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Preface

This report is written as part of the mandatory project in my 9th semester of the Master's
degree programme within Industrial Mathematics at NTNU, Trondheim. The topic is
part of the Gala project1, which is a speci�c targeted research project within NEST (new
and emerging science and technology) activity of the 6th framework programme of the
European Union.
During this work, my interests within the topic have grown. Many hours have been spent

doing research, and many late nights have been spent in front of the computer, implement-
ing the codes. The interested reader can �nd the (not well-documented) MATLABTM-
source codes in [14].
In the beginning of October this year, a guest lecture at NTNU was held by one of the

authors of my main referred paper, Prof. Giovanna Citti. In addition to Prof. Citti, I
would like to thank Prof. Elena Celledoni and Ass. Prof. David Cohen for the following
discussions regarding this subject, which was an inspiration in the initial phase of my
project.
Last, but not least, I want to thank my supervisor Prof. Brynjulf Owren for helpful

ideas and inspirational discussions throughout this semester.

TRONDHEIM, December 2008
Per Martin Viddal

1Sub-Riemannian geometric analysis in Lie groups, �http://www.gala.unibo.it/�.
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A preliminary study of the paper �A Cortical Based Model of Perceptual
Completion in the Roto-Translational Space� by G. Citti and A. Sarti [3] is
done. The model completes images according to how the area V1 of the visual
cortex functions, and the space in which the completion is performed, is the
three-dimensional image-oriented manifold.
Various aspects of the model are discussed, including Lie group theory. The

�rst part of the numerical scheme has been analyzed, and a restriction on the
time step for the forward Euler method is found.
The model is implemented, and various examples are presented.
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1 Introduction

The perceptual completion phenomenon refers to seeing a �gure as complete,
when parts of it contains missing information. Objects that are occluding other
objects, or when part of the image falls in a blind area of the visual �eld are
examples of missing information.
Image reconstruction has been widely studied in the past. Before the digi-

tal age, image reconstruction was done manually by painters, but today, when
computers and digital cameras have been a common property, numerous algo-
rithms have been proposed. Many algorithms are designed for noise removal,
but others can reconstruct large holes based on the image properties near the
hole. Popular ones, such as the Perona-Malik-equation [1], di�use the original
image, and result in noise removal and image enhancement.
Algorithms exploiting main phenomenological properties described by psy-

chology of Gestalt are also studied. This is classically achieved by minimizing
an elastica functional. In [2], the elastica functional∫

γ
|∇I|

(
1 +

∣∣∣∣div( ∇I

|∇I|

)∣∣∣∣p) dxdy, p > 1 (1)

has been minimized. I(x, y) is the function de�ning the image, p is a constant
and the integral is computed on the whole image domain. In images where
some object is blocking another object, this procedure will not maintain them
both. An example of such an image is shown in Fig. 1.

Figure 1: The two �shes of Kanizsa.

This image is an interesting example, since it has no clear depth ordering to
distinguish the objects from one another. Such images are di�cult to treat,
using numerical algorithms.
The objective of this work is to reproduce and extend some results in the pa-

per �A Cortical Based Model of Perceptual Completion in the Roto-Translational
Space� by G. Citti and A. Sarti [3]. This is a mathematical model based on
psychological and biological models to complete so-called subjective contours,
which arise when we look at, e.g., the �gure above. Further, their model has
the property of maintaining both occluded and occluding objects, by �lifting�
the image to three-dimensional space.
The report is organized as follows. Chapter 2 is an introduction to the

model, where the basic properties regarding the neuropsychological aspects are
introduced. In Chapter 3 we establish the mathematical foundation in Lie
group theory, needed to prove that the three-dimensional space the image is
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lifted to, is a Lie group. In Chapter 4, we derive and present the complete
mathematical model. Chapter 5 describes the numerical approximations used
in the calculations. It also includes a discussion of the boundary conditions, and
a numerical analysis regarding the stability of the �rst part of the numerical
scheme. Numerical results for some chosen images are presented in Chapter 6.



2 The model

The image in Figure 2 is named after the Italian psychologist Gaetano Kanizsa.

Figure 2: Kanizsa's triangle.

In the center of this �gure we perceive a white triangle, even though it is not
drawn. This e�ect is called subjective contours.
Other examples include objects that are occluding other objects, where our

�common sense� can �gure out the missing information. Figure 3 shows two
such examples.

Figure 3: Occluding and occluded objects.

On the left of Figure 3 we perceive the two black sections as one amodally
completed surface extending behind the gray occluder. On the right we also
have two objects, but the depth of the two objects is not obvious. The objects
are alternating on which is the modally completed (in front) and the amodally
completed object (in the back).
The last example has some of the same properties as �Kanizsa's �shes� shown

in Figure 1 in the introduction. This image shows two �shes that are blocking
each other, i.e., we have two objects that are both occluded and occluding at
the same time. If the two �shes were to be extracted from each other, this
would lead to a process that includes modal and amodal completion at the
same time.

2.1 Psychological and biological model

According to psychologists and biologists, information that is coming in through
our visual system is sent to an area in the back of our brain called the visual
cortex [4].
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2.1.1 V1 of the visual cortex

The visual cortex consists of several layers or areas, and the �rst one, called
V1, is where information is �rst processed. V1 is also the �rst place where one
�nds simple cells, and these cells alter their properties according to what input
arrives. Among these properties are direction, polarity and elongation [5]. We
are only going to model the direction-property of the simple cells.

2.1.2 Receptive �elds of simple cells

The simple cells of V1 present oriented receptive �elds and the orientation is
de�ned by the brightness gradients.

2.1.3 Association �elds

If an image contains missing information, our brain tries to complete this infor-
mation. This is done by actively �lling in the information based on the simple
cell properties. In regions where there is missing information, the cells direct
themselves based on the neighbouring cells. This is called local association
�elds [6].

Figure 4: An association �eld, from the experiments of Field, Hayes and Hess.

In Figure 4 we see an example of an association �eld. The neighbouring cells
of the cell in the center represent the missing information, and their directions
are restricted.

