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We show that while Runge–Kutta methods cannot preserve polynomial in-
variants in general, they can preserve polynomials that are energy invariant of
canonical Hamiltonian systems.
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Abstract

We show that while Runge–Kutta methods cannot preserve polynomial invariants
in general, they can preserve polynomials that are the energy invariant of canonical
Hamiltonian systems.

All Runge–Kutta (RK) methods preserve arbitrary linear invariants [12], and some
(the symplectic) RK methods preserve arbitrary quadratic invariants [4]. However, no RK
method can preserve arbitrary polynomial invariants of degree 3 or higher of arbitrary
vector fields [1]; the linear system ẋ = x, ẏ = y, ż = −2z, with invariant xyz, provides an
example. (Preservation would require R(h)2R(−2h) ≡ 1, where R is the stability function
of the method; but this requires R(z) = ez, which is impossible [7].) This result does
not rule out, however, the existence of RK methods that preserve particular (as opposed
to arbitrary) invariants. Since the invariant does not appear in the RK method, this
will require some special relationship between the invariant and the vector field. Such a
relationship does exist in the case of the energy invariant of canonical Hamiltonian systems:
see [3, 5] on energy-preserving B-series. In this article we show that for any polynomial
Hamiltonian function, there exists an RK method of any order that preserves it.

The key is the Average Vector Field (AVF) method introduced in [8] and identified as
a linear and energy-preserving method in [10]: for the differential equation

ẋ = f(x), x ∈ Rn, (1)

the AVF method is the map x 7→ x′ defined by

x′ − x

h
=

∫ 1

0
f(ξx′ + (1− ξ)x) dξ. (2)
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Proposition 1 The AVF method is a B-series method, is affine-covariant [9], self-adjoint,
and of order 2. When

f(x) = J−1∇H(x), J =
(

0 −I
I 0

)
, H: Rn → R, (3)

the AVF method preserves the energy H. It is pseudo-symplectic of order 2 (but not 3) and
conjugate-pseudo-symplectic of order 4 (but not 5).

Proof The existence of the B-series can seen simply by expanding x′ in a Taylor series.
Alternatively, the B-series can be calculated by substituting the assumed B-series1

x′ = x +
∑
t∈T

h|t|

σ(t)
b(t)F (t) (4)

for x′ into f(ξx′ + (1 − ξ)x), evaluating the coefficients of the latter using Lemma III.1.9
of [7], and integrating term-by-term, to get

b( ) = 1, b([t1, . . . , tn]) =
1

n + 1
b(t1) . . . b(tn). (5)

That is,

x′ = x + hf +
1
2
h2f ′(f) + h3

(
1
6
f ′′(f, f) +

1
4
f ′(f ′(f))

)
+ . . . (6)

which can be compared to the expansion of the exact solution,

x(h) = x + hf +
1
2
h2f ′(f) + h3

(
1
6
f ′′(f, f) +

1
6
f ′(f ′(f))

)
+ . . . , (7)

showing that the order is 2. All B-series methods are affine-covariant. Self-adjointness is
easily checked using the change of variables ξ′ = 1− ξ in (2). The change in energy in one
step is (where ()> denotes transpose)

H(x′)−H(x) =
∫ 1

0
∇H(ξx′ + (1− ξ)x)>(x′ − x) dξ

= h

(∫ 1

0
∇H(ξx′ + (1− ξ)x) dξ

)> (∫ 1

0
f(ξx′ + (1− ξ)x) dξ

)
= h

(∫ 1

0
∇H(ξx′ + (1− ξ)x) dξ

)>

J−1

(∫ 1

0
∇H(ξx′ + (1− ξ)x) dξ

)
= 0.

(8)

1See [7] for background on B-series. Here T is the set of rooted trees, F (t) is the elementary differential
associated with the tree t, |t| is the number of vertices of t, and σ(t) is the symmetry coefficient (number
of automorphisms) of t. For example, ∈ T , σ( ) = 2, and F ( ) = f ′′(f, f).
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Because the AVF method has order 2, it is pseudo-symplectic of order 2 (see [7] for an
introduction to pseudo-symplecticity). The condition to be pseudo-symplectic of order 3

is b(u ◦ v) + b(v ◦ u) − b(u)b(v) = 0 for u = and v = . We have b( ) = 1
4 , b( ) = 1

3 ,
b( ) = 1, and b( ) = 1

2 , so this condition is not satisfied. However, all B-series methods of
order 2 are conjugate-pseudo-symplectic of order 3 in general and 4 if they are self-adjoint
[7].To check conjugate-pseudo-symplecticity at order 5 we calculate all 9 coefficients of the
B-series at order 5 and check the 3 conditions given as Eqs. (3.7.18–20) of Scully [11] and
too lengthy to reproduce here; they are not satisfied. �

While the AVF method requires, in general, the evaluation of the integral of a function
of one variable, the following can often be used to avoid this. By linearity, it extends to
give the AVF for Hamiltonians that are sums of functions of 1 variable.

