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Adaptive error control in inverse

electromagnetic scattering

Larisa Beilina, Marte P. Hatlo, Harald E. Krogstad

May 20, 2008

In this paper we derive an a posteriori error estimate and present an adaptive
algorithm for an inverse electromagnetic scattering problem.

The inverse problem is formulated as an optimal control problem, where we
solve equations expressing stationarity of an associated Lagrangian. The a
posteriori error estimate for the Lagrangian couples residuals of the computed
solution to weights of the reconstruction. The performance of the adaptive
finite element method and the usefulness of the a posteriori error estimate are
illustrated in numerical examples.

1 Introduction

We apply a mesh-adaptive method, which was originally developed in [3, 5, 6, 7, 8], to an
inverse electromagnetic scattering problem. The method is based on an a posteriori error
estimate which couples residuals of the computed solution to weights in the reconstruction.
A new element in the present work is the introduction of absorbing and Neumann boundary
conditions in the formulation of the forward problem for PDE. Thus, the main contribution
of this work is to derive an a posteriori error estimate for the Lagrangian in the presence
of absorbing and Neumann boundary conditions, and apply this in an adaptive algorithm.
The derivation of the a posteriori estimate follows the main approach to adaptive error
control in computational differential equations, presented in [2, 15] and references therein.

The adaptivity technique for the classic forward problems is well known, see, e.g., [14,
15, 16, 17, 18]. A simplifying factor for a forward problem is that all coefficients of a PDE
are known. However, an inverse problem is about approximating an unknown coefficient
of a PDE. Thus, it seems to be, at the first glance, that in order to apply the adaptivity
idea to an inverse problem, one needs to know its solution in advance, which is nonsense.
Contrary to this, the idea of application of the adaptivity to inverse problems is to analyze
the Lagrangian, to use this analysis in order to find spots, where the maximum error of
the solution is and finally insert more finite elements in those spots, see Theorem 6.1. It is
well known that it is hard to reconstruct correct values of the unknown coefficient inside of
small inclusions. So, our numerical experiments demonstrate that these values can indeed
be reconstructed accurately using the adaptivity technique, and this is one of advantages
of this technique.

The inverse problem consists of reconstructing the dielectric permittivity, ε(x), from
data measured on parts of the surface of the given domain, given the wave input on other
parts. By solving the wave equation with the same input, the material variables are in
principle obtained by fitting the computed solution to the measured data. The problem
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is formulated as finding a stationary point of the Lagrangian, involving the forward wave
equation (the state equation), the backward wave equation (the adjoint equation), and an
equation expressing that the gradient with respect to the parameter vanishes. The optimum
is found by a quasi-Newton iteration solving the forward and backward wave equations and
updating the material coefficient for each step. In order to stabilize this ill-posed problem,
we use Tikhonov regularization [12, 22]. We present an adaptive algorithm to solve the
inverse problem where the space-mesh adaptivity is based only on the computation of the
residuals, since they already give us enough information where to adapt the mesh.

It is well known that minimization of the residual least-squares functionals can give
multiple local minima or ravines, see Test 5 in [9] and [19]. To treat this problem we
employ an adaptive approach, where we first solve the inverse problem on a coarse mesh,
then refine the mesh locally and use the results from previous iteration as an initial guess
in our optimization algorithm on a new refined mesh. In fact, we believe that the adaptive
control method is sort of mitigating the phenomenon of local minima and our numerical
experiments confirm this thought.

We present numerical experiments where a periodic structure is reconstructed, showing
the possibilities of using adaptive error control in computational inverse scattering. Testing
the adaptive algorithm with different initial guess values in the optimization algorithm, we
can find the neighborhood of the starting point on a coarse mesh where our adaptive
algorithm will converge. Our numerical experiments show that the neighborhood of the
initial guess in the adaptive optimization algorithm is bigger than in the usual optimization
algorithms. Thus, using adaptivity in the optimization algorithms allow us to mitigate the
problem of local minima appearing in the usual optimization algorithms.

2 The mathematical model

We shall restrict ourselves to the propagation of light in a mixed dielectric medium in a
bounded domain Ω ⊂ R

2 with boundary Γ, governed by Maxwell’s equations:

∂D

∂t
−∇×H = −J, in Ω× (0, T ],

∂B

∂t
+∇×E = 0, in Ω× (0, T ],

∇ ·D = ρ, in Ω× (0, T ],

∇ ·B = 0, in Ω× (0, T ].

(1)

Here E(x, t) and H(x, t) are the electric and magnetic fields, whereas D(x, t) and B(x, t)
are the electric and magnetic inductions, respectively. We assume that the dielectric per-
mittivity, ε(x), is scalar and that the material is non-magnetic, so that µ(x) = 1. Then
D = εE and B = H. The current density, J , and charge density, ρ, are both assumed to
be zero.

Let us consider the system of Maxwell’s equations:

∇×H = ε
∂E

∂t
, (2)

∇×E = −∂H
∂t

. (3)



Assume that all functions in (2), (3) are independent of z, see [11]. Let E and H be vectors
with components E = (E1, E2, E3) and H = (H1,H2,H3). Then (2) is equivalent with

i
∂H3

∂y
− j

∂H3

∂x
+ k(

∂H2

∂x
− ∂H1

∂y
) = iε

∂E1

∂t
+ jε

∂E2

∂t
+ kε

∂E3

∂t
.