2.2 Mathematical model

2.2.1 Extract existing information

In this report we will only consider grayscale digital images, and such an image
de�nes a function:

I : (x, y) → R. (2)

Each discrete point, (xi, yi), in the image gives a number which represents the
gray-level.



Next, we extract the normal gradient direction at every point as follows:

∇I(x, y)
|∇I(x, y)|

= (− sin θ, cos θ) . (3)

This is how we model the function of the simple cells in V1, by extracting addi-
tional information. Note that the angle θ corresponds to the tangent direction
of the level lines of the image I.
We now lift the image to a surface in 3-dimensional space, (x, y, θ(x, y)),

which can be seen in Figure 5.

x

y

(a) Original image.

pi/4

pi/2

3pi/4

y
x

θ

(b) Lifted image.

Figure 5: Image lifted in the Roto-translational space.

In this manner the image is represented by a two-dimensional manifold in 3-
dimensional space. The 3-dimensional space is called Roto-translational space,
and is denoted R2 × S1, where S1 is the unit circle.
Note that in the representation in Figure 5(b), angles that di�er by π are

identi�ed. In this way, only one half of the unit circle is used, i.e., θ ∈ [0, π].
Later we will see that this procedure can be used in the numerical calculations,
but in the theoretical work we use the "whole" of S1.
If we look at the tangent vector to the level-lines of the image at a point on

the manifold, we note that this tangent vector lies in the plane spanned by the
vectors

~X1 = (cos θ, sin θ, 0),
~X2 = (0, 0, 1).

(4)

The directional derivatives, or the vector �elds, associated to the vectors
above are denoted

X1 = cos θ∂x + sin θ∂y,

X2 = ∂θ.
(5)
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pi/4

pi/2

3pi/4

x

y

θ

Figure 6: Visualization of the plane spanned by ~X1 and ~X2.

These vector �elds generates the Lie algebra of the Lie group R2 × S1, which
we will show later.
The vector �eld X1, which can be seen in Figure 7, is varying smoothly with

θ while X2 is constant.

0

pi/4

pi/2

3pi/4

y

x

θ

Figure 7: The vector �eld X1 is a function of θ.

2.2.2 Filling in the missing information

Di�usion

The image is now represented as a surface in three-dimensional space. The
second step in the model is a mechanism that propagates extracted information
in an orientation speci�c way, related to the association �elds discussed in



Section 2.1.3. In the mathematical sense, we now di�use over a certain time
interval with the vector �elds de�ned in Equation 5, from the initial surface.

�Non Maximal Suppression�

After the di�usion, the surface has expanded in the θ-direction due to the vector
�eld X2. Because of this, we need a concentration process to recover a surface.
This is achieved by de�ning a surface, Σ, so that the value of the function u
that we di�used will attain its maximum on this surface. The surface can be
expressed as

Σ = {(x, y, θ), ∂θu = 0, ∂2
θu < 0}. (6)

Combined process

The resulting algorithm is then alternating between these two processes, and
should allow us to complete missing information based on the geometry of the
Roto-translational space. As proved in [3], this procedure will converge to a
stationary surface, and no stopping-criterion has to be applied.
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3 Lie Groups

In this chapter, we are going to show that the Roto-translational space, R2×S1,
is a Lie group. To this aim, we need some de�nitions which are all collected
from [7].

3.1 Mathematical foundation

De�nition 1. A Lie group is a group G which also carries the structure of a

smooth manifold in such a way that both the group operation

m : G×G → G, m(g, h) = g · h, g, h ∈ G,

and the inversion

i : G → G, i(g) = g−1, g ∈ G,

are smooth maps between manifolds.

De�nition 2. Let C be a smooth curve on a manifold M, parameterized by

φ : I →M, where I is a subinterval of R. In local coordinates x = (x1, ..., xn),
C is given by n smooth functions φ(ε) = (φ1(ε), ..., φn(ε)) of the real variable ε.
At each point x = φ(ε) of C the curve has a tangent vector

v|x = φ̇(ε) = φ̇1(ε)
∂

∂x1
+ ... + φ̇n(ε)

∂

∂xn
.

De�nition 3. The collection of all possible tangent vectors to all possible curves

passing through a point x ∈M is called the tangent space to M at x, and is

denoted TM|x.

De�nition 4. A vector �eld v on M assigns a tangent vector v|x ∈ TM|x
to each point in M, with v|x varying smoothly from point to point.

De�nition 5. An integral curve of a vector �eld v is a smooth parameterized

curve x = φ(ε) whose tangent vector at any point coincide with the value of v
at the same point:

φ̇(ε) = v|φ(ε)

for all ε.

An integral curve from De�nition 5 is called a maximal integral curve if
it is not contained in any longer integral curve. I.e., if φ̃ : Ĩ → M is any
other integral curve with the same initial value φ̃(0) = φ(0), then Ĩ ⊂ I and
φ̃(ε) = φ(ε) for ε ∈ Ĩ.

De�nition 6. If v is a vector �eld, we denote the parameterized maximal inte-

gral curve passing through x ∈M by exp(ε, x) and call exp the �ow generated

by v.

De�nition 7. For two vector �elds v and w, their Lie bracket is de�ned

through their action on functions as

[v,w](f) = v(w(f))−w(v(f)).



De�nition 8. Let G be a Lie group. For any element g ∈ G, we de�ne the

left multiplication map Lg : G → G by

Lg(h) = g · h, ∀h ∈ G,

where · denotes the group operation in G.

De�nition 9. LetM be a smooth manifold, and F : M→M be a smooth map.

Each parameterized curve C = {φ(ε)} onM is mapped by F to a parameterized

curve C̃ = F (C) = {φ̃ = F (φ(ε))} in M. Thus F induces a map from the

tangent vector dφ̃/dε to C̃ at the image point F (x) = F (φ(ε)) = φ̃(ε). This

induced map is called the di�erential of F, and denoted by

dF (φ̇(ε)) =
d

dε
{F (φ(ε))}.

If the map F in De�nition 9 is one-to-one, the di�erential then maps the
tangent space to M at x to the tangent space to M at F (x):

dF : TM|x → TM|F (x).

