

max
µ∈Ξtest

∆µ̄(µ)

‖ψN (µ̄) − ψN (µ)‖µ

≈ 2.94. (74)

Hence, we do have a quite sharp bound for the right hand side of (37) for
all µ ∈ Ξtest, and the unsharpness of the RB output error bound must
be ascribed to the Cauchy-Schwarz inequality. Another implication of the
sharpness of the individual error bounds is that our coercivity lower bound,
αLB(µ), must be very sharp for all µ ∈ Ξtest.

4.4 A note on a special compliant problem

For the Laplace equation (55), the corresponding bilinear form a(·, ·;µ) is
symmetric, and the only term that enters on the right-hand-side in the weak
formulation, e.g. (65), is the Dirichlet lifting term −a(uD, v;µ). Now, in the
very special case that we would like to evaluate the flux integral output over
the same electrode on which a unity potential was imposed, we may choose
v⋆ = uD as the flux lifting function. In this case, our RB output of interest
is sN (µ;uD) = a(uN (µ), uD;µ). With eN (µ) = uN (µ) − uN (µ), we get

|sN (µ) − sN (µ;uD)| = |a(eN (µ), uD;µ)|

= |a(uD, eN (µ);µ)|

= |a(uN (µ), eN (µ);µ)|

= |a(eN (µ), eN (µ);µ)| = ‖eN (µ)‖2
µ
, (75)
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where we use the symmetry of a(·, ·;µ), then (56) and the fact that eN (µ) ∈
XN , and finally again symmetry of a(·, ·;µ) and Galerkin orthogonality.
Hence, the RB output error converges quadratically with the energy-norm
error without any simultaneous primal-dual treatment.

In the multi-electrode case, it is of little practical interest to evaluate
the capacitance over the electrode with unity Dirichlet data, since this eval-
uation would only yield the total capacitance, as if we were to sum up the
capacitances between the selected electrode and each of the other electrodes.
However, for the sake of argument, suppose our system consists of only two
electrodes. Then the exact output over one of the electrodes is equal to the
exact output over the other, with a minus sign. We can thus choose to eval-
uate the output over the electrode with unity Dirichlet data (and multiply
by (−1)).

We emphasise again that this compliant effect is restricted to the special
case in which f = 0, the unity Dirichlet input electrode coincides with the
output electrode and a(·, ·;µ) is symmetric.

We end this section referring to [6], where the numerical example dis-
cussed in this section is extended to incorporate three outputs (specifically,
the capacitances between the south electrode, Γsouth, and each of the other
electrodes, Γeast, Γnorth and Γwest). Also, several symmetries of the problem
are exploited, which we have not done in this paper for the sake of simplicity
of exposition.

5 Concluding Remarks

We have shown that the flux lifting function v⋆ should be chosen with care
when evaluating flux integral outputs from reduced basis approximations.
Our two different proposals for a “good” v⋆ have been seen to give better
results (a smaller output error) than a naive v⋆ in a simple (Laplace equation)
numerical example. We note that the naive v⋆ would have performed equally
well as the “good” ones within a standard finite element context, due to the
richness of the FE approximation space (in fact, the naive choice is convenient
in terms of implementation, and is thus often used in practice for the FE
method).

In the case of many (flux integral) outputs of interest that are all function-
als of the same RB solution, a standard primal-dual error reduction technique
may become too expensive. In this case, choosing a good v⋆ is important to
make sure that the RB (primal only) output error is not unnecessarily large.
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