From this equation we have

ε
∂E3

∂t
=
∂H2

∂x
− ∂H1

∂y
. (4)

Now, we use (3) taking into account the fact that E is independent of z:

i
∂E3

∂y
− j

∂E3

∂x
+ k(

∂E2

∂x
− ∂E1

∂y
) = −i

∂H1

∂t
− j

∂H2

∂t
− k

∂H3

∂t
. (5)

Differentiating (4) with respect to t, we get

ε
∂2E3

∂t2
=
∂2H2

∂x∂t
− ∂2H1

∂y∂t
. (6)

Taking into account (5), we can write

∂H2

∂t
=
∂E3

∂x
, (7)

∂H1

∂t
= −∂E3

∂y
. (8)

Substituting both expressions above into (5), we get

ε
∂2E3

∂t2
= ∆E3. (9)

Equations (7), (8), (9) contains H1, H2 and E3 variables and are called the transverse
electric (TE) polarization [11]. In the rest of the paper we will use the notation E instead
of E3.

Split Γ into three disjoint parts, Γ = Γ1 ∪ Γ2 ∪ Γ3, and consider the forward problem
consisting of (9) and the following initial and boundary conditions (here and below, we
denote Dv = ∂v

∂t
)

E(·, 0) = 0,
∂E

∂t
(·, 0) = 0, in Ω,

∂nE
∣∣
Γ1

= v1, on Γ1 × (0, t1],

∂nE
∣∣
Γ1

= DE, on Γ1 × (t1, T ],

∂nE
∣∣
Γ2

= DE, on Γ2 × (0, T ],

∂nE
∣∣
Γ3

= 0, on Γ3 × (0, T ].

(10)

Thus, v1 is a pulse emitting from Γ1 and propagating into Ω for t ∈ [0, t1]. First order
absorbing boundary conditions [13] are used on Γ1× (t1, T ] and Γ2× (0, T ], and Neumann
boundary conditions on Γ3.
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3 A hybrid finite element/difference method

To solve equation (9)-(10) we use a hybrid FEM/FDM method developed in [10]. The
method uses continuous, piecewise linear finite elements in space and time on a partially
structured mesh in space. The computational space domain Ω is decomposed into a finite
element domain ΩFEM, with an unstructured mesh, and a finite difference domain ΩFDM,
with a structured mesh. Typically, ΩFEM covers only a small part of Ω. In ΩFDM we use
quadrilateral elements in R

2 and hexahedra in R
3. In ΩFEM we use a finite element mesh

Kh = {K} with elements K consisting of triangles in R
2 and tetrahedra in R

3. Let us
associate with Kh a mesh function hK (x) = diam(K), ∀x ∈ K, representing the diameter
of the element K. For the time discretization, let Jk = {J} be a partition of the time
interval I = (0, T ] into time intervals J = (tk−1, tk] of uniform length τ = tk − tk−1.

We define the following L2 inner products and norm

(p, q) =

∫

Ω
pq dx, ((p, q)) =

∫

Ω

∫ T

0
pq dt dx, ‖p‖2 = ((p, p)).

We introduce the finite element trial space W v
h defined by :

W v
h := {v ∈W v

1 ∪W v
2 : v|K×J ∈ P1(K)× P1(J),∀K ∈ Kh,∀J ∈ Jk},

where

W v
1 := {v ∈ H1(Ω× J) : v(·, 0) = 0, ∂nv|Γ1

= v1, ∂nv|Γ2
= Dv, ∂nv|Γ3

= 0},
W v

2 := {v ∈ H1(Ω× J) : v(·, 0) = 0, ∂nv|Γ1
= ∂nv|Γ2

= Dv, ∂nv|Γ3
= 0}.

Here P1(K) and P1(J) are the set of linear functions on K and J , respectively.
Furthermore, the finite element space W λ

h for the costate λ, is defined by:

W λ
h := {λ ∈W λ

1 ∪W λ
2 : λ|K×J ∈ P1(K)× P1(J),∀K ∈ Kh,∀J ∈ Jk},

where

W λ
1 : = {λ ∈ H1(Ω× J) : λ(·, T ) = 0, ∂nλ|Γ1

= ∂nλ|Γ3
= 0, ∂nλ|Γ2

= Dλ},
W λ

2 : = {λ ∈ H1(Ω× J) : λ(·, T ) = 0, ∂nλ|Γ1
= ∂nλ|Γ2

= Dλ, ∂nλ|Γ3
= 0}.

The finite element method for (9)-(10) now reads: Find Eh ∈W v
h such that ∀λ̄ ∈W λ

h ,

− ((εDEh, Dλ̄)) + ((∇Eh,∇λ̄))

− ((DEh, λ̄))(t1 ,T ]×Γ1
− ((DEh, λ̄))(0,T ]×Γ2

= ((v1, λ̄))(0,t1 ]×Γ1
.

(11)

Here, the initial condition DE(0) = 0 is imposed in weak form through the variational
formulation.

Expanding E and λ in terms of the standard continuous piecewise linear functions ϕi(x)
in space and ψi(t) in time, and substituting this into (11), we obtain an explicit scheme for
solving (11), see for example [4] where a similar system is obtained for an acoustic wave
equation with homogeneous boundary conditions.