Further, in local coordinates, the di�erential of F of a vector �eld v|x =∑n
i=1 ξi(x)∂/∂xi is

dF (v|x) =
n∑

i=1

 n∑
j=1

ξj ∂F i

∂xj
(x)

 ∂

∂xi
.

De�nition 10. A vector �eld v|x on G is called left-invariant if

dLg(v|x) = v|Lg(x), ∀g, x ∈ G.

De�nition 11. The Lie algebra of a Lie group G, denoted g, is the vector

space of all left-invariant vector �elds on G.

3.2 Roto-translational space

Our three-dimensional space R2 × S1 is called Roto-translational space. The
in�nite set of points (x, y, θ), combined with a composition law that satisfy
certain axioms, is then called a group.

3.2.1 Extension to matrix group

The group R2×S1 has an equivalent matrix form, namely SE(2). This matrix
group is called rigid motion, and is de�ned as

SE(2) = {g ∈ R3×3 : g =
[
R r
O 1

]
, R ∈ SO(2), r ∈ R2}, (7)

where SO(2) is the special orthogonal group. An element in SO(2) can be
expressed as2 [

cos θ − sin θ
sin θ cos θ

]
,

2Brackets are here used to represent matrices and vectors. When Lie brackets are used, this is clear from
the context.
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which is a rotation in two-dimensional space, and we see that it is only de�ned
by the angle θ.
Since our points on the image-oriented manifold is represented by the triplet

(x, y, θ), we can also represent this point as an element g ∈ SE(2) as

g =

cos θ − sin θ x
sin θ cos θ y

0 0 1

 . (8)

The special orthogonal matrix, denoted R in (7), is constructed using the vector
~X1 and a vector orthogonal to ~X1.

3.3 The composition law

Since the group operation for matrix groups is the usual matrix-matrix product,
we can easily �nd the composition law in the Roto-translational group by using
the matrix representations. For any two points (xa, ya, θa), (xb, yb, θb) ∈ R2×S1,
we �nd the product through the following transformation: xa

ya

θa

+R

 xb

yb

θb

 ∼ ga · gb = gc ∼

 xc

yc

θc

 ,

where ga, gb and gc are the corresponding matrix-elements. The matrix-
elements ga and gb are de�ned above and we get:

gc = ga · gb =

cos θa − sin θa xa

sin θa cos θa ya

0 0 1

 ·
cos θb − sin θb xb

sin θb cos θb yb

0 0 1


=

(cacb − sasb) (−casb − sacb) (caxb − sayb + xa)
(sacb + casb) (−sasb + cacb) (saxb + cayb + ya)

0 0 1

 ,

where si and ci denotes sin θi and cos θi, respectively, for i = a, b.
With the trigonometric identities

sin(α± β) = sin α cos β ± cos α sinβ,

cos(α± β) = cos α cos β ∓ sinα sinβ,
(9)

the matrix gc simpli�es to

gc =

cos(θa + θb) − sin(θa + θb) cos θaxb − sin θayb + xa

sin(θa + θb) cos(θa + θb) sin θaxb + cos θayb + yb

0 0 1

 . (10)

Clearly this matrix is also in SE(2), as expected.
If we now convert back to vector-notation we get the composition-law in the

Roto-translational space: xa

ya

θa

+R

 xb

yb

θb

 =

 cos θaxb − sin θayb + xa

sin θaxb + cos θayb + ya

θa + θb

 , (11)

where we have adopted the notation +R from [3] as the group operation3.

3The seemingly commutative notation +R is used. However, our group operation is non-commutative.



3.3.1 Veri�cation of the group axioms

Now that we have our composition law, we can check if it has the necessary
properties of a group operation. It has to be associative, there has to exist an
identity element and each element should have an inverse.
Associativity means that for elements a, b, c ∈ R2 × S1, a +R (b +R c) =

(a +R b) +R c. This follows from the transformation, since matrix-matrix mul-
tiplication is associative.
Next, the identity element is the trivial triplet (0,0,0), (which gives the iden-

tity matrix in the matrix-group):

(0, 0, 0) +R (x, y, θ) = (x, y, θ) = (x, y, θ) +R (0, 0, 0). (12)

Last, the inverse of an arbitrary element g = (x, y, θ) is

g−1 = (− cos θx− sin θy, sin θx− cos θy,−θ). (13)

So equipped with the composition law we have a group structure.

3.3.2 R2 × S1 is a Lie Group

From above we have that both the group operation and the inversion of elements
are smooth maps. Further, since our group carries the structure of a manifold,
i.e. the image-oriented manifold, R2×S1 is a Lie group according to De�nition
1.

3.4 Vector �elds and �ows

In Section 2.2.1 we introduced the two vector �elds X1 = cos θ∂x + sin θ∂y

and X2 = ∂θ. These satisfy the conditions in De�nition 4, since X1 is varying
smoothly with θ, and X2 is constant.
The �ow map (De�nition 6) applied to the point (x0, y0, θ0) of a linear com-

bination of these vector �elds is a curve denoted as

γ(t) = exp(t, X1 + kX2)(x0, y0, θ0). (14)

This curve is the solution of the system of ordinary di�erential equations ẋ(t) =
cos θ(t), ẏ(t) = sin θ(t), θ̇(t) = k. With k 6= 0, we get:

x(t) =
1
k

(sin(kt + θ0)− sin θ0) + x0,

y(t) =
1
k

(− cos(kt + θ0) + cos θ0) + y0,

θ(t) = kt + θ0.

(15)

The parameter k in this representation is the curvature of the integral curve.
With k = 0, the solution will be a straight line with constant θ = θ0. Figure 8
shows an integral curve starting from (0, 0, 0) with k = 1.
In Figure 9 we see curves projected to the xy-plane, with k varying. This

plot is very similar to the �gure from the experiments of Field, Hayes and Hess
in Figure 4. So the vector �elds X1 and X2 are going to play the role of the
basis for the association �elds discussed in Section 2.1.3.

11



−1
−0.5

0
0.5

1 0

0.5

1

1.5

2

0

pi/2

pi

3pi/4

2pi

y

x

X: 0
Y: 0
Z: 6.283

X: 0
Y: 0
Z: 0

θ

Figure 8: Solution of the integral curve γ̇(t) = ~X1(γ) + k ~X2(γ), with k = 1.

0 0.25 0.5 0.75 1 1.25 1.5
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

x

y

Integralcurves projected to the x−y−plane for different values of k

Figure 9: Projected solutions of the integral curves γ̇(t) = ~X1(γ) + k ~X2(γ),
with k ∈ [−1, 1].



3.5 Lie brackets

The Lie bracket (De�nition 7) of the vector �elds X1 and X2 can be found
through their action on an arbitrary smooth function u, as

[X1, X2]u = X1(X2u)−X2(X1u)
= (cos θ∂x + sin θ∂y)uθ − ∂θ (cos θux + sin θuy)
≡ −X3u,

(16)

where we have de�ned the third vector �eld X3 as

X3 = − sin θ∂x + cos θ∂y. (17)

The other commutators are obtained similarly:

[X2, X3] = −X1,

[X1, X3] = 0.
(18)

This means that the vector �elds X1, X2 and X3 form a closed set with respect
to the Lie bracket operation. Also, the two �rst vector �elds generate the last.
If we denote by L(X1, X2) the set of all linear combinations of X1, X2 and the
commutators of any order, it is spanned by the three vector �elds.

3.6 Left multiplication map

Based on the composition-law of the group R2 × S1, we can de�ne the left
multiplication map as in De�nition 8:

Lg(h) = g +R h, ∀g, h ∈ R2 × S1. (19)

Since every element has an inverse, the left multiplication map is one-to-one:

Lg(x) = Lg(y) ⇐⇒ x = y.

3.6.1 Di�erential of the left multiplication map

The di�erential of the map Lg(x) is denoted dLg(x) and maps the tangent
space at x ∈ R2 × S1 to the tangent space at Lg(x) ∈ R2 × S1.
Following De�nition 9, we also have an explicit expression in local coor-

dinates for the di�erential of vector �elds. In this expression we need the
Jacobian of Lg(x). Since the element g is �xed, the Jacobian (JacLg(x) =
{∂Li

g(x)/∂xj}3i,j=1) is

JacLg(x) =

 cos θg − sin θg 0
sin θg cos θg 0

0 0 1

 . (20)

If we now insert X1 in the expression of the di�erential of Lg, we get

dL(xg ,yg ,θg)(X1|(x,y,θ)) =
3∑

j=1

[(
cos θ

∂Lj
g

∂x

)
|(x,y,θ) +

(
sin θ

∂Lj
g

∂y

)
|(x,y,θ)

]
= (cos θ cos θg − sin θ sin θg) ∂x + (cos θ sin θg + sin θ cos θg) ∂y

= cos(θ + θg)∂x + sin(θ + θg)∂y,

(21)
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where the last equality follows from the identities in (9). From the composition
law we note that this reduces to

dLg(X1|x) = X1|Lg(x), (22)

and that, by De�nition 10, X1 is a left-invariant vector �eld.
Similar to above, we �nd that X2 and X3 are also left invariant vector �elds.

3.7 Lie algebra of the Lie group

Since the vector �elds X1, X2 and X3 are all smooth, left-invariant vector �elds,
and since the dimension of R2 × S1 is three, these vector �elds form a basis of
the Lie algebra, g, of the Roto-translational group by De�nition 11. We denote
this as

g = L(X1, X2). (23)



4 Mathematical Model

Here we build up our mathematical model based on the neurophysiologic as-
pects discussed in Chapter 2, and using the geometric space described by our
Lie algebra of the Roto-translational group discussed in Chapter 3.

4.1 Extraction of existing information

Receptive �elds of simple cells are usually modeled as convolution kernels of
�lters, such as Gabor �lters [8],

G(x, y, θ) =
1

2πs
exp

(
− x̃2 + ỹ2

s2
+ iỹ/s

)
,

where

x̃ = x cos(θ) + y sin(θ),
ỹ = −x sin(θ) + y cos(θ),

and the parameter s is the standard deviation in the Gaussian envelope. The
authors of [3] have shown that up to a multiplicative constant, the odd part of
this Gabor �lter can locally be approximated as

≈ −∂ỹ exp(−(x̃2 + ỹ2)/s2). (24)

This is equivalent to the directional derivative in the direction (− sin(θ), cos(θ)),
which is the direction of the vector �eld we called X3 above.
A three-dimensional function, u0(x, y, θ), is constructed, where the two �rst

dimensions correspond to the image's domain. We now set each value in u0 as

u0(x, y, θ) = −X3(θ)Is, (25)

where Is denotes the discrete convolution of the original image with the con-
volution kernel exp(−(x̃2 + ỹ2)/s2).
By de�ning the surface

Σ = {(x, y, θ̄), |X3(θ̄)Is| = max
θ
|X3(θ)Is)|}, (26)

we set u = u0δΣ. That is, we set u to be u0 concentrated on the surface Σ.
This is how we model the simple cells property to choose the direction that

results in the maximum of activity. It is also equivalent to the procedure we did
in Section 2.2.1, where we found the θ-value that corresponded to the normal
gradient direction.
Note that since the function u is constructed using derivatives of the original

image, some information is lost through this transformation. If the original
image contains domains of constant gray level, the interior of these domains
will all be represented with the value 0 in u, since the derivative here is 0 in
every direction.
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4.2 Completion of the missing information

4.2.1 Di�usion

Now we di�use our function u(x, y, θ) with the vector �elds X1 and X2. In
the Roto-translational space, we denote the R-gradient and the sub-Laplacian,
respectively, as

∇R = (X1, X2)T ,

∆R = ∇T
R · ∇R = X2

1 + X2
2 ,

(27)

where X2
i represents the i'th vector �eld applied to itself. The di�usion then

becomes
ut = ∆Ru = X1(X1u) + X2(X2u) = (X2

1 + X2
2 )u. (28)

4.2.2 �Non Maximal Suppression�

After we have di�used for a certain time, the surface has expanded in the θ-
direction. Now we apply a concentration process, which the authors of [3] have
called �Non Maximal Suppression�, which is needed to explain the sharp tuning
exhibited by the simple cells in V1.
At each point, (x, y), we want to �nd the θ-value for which our function u

attains its maximum. This can be achieved by demanding that X2u = 0 and
X2 (X2u) < 0 at each point. Our new surface can then be de�ned with the
function v ≡ X2u as:

Σ = {(x, y, θ) : v = 0, X2v < 0}, v = X2u. (29)

We note that
Σ ⊆ {(x, y, θ) : v = 0, X2v 6= 0}, (30)

and by assuming only maxima, they are equal. From [9], Σ is a regular surface,
and we are guaranteed the existence of a tangent plane at all points in Σ.
Further, Σ is the 0-level set of the function v.