4 The inverse problem

We formulate the inverse problem for (9) and (10) as follows: given the function ∂nE =
v1 on Γ1 × (0, t1], determine the coefficient ε(x) for x ∈ Ω, which minimizes the quantity

J(E, ε) =
1

2

∫ T

0

∫

Ω
(E − Ẽ)2δobs dxdt+

1

2
γ

∫

Ω
(ε− ε0)2 dx. (12)



Here Ẽ is the data observed at a finite set of points xobs, E satisfies (9) and (10) and thus
depends on ε. Moreover, δobs =

∑
δ(x− xobs) is a sum of delta-functions corresponding to

the observation points, γ is a regularization parameter, and ε0 is the initial guess value for
the parameter we want to reconstruct.

To solve this minimization problem, we introduce the Lagrangian

L(u) = J(E, ε) − ((εDE,Dλ)) + ((∇E,∇λ)) − ((DE,λ))(t1 ,T ]×Γ1

− ((DE,λ))(0,T ]×Γ2
− ((v1, λ))(0,t1 ]×Γ1

,
(13)

where u = (E, λ, ε), and search for a stationary point with respect to u, satisfying for all
ū = (Ē, λ̄, ε̄)

L′(u; ū) = 0, (14)

where L′ is the gradient of L. Equation (14) expresses that for all ū,

∂L(u)

∂λ
(λ̄) =− ((εDλ̄,DE)) + ((∇E,∇λ̄))− ((DE, λ̄))(t1 ,T ]×Γ1

− ((DE, λ̄))(0,T ]×Γ2
− ((2v1, λ̄))(0,t1 ]×Γ1

= 0,

∂L(u)

∂E
(Ē) =((E − Ẽ, Ē))δobs

− ((εDλ,DĒ)) + ((∇λ,∇Ē))

+ ((Dλ, Ē))[0,T )×Γ1
+ ((Dλ, Ē))[0,T )×Γ2

= 0,

∂L(u)

∂ε
(ε̄) =− ((DλDE, ε̄)) + γ(ε− ε0, ε̄) = 0.

The first equation in (15) is a weak form of the state equation (9) and (10), the second
equation is a weak form of the adjoint state equation,

ε
∂2λ

∂t2
−∇ · (∇λ) = −(E − Ẽ)δobs, x ∈ Ω, 0 ≤ t < T,

∂nλ = 0 on Γ1 × [0, t1),

∂nλ = Dλ on Γ1 × [0, T ),

∂nλ = Dλ on Γ2 × [0, T ),

∂nλ = 0 on Γ3 × [0, T ),

λ(·, T ) = Dλ(·, T ) = 0 in Ω,

(15)

and the last equation expresses stationarity with respect to the parameter ε.

5 A finite element method for inverse problem

To formulate a finite element method for (14) we introduce the finite element space Vh of
piecewise constants for the coefficient ε(x), defined by :

Vh := {v ∈ L2(Ω) : v ∈ P0(K),∀K ∈ Kh}.

Recalling the definitions of W v
h and W λ

h , related to the state E and the costate λ, and
defining Uh = W v

h ×W λ
h × Vh, we formulate the finite element method for (14) as: Find

uh ∈ Uh, such that
L′(uh; ū) = 0, ∀ū ∈ Uh. (16)
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6 An a posteriori error estimate for the Lagrangian

Theorem 6.1. Let L(u) = L(E, λ, ε) be the Lagrangian as defined in (13), and let L(uh) =
L(Eh, λh, εh) be the approximation of L(u). Then the following representation holds for the
error e = L(u)− L(uh):

∣∣e
∣∣ ≤ ((RE1

, σλ))(0,t1 ]×Γ1
+ ((RE2

, σλ)) + ((RE3
, σλ))

+ ((RE4
, σλ))(t1 ,T ]×Γ1

+ ((RE5
, σλ))(0,T ]×Γ2

+ ((Rλ1
, σE))δobs

+ ((Rλ2
, σE)) + ((Rλ3

, σE))

+ ((Rλ4
, σE))(0,T ]×Γ1

+ ((Rλ5
, σE))(0,T ]×Γ2

+ ((Rε1 , σε)) + (Rε2 , σε),

(17)

where the residuals are defined by

RE1
= 2|v1|, RE2

= maxS⊂∂K h−1
K

∣∣[∂sEh

]∣∣,
RE3

= εhτ
−1
∣∣[∂tEh

]∣∣, RE4
= RE5

= |DEh|,
Rλ1

= |Eh − Ẽ|, Rλ2
= maxS⊂∂K h−1

K

∣∣[∂sλh

]∣∣,
Rλ3

= εhτ
−1
∣∣[∂tλh

]∣∣, Rλ4
= Rλ5

= |Dλh|,
Rε1 = |Dλh| · |DEh|, Rε2 = γ|εh − ε0|,

and the interpolation errors are

σλ = Cτ |[Dλh]|+ ChK |[∂nλh]| ,
σE = Cτ |[DEh]|+ ChK |[∂nEh]| ,
σε = C

∣∣[εh]
∣∣,

Here, [v] denotes the maximum of the modulus of a jump of v across the face of an
element K (or the boundary node of a time interval J), ∂sv denotes the normal derivative
of v across a side of K, ∂nv denotes the derivative of v in the outward normal of an element
K, [∂tv] is the maximum modulus of the jump of the time derivative of v across a boundary
node of J , C is interpolation constants of moderate size.

Proof. Throughout the proof, let C denote different constants of a moderate size.
As in [1], we use the fundamental theorem of calculus to write

e = L(v)− L(vh)

=
∫ 1

0
d
ds
L(vh + s(v − vh))ds

=
∫ 1

0 L
′(vh + s(v − vh); v − vh)ds

= L′(vh; v − vh) +R,

where R denotes a second order term. For full details of the arguments we refer to [1] and
[15].