4.2.3 Projection on tangent planes

At each point, x, on a two-dimensional manifold M in R3 we have a normal-
vector ν. If we denote the projection matrix Pν as

Pν = I − ν ⊗ ν

|ν|2
,

this matrix will project any vectors at x onto the tangent plane of the surface
at x. Note that the elements of Pν can be expressed as

(Pν)ij = δij −
νiνj

|ν|2
,

where δij is the Kronecker delta function. For a vector �eld X ∈ R3, we de�ne
the di�erential operator PX∇ component-wise as

(PX∇)i =
3∑

j=1

(
δij −

XiXj

|X|2

)
∂xj . (31)



4.2.4 Di�usion constrained on the surface

By using our previous notation, we �nd PX∇R by exchanging the ∂xj with Xj

in (31). Now we use the geometry of our space to derive a level set method in
R2 × S1.
From the level-set function in (30), we de�ne the unit-vector

ν =
∇Rv

|∇Rv|
=

(X1v,X2v)√
(X1v)2 + (X2v)2

. (32)

Note that we can expand∇R to be a three dimensional vector,∇R = (X1, 0, X2)T ,
and obtain the same results.
We now know that ν (expanded to a three-dimensional vector) is a normal

vector to Σ, and from Section 4.2.3 we have that the matrix Pν projects vectors
onto the tangent plane in Σ.
For a function u on Σ, we de�ne the Eulerian surface gradient as

∇νu = Pν∇u, (33)

and the Eulerian Laplace-Beltrami operator as the tangential divergence of the
tangential gradient [10]:

∆νu = ∇ν · ∇νu. (34)

When going from Eulerian- to Roto-translational-space, we have to change all
the ∇-operators to ∇R = (X1, X2)T . The surface R-divergence of the surface
R-gradient of the function u, is

divν
R (∇ν

Ru) = (∇ν
R)T · ∇ν

Ru = (Pν∇R)T · Pν∇Ru. (35)

A simple calculation shows that

Pν = P(X1v,X2v) =

(1− (X1v)2

|Xv|2

)
−X1vX2v

|Xv|2

−X2vX1v
|Xv|2

(
1− (X2v)2

|Xv|2

) , (36)

and since our projection matrix satis�es P 2
ν = Pν = P T

ν , we �nd that

divν
R (∇ν

Ru) =

(1− (X1v)2

|Xv|2

)
−X1vX2v

|Xv|2

−X2vX1v
|Xv|2

(
1− (X2v)2

|Xv|2

)(X1

X2

)T

·
(

X1u
X2u

)

=
(

1− (X1v)2

|Xv|2

)
X1(X1u)− X1vX2v

|Xv|2
X2(X1u)

− X1vX2v

|Xv|2
X1(X2u) +

(
1− (X2v)2

|Xv|2

)
X2(X2u).

(37)

When inserting |Xv|2 = (X1v)2 + (X2v)2, and using the notation Xi(Xju) ≡
Xiju we get the �nal equation:

∆ν
Ru = divν

R(∇ν
Ru) =

(X2v)2X11u + (X1v)2X22u

(X1v)2 + (X2v)2
− (X12u + X21u)X1vX2v

(X1v)2 + (X2v)2
.

(38)
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After the di�usion ut = ∆Ru, we then calculate the time evolution

ut = ∆ν
Ru. (39)

The two equations are then combined in an alternating fashion. First we
di�use (28) over a certain time interval t1, and then integrate (39) over a time
interval t2. Then we do it all over again, and solve the pair of equations for a
total of N times.

4.3 Post processing

After applying the mechanisms described above on an image, the completed
image is represented as a three dimensional function. To convert it back to an
image again, we set:

I(x, y) = max
θ

(|u(x, y, θ)|) . (40)

This procedure will give us the direction that results in maximum response in
the simple cells of V1.



5 Numerical Discretization

5.1 Discretized function

Since the images we are considering are digital (and thus discrete), the dimen-
sions in the x- and y-directions are given by the pixel resolutions.
The third dimension is found when ∆θ, the step size in the θ-direction, is

chosen. The interval [0, 2π] is divided into approximately 2π/∆θ points.

5.2 Step size

When approximating the equations with �nite di�erences, we need a step size
in all the directions. In the results below, only square images have been con-
sidered, so the step size in the y-direction, ∆y, has been set equal to ∆x.
There is no natural way to de�ne the step size ∆x though. The size of a

digital image is only de�ned by the pixel resolution, and since ∆x is supposed
to represent the distance between two pixels, this must be chosen.
In all the results below, the step size in the θ-direction has been chosen to be

equal to ∆x for simplicity. This imposes restrictions on the choice of ∆x. Since
the dimension in the θ-direction and ∆x are inverse proportional, ∆x must be
chosen wisely.
The time step ∆t is restricted by the Courant-Friedrichs-Lewy condition,

which we will discuss below in Section 5.5.

5.3 The di�erential equations

We approximate the equations with �nite di�erences. The derivatives in x, y
and θ are approximated using second order centered di�erences, and di�eren-
tiation in time is approximated by a �rst order forward di�erence. This means
that we use the forward Euler method for the time integration.
We denote un

lmq as the function u evaluated in the discrete node (x, y, θ) =
(l∆x,m∆y, q∆θ) at time t = n∆t. With an image resolution of L×M pixels,
l can be in the range [0, ..., L− 1], and m in the range [0, ...,M − 1]. Further,
q is in the range [0, ..., Q − 1], where Q = d2π/∆θe is the dimension in the
θ-direction. The various derivatives are approximated as

D1u
n
lmq = cos θqδxun

lmq + sin θqδyu
n
lmq,

D2u
n
lmq = δθu

n
lmq,

D11u
n
lmq = cos2 θqδ

2
xun

lmq + 2 sin θq cos θqδxδyu
n
lmq + sin2 θqδ

2
yu

n
lmq,

D22u
n
lmq = δ2

θu
n
lmq,

D12u
n
lmq = cos θqδxδθu

n
lmq + sin θqδyδθu

n
lmq,

D21u
n
lmq = − sin θqδxun

lmq + cos θqδxδθu
n
lmq + cos θqδyu

n
lmq + sin θqδyδθu

n
lmq,

(41)

where Diu is the approximation of the vector �eld Xi applied to u, and Diju
is the approximation of the vector �eld Xi applied to Xju. Furthermore, δi

denotes the second order centered di�erence in the direction i, for i = x, y, θ.
For example, δ2

xun
lmq = 1/∆x2(un

l−1,m,q − 2un
lmq + un

l+1,m,q).
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The combined numerical scheme is then:

FOR n = 0, ..., N1 − 1, DO:

un+1
lmq = un

lmq + ∆t
(
D11u

n
lmq + D22u

n
lmq

)
END FOR

vN1
lmq = D2u

N1
lmq

FOR n = N1, ..., N1 + N2 − 1, DO:

un+1
lmq = un

lmq + ∆t
[(D2v

n
lmq)

2D11u
n
lmq + (D1v

n
lmq)

2D22u
n
lmq

(D1vn
lmq)

2 + (D2vn
lmq)

2

−
D1v

n
lmqD2v

n
lmq

(
D12u

n
lmq + D21u

n
lmq

)
(D1vn

lmq)
2 + (D2vn

lmq)
2

]
vn+1
lmq = D2u

n+1
lmq

END FOR.

(42)

In this way we di�use u for a time N1∆t and then apply the �Non Maximal
Suppression� for a time N2∆t. This numerical scheme is applied for a total of
N times.

5.4 Boundary conditions

To apply the numerical scheme in (42), we need boundary conditions. In the
θ-direction, it is natural to de�ne periodic boundary conditions.
In the x- and y-directions, the authors of [3] use Neumann boundary con-

ditions. In the results below, regular homogeneous Neumann boundary condi-
tions was �rst used. This means that we set ∂u/∂~n = 0 on the boundaries,
where ~n is the outward normal direction. Since the image is a rectangular
(quadratic) domain, the directional derivatives in the normal directions are
easy to obtain.
The Neumann boundary conditions did not give satisfactory results, the im-

age was distorted near the boundaries. Thus the Neumann boundary conditions
were adjusted to the Roto-translational setting. Instead of using outward nor-
mal directional derivatives, we used the vector �eld X1. This can be expressed
as

X1u0,m,q = X1uL−1,m,q = 0, ∀m, q,

X1ul,0,q = X1ul,M−1,q = 0, ∀l, q.
(43)

5.4.1 Discretizing the boundary conditions

When using �ctive nodes in the derivation of the derivatives at the boundaries,
the periodic boundary conditions are imposed by setting

ul,m,−1 = ul,m,Q−1 ∀l,m,

ul,m,Q = ul,m,0 ∀l,m.
(44)

Further, for the regular Neumann boundary conditions in x- and y-directions,
we �nd the �ctive nodes from a second ordered centered di�erence on the



boundaries:

u−1,m,q = u1,m,q ∀m, q,

uL,m,q = uL−2,m,q ∀m, q,

ul,−1,q = ul,1,q ∀l, q,
ul,M,q = ul,M−2,q ∀l, q.

(45)

When imposing �Roto-translational� Neumann boundary conditions, we get
more complicated equations, since the vector �eld X1 includes derivatives in
both the x- and y-direction. For example, at the left boundary we get

u−1,m,q =
sin θq

cos θq

(
u0,m+1,q − u0,m−1,q

)
+ u1,m,q, (46)

where θq = q∆θ. Obviously, if the θ-value associated to a node is a multiple of
π/2 somewhere on the boundary, some problems will occur. If θ = π/2 in the
example above, the fraction in the equation will have a zero denominator. In
this case, u0,m−1,q = u0,m+1,q when imposing X1u = 0 (ul+1,m,q − ul−1,m,q) +
(ul,m+1,q − ul,m−1,q)
= 0. Secondly, derivatives in the x-directions have been obtained using a
�rst order �nite di�erence into the domain, leading to an absence of boundary
conditions.

5.4.2 Corners

We also experienced a problem with boundary conditions at the corners. If
the θ-value at a corner in the xy-plane represents a direction that never enters
the domain (see Figure 10), this can lead to problems. With regular Neumann
boundary conditions this problem does not occur, since the normal direction is
either vertical or horizontal, and both directions can be imposed at corners.

X
1

Figure 10: ~X1 can point out of the domain.

Also, using second order centered di�erences for the mixed derivative, uxy,
at e.g. the lower left corner, we need the �ctive node u−1,−1,q. To avoid these
problems, we use a �rst order di�erence approximation for the mixed derivatives
at these nodes.

5.5 The associated di�usion-matrix

The numerical approximation of the di�usion (�rst part of the scheme in (42))
with the forward Euler method can be seen as an iteration from a starting
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vector. In practice, the solution un
lmq is not a vector, but the iteration can be

viewed in terms of a matrix operating on a vector as

un+1
lmq = Aun

lmq, (47)

since the di�usion equation is linear.
To ensure convergence, we have from the Courant-Friedrich-Lewy-condition

(CFL) [11] that the spectral radius of A must be less than or equal to 1.
Otherwise, the di�usion part of the iteration in (47) can produce wrong results.
The equation of an �inner node�, ulmq, in the di�usion is as follows

un+1
lmq = un

lmq + ∆t

(
X2

1un
lmq + X2

2un
lmq

)
≈ un

lmq +
∆t

∆2
x

[
cos2 θq

(
un

l+1,m,q − 2un
lmq + un

l−1,m,q

)
+

1
2

cos θq sin θq

(
un

l+1,m+1,q + un
l−1,m−1,q − un

l+1,m−1,q − un
l−1,m+1,q

)
+ sin2 θq

(
un

l,m+1,q − 2un
lmq + un

l,m−1,q

) ]
+

∆t

∆2
θ

[
un

l,m,q+1 − 2un
lmq + un

l,m,q−1

]
.