Neglecting the term R, and using the Galerkin orthogonality (16) with the splitting

v − vh = (v − vI
h) + (vI

h − vh), (18)

where vI
h denotes an interpolant of v, leads to the following error representation:

e ≈ L′(vh; v − vI
h) = I1 + I2 + I3. (19)



Here

I1 = −
((
εhDEh, D(λ− λI

h)
))

+
((
∇Eh,∇(λ− λI

h)
))
−
((

2v1, λ− λI
h

))
(0,t1 ]×Γ1

−
((
DEh, λ− λI

h

))
(t1,T ]×Γ1

−
((
DEh, λ− λI

h

))
(0,T ]×Γ2

,

I2 =
((
Eh − Ẽ, E −EI

h

))
δobs
−
((
εhDλh, D(E −EI

h)
))

+
((
∇λh,∇(E −EI

h)
))

+
((
Dλh, E −EI

h

))
(0,T ]×Γ1

+
((
Dλh, E −EI

h

))
(0,T ]×Γ2

,

I3 = −
((
DλhDEh, ε− εIh

))
+ γ
(
εh − ε0, ε− εIh

)
,

To estimate I1, we integrate by parts in the first and second terms to obtain:
∣∣I1

∣∣ =
∣∣((εhD2Eh, λ− λI

h

))
−
((
4Eh, λ− λI

h

))

−
((

2v1, λ− λI
h

))
(0,t1 ]×Γ1

−
((
DEh, λ− λI

h

))
(t1,T ]×Γ1

−
((
DEh, λ− λI

h

))
(0,T ]×Γ2

−
∑

k

∫

Ω
εh
[
DEh(tk)

]
(λ− λI

h)(tk) dx

+
∑

K

∫ T

0

∫

∂K

∂nEh(λ− λI
h) dsdt

∣∣,

(20)

Here,
[
DEh(tk)

]
denote the jump of the derivative of Eh at time tk (see Figure 2), and

∂nEh denote the derivative of Eh in the outward normal direction n of the boundary ∂K
of element K.

Since Eh is a piecewise linear function, the terms D2Eh and 4Eh in (20) disappear, and
we get:

∣∣I1

∣∣ =
∣∣−
((

2v1, λ− λI
h

))
(0,t1]×Γ1

−
((
DEh, λ− λI

h

))
(t1,T ]×Γ1

−
((
DEh, λ− λI

h

))
(0,T ]×Γ2

−
∑

k

∫

Ω
εh
[
DEh(tk)

]
(λ− λI

h)(tk) dx

+
∑

K

∫ T

0

∫

∂K

∂nEh(λ− λI
h) dsdt

∣∣.

(21)

In the last term of equation (21) we sum over the element boundaries, where each interior
side S ∈ Sh occurs twice, see Figure 1. Denoting by ∂n±Eh the derivative of Eh in the
outward normal direction n± to element K±, and by ∂sEh the derivative of a function Eh

in one of the normal directions, n− and n+, of each side S, we can write
∑

K

∫

∂K

∂nEh(λ− λI
h) ds =

∑

S

∫

S

[
∂sEh

]
(λ− λI

h) ds, (22)

where the jump
[
∂sEh

]
is defined as

[∂sEh] = max
S∈∂K

{∂n+Eh, ∂n−Eh}.

We distribute each jump equally to the two sharing elements and return to a sum of the
element edges ∂K :

∑

S

∫

S

[∂sEh] (λ− λI
h) ds =

∑

K

1

2

∫

∂K

[
∂sEh

]
(λ− λI

h) ds. (23)
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n
−

∂K+

∂K−

S

K−

S

n
+

K+

Figure 1: Two neighboring elements K+ and K−, their boundaries, ∂K+ and ∂K−, and
the interior side S.

We multiply and divide by hK , formally set dx = hKds and replace the integrals over
the element boundaries ∂K by integrals over the elements K, to get:

∣∣∣∣∣
∑

K

1

2
h−1

K

∫

∂K

[
∂sEh

]
(λ− λI

h) hK ds

∣∣∣∣∣

≤ C
∫

Ω
max
S⊂∂K

h−1
K

∣∣[∂sEh

]∣∣∣∣λ− λI
h

∣∣ dx,
(24)

where
[
∂sEh

]∣∣
K

= maxS⊂∂K

[
∂sEh

]∣∣
S
.

In a similar way we can estimate the jump in time in (21) by multiplying and dividing
by τ :

∣∣∣∣∣
∑

k

∫

Ω
εh [DEh(tk)] (λ− λI

h)(tk) dx

∣∣∣∣∣

≤
∑

k

∫

Ω
εhτ
−1
∣∣ [DEh(tk)]

∣∣∣∣(λ− λI
h)(tk)

∣∣ τdx

≤C
∑

k

∫

Jk

∫

Ω
εhτ
−1
∣∣[∂tkEh

]∣∣∣∣λ− λI
h

∣∣ dxdt

=C
((
εhτ
−1
∣∣[∂tEh

]∣∣,
∣∣(λ− λI

h)
∣∣ )).

(25)

Here, we have defined [∂tkEh] as the greatest of the two jumps on the interval (tk, tk+1]:

[∂tkEh] = max
k

([DEh(tk)] , [DEh(tk+1)]) ,

[∂tEh] = [∂tkEh] on Jk.

where [DEh(tk)] = DE+
h (tk)−DE−h (tk). The time jumps are illustrated in Figure 2.