(48)

In Figure 11 we see the �molecule� of this di�usion equation. The value of a
node at the next time step depends on 11 nodes, including itself, at the previous
time step.
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1

−1

0

1
−1

0

1

x

Computation molecule

y

θ

Figure 11: The computation molecule for the di�usion term in the numerical
scheme.

From (48), and with ∆θ = ∆x, the iteration matrix A can be split into

A = I +
∆t

∆x2
Ã. (49)

We can then �nd the restrictions on ∆t by looking at the eigenvalues of Ã.



The associated matrix Ã is a sparse matrix with at most 11 non-zero entries
on a single row. The band width of the matrix depends on the labeling of our
u when we map it from RL×M×Q to RLMQ.
If we label the vector as u = [u0,0,0, u1,0,0, ..., uL−1,0,0, u0,1,0, ..., uL−1,1,0, u0,2,0, ..., ...,

uL−1,M−1,0, u0,0,1, ..., ..., uL−1,M−1,Q−1]T , the structure of the matrix Ã will be
as seen in Figure 12 below.
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nz = 336

Non−zero entries in the diffusion matrix

Figure 12: A visualization of the sparse structure of the matrix Ã.

Figure 12 shows a dot for each non-zero value in Ã. This particular matrix
is constructed using only 4 points in the spatial directions, and 3 points along
the θ-direction. We notice the symmetry pattern, and that there are missing
some points in the upper left corner because of the sine squared and the mixed
term involving a product with sine, since the associated θ-value in this area is
zero.
In Table 1, the spectral radius for some di�erent dimensions is shown. When

constructing the matrix Ã, homogeneous boundary conditions are imposed for
simplicity.

Dim. in x- and Dim. in θ- Calculated
y-direction direction spectral radius

10 7 7.7218
20 13 7.9198
40 26 7.9942
60 38 7.9974
80 51 7.9947
100 63 7.9966
120 76 7.9993
155 98 7.9996

Table 1: Table of calculated spectral radii for di�erent dimensions.

The eigenvalues of Ã are found to be λ ∈ (−8, 0). I.e. the spectral radius
seems to converge towards 8 for increasing spatial resolution.
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The eigenvalues of the discrete one-dimensional Laplace operator

T =


−2 1 0
1 −2 1

. . .

1 −2 1
0 1 −2

 (50)

are known to be on the form

λi = −2
(

1− cos
(

iπ

N + 1

))
. (51)

Here N denotes the dimension, and λi is the i'th eigenvalue (i = 1, ..., N). The
eigenvalues are thus in the range (−4, 0), and the minimum converges to -4 for
high dimensions. Since we �nd the spectral radius of our problem to converge
towards 8, this shows clear resemblances with diagonalization techniques used
for solving the two-dimensional Poisson problem [12]. Such techniques involves
a scaling with the summation of two eigenvalues, where each of them is the
corresponding eigenvalues of the one-dimensional discrete Laplace operator in
(50). The minimum of the sum is thus converging towards -8, as in our problem.
From (49), we see that the eigenvalues of A can be expressed as

eig(A) = eig
(
I + ∆t/∆x2Ã

)
= 1 + ∆t/∆x2eig

(
Ã
)

. (52)

The CFL-condition then gives the following restrictions on ∆t:

1− 8
∆t

∆x2
≤ 1,

1− 8
∆t

∆x2
≥ −1.

(53)

The �rst equation is unconditionally satis�ed, since both ∆t and ∆x have to
be positive. The second is satis�ed when ∆t ≤ 0.25∆x2.



6 Results

6.1 Stability

Above, we found a restriction on the time step, ∆t. In Figure 13 we see an
image before and after applying the numerical scheme in (42) 10 times with
N1 = N2 = 3 and ∆t = 0.4.

Figure 13: Image before and after 10 iterations with ∆t = 0.4.

The iteration obviously diverged, and the image is no longer recognizable.
All the following results, have thus a time step ∆t = 0.25.

6.2 Dependence on N1 and N2

In the numerical scheme, the parameters N1 and N2 represent the length we
integrate in time for the di�usion and �Non-maximal Suppression�, respectively.
The authors of [3] do not specify which values they use.
In Figure 14 we see a comparison of di�erent combinations of the parame-

ters. 3 values have been tested for the two parameters, making a total of 9
combinations. All calculations were done with regular Neumann b.c. and 20
iterations.
It looks like there is no clear advantage by choosing a speci�c combination.

Since the original image contained a hole in the center, we also see how this hole
is closing in the calculations. By following the diagonal downwards, the hole
decreases. This is because we integrate in a longer time interval N∆t(N1+N2),
and not a reason to favour the lower right combination.
In all the following results, the combination N1 = N2 = 3 has been used.
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N1=1, N2=1 N1=1, N2=3 N1=1, N2=6

N1=3, N2=1 N1=3, N2=3 N1=3, N2=6

N1=6, N2=1 N1=6, N2=3 N1=6, N2=6

Figure 14: Calculations with N = 10 and di�erent combinations of N1 and
N2.



6.3 Boundary conditions

Here we compare the di�erent boundary conditions used in the calculations.

6.3.1 Regular Neumann boundary conditions

With regular Neumann boundary conditions, we impose restrictions on the
derivative of the solution at the boundaries. These are set to zero, and the
result can be seen in Figure 15. This �gure shows the original image (upper
left corner) with missing information in the center, and the solutions after
di�erent choices of iterations lengths.

Original image 20 iterations

40 iterations 80 iterations

Figure 15: The solution after di�erent number of iterations with Neumann
boundary conditions.