We substitute the expressions (24) and (25) in (21), to get:
∣∣I1

∣∣ ≤
((

2
∣∣v1

∣∣,
∣∣λ− λI

h

∣∣))
(0,t1]×Γ1

−
((∣∣DEh

∣∣,
∣∣λ− λI

h

∣∣))
(t1 ,T ]×Γ1

−
((∣∣DEh

∣∣,
∣∣λ− λI

h

∣∣))
(0,T ]×Γ2

+C
((

maxS⊂∂K h−1
K

∣∣[∂sEh

]∣∣,
∣∣λ− λI

h

∣∣ ))

+C
((
εhτ
−1
∣∣[∂tEh

]∣∣,
∣∣λ− λI

h

∣∣ )).



f−(tk)

ttk−1 tk+1
J− J+

tk

[

f(tk)
]

[

f(tk+1)
]

[

f(tk−1)
]

f+(tk)

Figure 2: The jump of a function f on the time mesth.

Next, we use the following standard interpolation estimate

|λ− λI
h| ≤ C(τ2|D2λ|+ h2

K |D2
xλ|), (26)

where we approximate the second derivative in time as

D2λ =
∂2λ

∂t2
=
∂(Dλ)

∂t
≈
(
Dλ
)+ −

(
Dλ
)−

τ
=

[
Dλh

]

τ
.

Here (·)+ and (·)− represents values on two neighboring intervals J+ and J−, see Figure
2. In the same way we approximate the second derivative in space:

D2
xλ ≈

[
∂nλh

]

h
.

Substituting both expressions above in (26), we obtain
∣∣λ− λI

h

∣∣ ≤ C
(
τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣) (27)

and the estimate for I1 reduces to
∣∣I1

∣∣ ≤ C
((

2
∣∣v1

∣∣, τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣))
(0,t1]×Γ1

− C
((∣∣DEh

∣∣, τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣))
(t1,T ]×Γ1

− C
((∣∣DEh

∣∣, τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣))
(0,T ]×Γ2

+ C
((

maxS⊂∂K h−1
k

∣∣[∂sEh

]∣∣, τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣))

+ C
((
εhτ
−1
∣∣[∂tEh

]∣∣, τ
∣∣[Dλh

]∣∣+ hK

∣∣[∂nλh

]∣∣)).

We estimate I2 similarly as I1. First, we integrate by parts to obtain
∣∣I2

∣∣ ≤
∣∣((Eh − Ẽ, E −EI

h

))
δobs

+
((
εhD

2λh, E −EI
h

))

−
((
4λh, E −EI

h

))
+
((
Dλh, E −EI

h

))
(0,T ]×Γ1

+
((
Dλh, E −EI

h

))
(0,T ]×Γ2

∣∣

+C
((

maxS⊂∂K h−1
K

∣∣[∂sλh

]∣∣,
∣∣E −EI

h

∣∣ ))

+C
((
εhτ
−1
∣∣[∂tλh

]∣∣,
∣∣E −EI

h

∣∣ )).

9



Since λh is piecewise linear, the terms with 4λh and D2λh will disappear:
∣∣I2

∣∣ ≤
((∣∣Eh − Ẽ

∣∣,
∣∣E −EI

h

∣∣))
δobs

+
((∣∣Dλh

∣∣,
∣∣E −EI

h

∣∣))
(0,T ]×Γ1

+
((∣∣Dλh

∣∣,
∣∣E −EI

h

∣∣))
(0,T ]×Γ2

+C
((

maxS⊂∂K h−1
K

∣∣[∂sλh

]∣∣,
∣∣E −EI

h

∣∣))

+C
((
εhτ
−1
∣∣[∂tλh

]∣∣,
∣∣E −EI

h

∣∣)).

Next, we use the same kind of interpolation estimate for |E −E I
h| as we found for |λ− λI

h|
in equation (27), to get:

∣∣I2

∣∣ ≤ C
((∣∣Eh − Ẽ

∣∣, τ
∣∣ [DEh]

∣∣+ hK

∣∣ [∂nEh]
∣∣))

δobs

+ C
((∣∣Dλh

∣∣, τ
∣∣ [DEh]

∣∣+ hK

∣∣ [∂nEh]
∣∣))

(0,T ]×Γ1

+ C
((∣∣Dλh

∣∣, τ
∣∣ [DEh]

∣∣+ hK

∣∣ [∂nEh]
∣∣))

(0,T ]×Γ2

+ C
((

maxS⊂∂K h−1
K

∣∣[∂sλh

]∣∣, τ
∣∣ [DEh]

∣∣+ hK

∣∣ [∂nEh]
∣∣))

+ C
((
εhτ
−1
∣∣[∂tλh

]∣∣, τ
∣∣ [DEh]

∣∣+ hK

∣∣ [∂nEh]
∣∣)).

To estimate I3 we use the following approximation estimate for ε− εIh:

|ε− εIh| ≤ ChKDxε ≤ ChK

∣∣∣ [εh]
hK

∣∣∣ ≤ C|[εh]|,

and we end up with
∣∣I3

∣∣ ≤
((
|Dλh| |DEh| ,

∣∣[εh]
∣∣ ))+ γ(

∣∣εh − ε0
∣∣,
∣∣[εh]

∣∣ ),

which completes the proof.