After many iterations the hole closes, but the image is changing character
near the boundaries. Since the computations impose homogeneous Neumann
boundary conditions, the level lines of the image are �straightened out� ac-
cording to which boundary is the closest. In the top and bottom, the curved
level lines are bent to straight vertical lines. On the left, the level lines at the
boundary are bent even more, and are turned into horizontal lines.
The development around the hole looks promising, and after enough itera-

tions, it closes. If we know where the missing information �exists�, and if it is
not near the boundaries, this procedure could work. The known domain could
be kept, and a suitable post processing could insert the missing information
after calculations. A stopping criterion would also have to be imposed, since in
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the limit t →∞, the surface will not converge towards the �correct� stationary
surface.

6.3.2 �Roto-translational� Neumann boundary conditions

Calculations on the same image as above, but with X1u = 0 imposed on the
boundaries are shown in Figure 16. The original image is shown complete, but
the calculations started with a hole in the center. The behaviour around the
hole is, as expeced, similar to the case above. Around the boundaries though,
we now get better results, and the curved lines are maintained.

Original image 20 iterations

40 iterations 80 iterations

Figure 16: Solution with �Roto-translational� Neumann boundary conditions.

After many iterations, there are still some minor di�erences between the
original and the calculated image. We observe thicker lines on the calculated
one. Also, the right corners di�er, and could be a consequence of the low order
�nite di�erences used here.
Since this type of boundary conditions gives the best results for this image,

it has been used throughout the rest of the images below.

6.4 Completion of selected images

6.4.1 Image containing hole

The �rst example is an image already visited above in the report. In Figure
17 we see the original on the left, and how this image is represented as the



function u in (25) on the right, both with a hole in the center. Our perception
of what is missing is clear; the level lines should be continuous through the
hole. We notice that we get more waves on the right, because the derivative is
zero both on the �peaks� (white) and in the �valleys� (black).

Original image Original image represented in u

Figure 17: Original image (left), and original image represented in Roto-
translational space.

In Figure 16 above, we have already seen that the algorithm completes the
missing information. Figure 18 shows a surface plot of the three dimensional
array after a calculation with 20 iterations. The height corresponds to the θ-
value of maximum activity, and the colour represent the value (gray level) of
that node.

6.4.2 Occluding object

The next example we are going to consider is when one object is occluding
another object. In Figure 19 we see the original image (left), and how this
is represented as the function u. The two white sections are perceived as one
object extending behind the gray bar.
Figure 20 shows the result after applying the algorithm for 4 di�erent it-

eration lengths. We see that the level lines for the original white object are
di�using through the occluder. For long iteration lengths, level lines from each
side meet in the center, but the result is a bit blurred. By increasing the
resolution in θ, this can be improved.
In Figure 21 we see a slice plot of the three dimensional array after 100

iterations. The plot shows three di�erent planes, which corresponds to di�erent
θ-values. The colors represent the values in these xy-planes. In this way it
shows where the di�erent objects of the image are located in the θ-range. Since
the derivatives in directions that di�er by π have the same magnitude, but
opposite signs, the three planes shown are for θ < π.
We see that the gray bar is now located at the plane θ = 0 (parallel to the

x-axis). The white object �lives� above at higher θ-values, and in this way, both
the objects are maintained. The gray bar is also located in the planes where θ
is a multiple of π, since its directed along the x-axis.

29



0
20

40
60

80
100

0

20

40

60

80

100

pi/4

pi/2

3pi/4

x

Image represented in 3D

y

θ

Figure 18: Slice plot of the image in three-dimensions after 20 iterations.

Original image Original image represented in u

Figure 19: Original image (left), and original image in Roto-translational
space.



After 20 iterations After 40 iterations

After 60 iterations After 80 iterations

Figure 20: Image after 20, 40, 60 and 80 iterations.

6.4.3 Kanizsa's �shes

The last example is �Kanizsa's �shes�, which can be seen in Figure 22. This is
an image showing two �shes, where both of them block eachother. We see that
only the contours are shown in the Roto-translational representation.
Calculated results by applying the algorithm for 10 and 50 iterations can be

seen in Figure 23. The right side of each �sh head is completed �rst, since the
tails here are thinnest. After 50 iterations, the whole heads are completed. This
is how the original image is interpreted (at least the authors interpretation),
that both �shes block each others tails and not the opposite.
In Figure 24 a slice plot of the three dimensional array is shown for �Kanizsa's

�shes� after 120 iterations. Here we see that the heads of the �shes are repre-
sented at the level θ < π/2, while the tails are located higher.
By iterating long enough, the processes should complete the tails, as well

as the heads. The combined di�usion/�Non-maximal Suppression�-process can
operate independently on objects separated in three dimensions.
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Figure 21: Slice plot of the three-dimensional array.



Original image Image representation in Roto−translational space

Figure 22: Original and Roto-translational representation of Kanizsa's �shes.

After 10 iterations After 50 iterations

Figure 23: Kanizsa's �shes after 10 and 50 iterations.
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Figure 24: Slice plot of Kanizsa's �shes after 120 iterations.



7 Conlusion

The perceptual completion model in [3] has been studied and the numerical
scheme was implemented. The various aspects in the model have been dis-
cussed, and some theory was established.
The di�usion in the �rst part of numerical scheme was analyzed more exten-

sively, and stability conditions were found. Based on the results, the second
part of the scheme, which approximates the solution of a non-linear di�erential
equation, seems to work. This can imply that the restriction we found on the
time step from the di�usion part is a conservative estimate, also valid for this
part.
Chosen images were completed and discussed. These are great examples of

the perceptual completion phenomena, and a veri�cation that the model works.
The overall strategy regarding the implementation was simplicity. For in-

stance, a simple forward Euler method was used for time integration. The
step sizes have also been chosen to maintain a small to mediocre problem-size.
Some di�culties regarding the boundary conditions were observed, but still,
the model work very well.
Future work could include more advanced numerics, for instance a more

sophisticated time integrator. Further, the Lie group structure of the problem
can be exploited. Since the second part of the algorithm is a time evolution
constrained on a surface, this can be solved using a Lie group method.
An entirely di�erent approach could involve a generated grid suited for the

space in which we complete the images. In [13] a grid is generated based on
the structure of the Heisenberg group, and, if possible, a similar extension to
the Roto-translational group could be bene�cial.
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