7 An adaptive algorithm for solution of the inverse problem

In this section we present an adaptive algorithm for solution of the inverse problem defined
in Section 4. In this algorithm the refinement is based on computations of the residuals for
the parameter, since they already give a good indication where to refine the mesh. The in-
terpolation errors, and thus the exact value of the computational error in the reconstructed
parameter, can be obtained by computing the Hessian of the Lagrangian [8].

As we see from (17), the error in the Lagrangian consists of integrals in space and time of
the different residuals multiplied by the interpolation errors. Thus, to estimate the error in
the Lagrangian we need to compute the approximated values of (Eh, λh, εh) together with
residuals and interpolation errors. Since we want to control the error in the reconstructed
parameter, εh, we limit the computations to Rε1 and Rε2 , and neglect to compute the other
residuals in the a posteriori estimate (17). Thus, the a posteriori error is calculated as

e(x) ≈
∫ T

0
Rα1

(x, t) dt+Rα2
(x) . (28)

Algorithm



0. Choose an initial mesh Kh and an initial time partition J0 of the time interval (0, T ].
Start with an initial guess ε0, and compute the sequence of εn in the following steps:

1. Compute the solution En of the forward problem (9)-(10) on Kh and Jk, with ε(x) =
ε(n).

2. Compute the solution λn of the adjoint problem (15) on Kh and Jk.

3. Update the parameter ε on Kh and Jk using the quasi-Newton method

εn+1 = εn + αnHngn,

where Hn is an approximate Hessian, computed using the usual BFGS update for-
mula for the Hessian, see [20]. Furthermore, gn is the gradient of the Lagrangian
(13) with respect to the parameter ε,

gn = −
∫ T

0
DλnDEndt+ γ(εn − ε0), (29)

where α is the step length in the parameter upgrade computed using an one-dimensional
search algorithm [21].

4. Stop computing ε if the gradient gn < η; if not set n = n+ 1 and go to step 1. Here,
η is the tolerance in the quasi-Newton update.

5. Compute the residuals, Rε1 , Rε2 and refine the mesh in all points where

∫ T

0
Rα1

(x, t) dt+Rα2
(x) < tol (30)

is violated. Here tol is a tolerance chosen by the user.

6. Construct a new mesh Kh and a new time partition Jk. Return to step 1 and perform
all the steps of the optimization algorithm on the new mesh.

8 Numerical Results

In this section we present several numerical examples to show the performance of the
adaptive hybrid method and the usefulness of the a posteriori error estimate (17). To solve
the forward and adjoint problems, we use the hybrid FEM/FDM method described in [10].

The computational domain, is set as Ω = [−4.0, 4.0] × [−5.0, 5.0]. Next, Ω is split into
a finite element domain ΩFEM = [−3.0, 3.0] × [−3.0, 3.0] with an unstructured mesh and
a surrounding domain ΩFDM with a structured mesh, see Figure 3. Between ΩFEM and
ΩFDM there is an overlapping layer consisting of structured elements. The space mesh
consists of triangles in ΩFEM , and squares in ΩFDM with mesh size h = 0.125 in the
overlapping regions. At the top and bottom boundaries of Ω we use first-order absorbing
boundary conditions [13]. At the lateral boundaries, Neumann boundary conditions allow
us to assume an infinite space-periodic structure in the lateral direction.

For simplicity, we assume that ε = 1 in ΩFDM . Thus, we only need to reconstruct the
electric permittivity ε in ΩFEM .

11



(a) ΩFDM (b) Ω = ΩFEM ∪ΩFDM (c) ΩFEM

Figure 3: The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is applied, and a mesh
(c), where we use FEM, with a thin overlapping of structured elements.

8.1 Example 1

We start to test our adaptive algorithm on the reconstruction of the periodic structure
given in Figure 3-c).

To generate data at the observation points, we solve the forward problem (9)-(10) in the
domain Ω with a plane wave pulse given as

∂nE
∣∣
Γ1

= ((sin (ωt− π/2) + 1)/10), 0 ≤ t ≤ 2π

ω
= t1. (31)

The field initiates at the boundary Γ1, in our examples this boundary represents the top
boundary of the computational domain, and propagates in normal direction n into Ω with
ω = 6. The trace of the forward problem is measured at the observation points, placed on
the lower boundary of the computational domain ΩFEM . On Γ1 × (t1, T ] and Γ2 × (0, T ]
we use first order absorbing boundary conditions, [13]. Here, T = 12.0 and the exact value
of the parameter is ε = 4.0 inside the square lattices and ε = 1.0 everywhere else. Since an
explicit method [4], is used to solve the forward and adjoint problems, we choose a time
step τ according to the Courant-Friedrich’s-Levy (CFL) stability condition to provide a
stable time discretization.

We start our adaptive algorithm with initial guess for the parameter being ε = 1.0 at
all points in the computational domain ΩFEM and with regularization parameter γ = 0.1.
We enforce that the parameter ε(x) belongs to the set of admissible parameters CM = {ε ∈
C(Ω)|1.0 < ε(x) < 4.0} as follows: if 0 < ε(x0) < 1.0 for some point x0 ∈ Ω then we set
ε(x0) = 1.0.

To achieve better results in the reconstruction, we performed tests letting the incoming
wave from the top boundary of ΩFDM be equal to the reflected non-plane wave measured
on the lower boundary of ΩFDM . Thus, to generate data at the observation points, we
first solve the forward problem (9)-(10) with a plane wave (31) in the time interval t =
(0, T ] with the exact value of the parameter being ε = 4.0 inside the square lattices and
ε = 1.0 everywhere else, and registered the values of the solution of the forward problem
at the lower boundary of ΩFDM . Then, using these registered values, a non-plane wave is
initialized, starting at t = T and ending at t = 2T . In Test 1 we describe computational
results when the observation points are placed only at the top boundary of ΩFEM . In Test
2 the computational tests was performed when the observation points are placed both on
the lower and upper boundaries of ΩFEM .



a) 6082 elements b) 8806 elements c) 10854 elements d) 18346 elements

e) 6082 elements f) 8806 elements g) 10854 elements h) 18346 elements
αmax = 1.8804 αmax = 2.2325 αmax = 2.1135 αmax = 2.7559

i) 6082 elements j) 8806 elements k) 10854 elements l) 18346 elements
εmax = 1.7045 εmax = 1.8998 εmax = 1.8966 εmax = 4.0

Figure 4: a)-d) Adaptively refined meshes ; Reconstructed parameter ε(x), indicating domains with a given pa-
rameter value: Test1 - Figures e)-h); Test 2 - Figures i)-l). Here, red color corresponds to the maximum
parameter value on the corresponding meshes, and blue color - to the minimum.

We performed the same tests as above, but with adding relative noise to the observed
data. The data with relative disturbation, or noise, Eσ, is computed by adding a relative
error to the computed data Eobs using the expression

Eσ = Eobs + α(Emax −Emin)σ/100. (32)

Here, α is a random number on the interval [−1; 1], Emax and Emin are the maximal and
minimal values of the computed data Eobs, and σ is the noise in percents.

8.1.1 Test 1

First we performed tests where the trace of the incoming wave was measured at the obser-
vation points at the lower boundary of ΩFEM in the time interval (0, T ], and then at the
observation points at the top boundary in the time interval (T, 2T ].

In Figures 5-6 we present a comparison of the computed L2-norms, ||E − Eobs||L2
, de-

pending on the relative noise σ on the different adaptively refined meshes. The norms
are plotted as long as they decrease. The relative noise σ in the data is computed using
expression (32). From these results we conclude that the reconstruction is stable with
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Figure 5: Tests 1: ||E − Eobs||L2
on adaptively refined meshes. Computations was performed with noise level

σ = 0, 1, 3 and 5% and with regularization parameter γ = 0.01. Here the x-axis denotes number of
optimization iterations.
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Figure 6: Test 1: ||E − Eobs||L2
on adaptively refined meshes. Computations was performed with noise level

σ = 0, 7 and 10% and with regularization parameter γ = 0.01. Here the x-axis denotes number of
optimization iterations.
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Figure 7: Test1: ||E − Eobs||L2
on adaptively refined meshes. Computations was performed with noise level

σ = 0%, and with regularization parameters γ = 0.1, 0.01, 0.001, 0.0001, Here the x-axis denotes number
of optimization iterations.
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Figure 8: Test 1: ||E − Eobs||L2
on adaptively refined meshes. Computations was performed with noise level

σ = 3%, and with regularization parameters γ = 0.1, 0.01, 0.001, 0.0001, Here the x-axis denotes number
of optimization iterations.

15



1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

 
6082 elements, σ=0
8806 elements, σ=0
10854 elements, σ=0
18346 elements, σ=0
6082 elements, σ=1
8806 elements, σ=1
10854 elements. σ=1
18346 elements, σ=1
6082 elements, σ=3
8806 elements, σ=3
10854 elements, σ=3
18346 elements, σ=3
6082 elements, σ=5
8806 elements, σ=5
10854 elements, σ=5
18346 elements, σ=5

Figure 9: Test 2: ||E − Eobs||L2
on adaptively refined meshes. Computations was performed with noise level

σ = 0, 1, 3 and 5% and with regularization parameter γ = 0.01. Here the x-axis denotes number of
optimization iterations.
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Figure 10: Test 2: ||E − Eobs||L2
on adaptively refined meshes. Computations was performed with noise level

σ = 0, 7 and 10% and with regularization parameter γ = 0.01. Here the x-axis denotes number of
optimization iterations.
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Figure 11: Test 2: ||E − Eobs||L2
on adaptively refined meshes. We show computational results with noise level

σ = 1% and with regularization parameters γ = 0.1, 0.01, 0.001, 0.0001. Here the x-axis denotes
number of optimization iterations.
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Figure 12: Test 2: ||E − Eobs||L2
on adaptively refined meshes. We show computations: on a) with noise level

σ = 0% and with regularization parameter γ = 0.01 for Test 1; on b) with noise level σ = 1% and
with regularization parameter γ = 0.01 for Test 2. Here the x-axis denotes number of optimization
iterations.
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Noise 0% Noise 5%

a) 4608 elements f) εmax = 3, 8504 k) εmax = 4

b) 6082 elements g) εmax = 1, 7758 l) εmax = 1, 7758

c) 8446 elements h) εmax = 2, 4107 m) εmax = 2, 4107

d) 11592 elements i) εmax = 2, 6657 n) εmax = 2, 6657

e) 16862 elements j) εmax = 3, 9996 o) εmax = 3, 9945

Figure 13: Example 2: the spatial distribution of εh on different adaptively refined meshes. Here, red color
corresponds to the maximum parameter value on the corresponding meshes, and blue color - to the
minimum, εmin = 1.0 in all the plots.
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Figure 14: Example 2: the one-dimensional cross-sections of the image of function εcomp along the vertical line
connecting the points (-1.5,-3.0) and (-1.5,3.0) computed for corresponding refined meshes with noise
level 0 % on data.
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Figure 15: Example 2: the one-dimensional cross-sections of the image of function εcomp along the vertical line
connecting the points (-1.5,-3.0) and (-1.5,3.0) computed for corresponding refined meshes with noise
level 5 % in data.
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small values of the noise (see Figure 5), and unstable when adding more than 5% noise
to the data (Figure 6). We also used smoothness indicator in parameter update by local
averaging over the neighboring elements.

In Figures 7-8 we show a comparison of the computed L2-norms, ||E−Eobs||L2
, depending

on the different regularization parameters γ. We see that we obtain the smallest value of
||E − Eobs||L2

with the regularization parameter γ = 0.01, while choosing γ = 0.1 is too
large and involve too much regularization. The computational tests show that the best
results are obtained on the finest mesh, where ||E−Eobs||L2 is reduced by approximately a
factor of seven between the first and last optimization iterations. Figure 4-e)-h) correspond
to Figure 12-a) and show the reconstructed parameter field ε(x) at the final optimization
iteration.

8.1.2 Test 2

The tests described in this section, was performed by measuring the trace of the incoming
wave at the observation points on both the lower and upper boundaries of the computa-
tional domain ΩFEM . Thus, we have twice as much information as in the previous test,
and we expect to get a more quantitative reconstruction of the structure.

In Figures 9-10 we present a comparison of the computed L2-norms, ||E − Eobs||L2
,

depending on the relative noise σ on the different adaptively refined meshes. The norms
are plotted as long as they decrease. The relative noise, σ, in the data is computed using
expression (32). From these results we conclude that the reconstruction is stable on the
two, three and four times refined meshes, even when 10% noise is added to the data.

In Figure 11 we show a comparison of the computed L2-norms, ||E−Eobs||L2
, depending

on the different regularization parameters γ. We see that the smallest value of ||E−Eobs||L2

is obtained with regularization parameter γ = 0.01, while γ = 0.1 is again too large and
involve too much regularization. The computational tests show that the best results are
obtained on the finest mesh, where ||E −Eobs||L2 is reduced by approximately a factor of
seven between the first and last optimization iterations, see Figure 12-b). Figure 4-i)-l)
correspond to Figure 12-b), and show the reconstructed parameter field ε(x) at the final
optimization iteration.

8.2 Example 2

We continue to test our adaptive algorithm on the reconstruction of the same periodic
structure as in Figure 3, but for the case where a good initial guess of the solution is
unknown. As before, we assume that ε = 1 in ΩFDM . We measure the trace of the
incoming wave at the observation points on both the lower and the upper boundaries of
the computational domain ΩFEM as in Test 2. We start our adaptive algorithm with
initial guess ε = 1.5 at the inner points of the computational domain ΩFEM , and with
ε = 1.0 at the overlapping nodes of the domain ΩFEM ∩ ΩFDM . We also enforce that the
parameter ε(x) belongs to the set of the admissible parameters CM defined above. We
stop the computations in the quasi-Newton procedure when the computed L2-norms of
||E −Eobs||L2

are stabilized.
Figure 13 shows that the reconstruction of the parameter is improved as the meshes are

refined. However, the locations of the imaged right squares are shifted slightly to the right.
The meshes are refined using our mesh-adaptive algorithm. We note that the coarse and
the one time refined meshes are the same as in the previous examples, while the two, three
and four times refined meshes are different. We present the results of the reconstruction



with the noise level in the data being 0% and 5%. As before, the noise is computed using
expression (32).

On Figures 14-15 we show the one-dimensional cross-sections of the image of the func-
tions εn along the vertical line passing through the middle of the right small square, su-
perimposed with the correct ε(x). In Figure 14 the noise level is 0% and in Figure 15 it is
5%. We observe that the images deteriorate or achieve a local minima on the coarse mesh.
The reconstruction is dramatically improved as the meshes are refined using the adaptive
algorithm.

We also performed the same tests as above, but starting with ε = 2.0 at the inner points
of ΩFEM , and ε = 1.0 at the overlapping nodes of ΩFEM ∩ ΩFDM . The reconstructed
parameter deteriorated not only on the coarse mesh, but also on the one and two times
refined meshes. Thus, the adaptivity works in a neighborhood of an initial guess 1 ≤ ε ≤
1.5. We note that the usual quasi-Newton algorithm without adaptivity works only with
guess ε = 1 and deteriorate for ε = 1.5, see Fig. 13-f),k) and Test 5 in [9].

9 Conclusions and Remarks

We have devised an explicit, adaptive hybrid FEM/FDM method for an inverse electro-
magnetic scattering problem. The method is hybrid in the sense that different numerical
methods, finite elements and finite differences, are used in different parts of the compu-
tational domain. We derived an a posteriori estimate for the error in the Lagrangian in
the case when we have first order absorbing [13] and Neumann boundary conditions in the
formulation of the forward problem. The adaptivity is based on a posteriori error estimates
for the associated Lagrangian in the form of space-time integrals of the residuals multiplied
by the dual weights. We illustrated the usefulness of the adaptive error control on an in-
verse scattering problem for recovering the electric permittivity from boundary measured
data. Our numerical experiments show that adaptivity can mitigate the problem of local
minima in the usual optimization algorithms.
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