Proposition 2 If H = H(a>x) then∫ 1

0
f(ξx′ + (1− ξ)x) dξ = J−1a

H(a>x′)−H(a>x)
a>x′ − a>x

(9)

Proof We have f = J−1aH ′(a>x), and
∫ 1
0 H ′(a>x′ξ + a>x(1 − ξ) dξ can be integrated

directly to give the result. �

We now replace the integral in (2) by a quadrature to get the following

Proposition 3 Let (bi, ci), i = 1, . . . , s be the weights and nodes of a quadrature rule on
[0, 1] that is exact on polynomials of degree m − 1. Let H be a polynomial of degree m.
Then the s-stage Runge–Kutta method

x′ − x

h
=

s∑
i−1

bif(x + hci) (10)

preserves H, is consistent, mono-implicit, of order min(m, 2), and is self-adjoint when the
quadrature rule is symmetric.

Gauss quadrature, for example, preserves all polynomial Hamiltonians up to degree 2s.
The B-series of methods of the form (10) take the same values as the AVF method (i.e.,
(5)) on trees with at most 2s − 1 branches at each vertex. Compositions of (10) and its
adjoint then give RK methods of any order that preserve the energy.2

2Proposition 3 contradicts non-existence results in the literature, namely Propositions 1 (a necessary
condition for an RK method to preserve a generic invariant is that it be symplectic; the methods (10) are
not symplectic), 3 (a necessary condition for an RK method to preserve an invariant is that the invariant
satisfy a certain PDE), and 5 (an RK method cannot preserve general polynomial invariants) of [6]. These
propositions are false. The error in the proofs can be seen in the final equation in the proof of Proposition
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Examples are the midpoint rule (energy-preserving for quadratic Hamiltonians) and
Simpson’s rule

x′ − x

h
=

1
6
f(x) +

2
3
f

(
x + x′

2

)
+

1
6
f(x′) (12)

that is second-order, self-adjoint, and energy-preserving for quartic Hamiltonians. One can
also regard the representation (10) as a good way to implement (2) when H is a polynomial.

Such an existence result motivates the study of energy-preserving RK methods in gen-
eral.

Proposition 4 An energy-preserving B-series must satisfy all the quadrature order con-
ditions. No RK method is energy-preserving in general.

Proof Consider the Hamiltonian H = p−F (q) with ODEs q̇ = 1, ṗ = f(q) where F ′ = f .
The elementary differential associated with the bushy tree with n leaves is (δn0, f

(n)(q)).
All B-series methods give q′ = q + h. Energy preservation requires p′ − F (q′) = p − F (q)
or p′ = p +

∫ t0+h
t0

f(t) dt = p +
∑∞

n=1
hn

n! f
(n−1)(t0); the terms of this Taylor series give the

quadrature order conditions on the bushy trees.
Applying an RK method to this system gives p′ = p +

∑s
i=1 bif(t0 + cih). This cannot

equal p +
∫ t0+h
t0

f(t) dt for all f because the quadrature rule cannot be exact on all f .
(Choose an f that is zero at the quadrature nodes but has nonzero integral.) �

The same proof shows that no B-series method that uses only a finite number of values
of f and its derivatives can be energy-preserving in general. Some kind of integral, as in
the AVF method (2), is required.

Proposition 5 A Runge–Kutta method is energy-preserving for all quadratic Hamiltoni-
ans iff R(z)R(−z) ≡ 1.

Proof Let the Hamiltonian be 1
2x>Hx and the vector field be f = J−1Hx. The RK

method yields x′ = R(hJ−1H)x,

H(x′) =
1
2
x>R(hJ−1H)>HR(hJ−1H)x, (13)

1 of [6]: in our notation,

H(x′)−H(x) =
1

2
h2

sX
i,j=1

MijB(H)(Xi) +O(h3), Mij = bibj − biaij − bjaji (11)

where the Xi are the stages of the RK method and B(H) is a certain differential polynomial in H, from
which it is concluded that, unless B(H) ≡ 0, annihilation of the O(h2) terms it is necessary that Mij = 0
for all i and j. In fact this is only sufficient. The O(h2) terms are not independent; one can substitute
Xi = x + h

Ps
j=1 aijf(Xj), then at O(h2) all one gets is the necessary condition

Ps
i,j=1 Mij = 0, which, on

rearranging, is the condition that the method be of order 2.
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and is thus energy-preserving iff R(hJ−1H)>HR(hJ−1H) = H for all h and for all sym-
metric matrices H. We have R(hJ−1H)>H = R((hJ−1H)>)H = R(−hHJ−1)H =
HR(−hJ−1H), which gives the result. �

Note that self-adjointness and preservation of arbitrary quadratic invariants are suffi-
cient but not necessary for R(z)R(−z) ≡ 1 to hold. The RK method with b = (1

3 , 2
3) and

a = (0, 0; 1
4 , 1

2) has R(z) = 1+z/2
1−z/2 , hence R(z)R(−z) = 1, but is not self-adjoint. Nor does it

preserve arbitrary quadratic invariants. Preservation of quadratic energies provides s con-
ditions (of degree 2s) on the RK coefficients, self-adjointness and preservation of arbitrary
quadratic invariants provide s(s + 1)/2 conditions (of degree 1 and 2, respectively) each.

We do not know necessary and sufficient conditions for an RK method to preserve
polynomial energies of a given degree, but we conjecture that for each s and degree d,
there is a p(s, d) such that an RK method that is pseudo-energy-preserving up to degree
p is energy-preserving. For d = 2 we have p = 2s. For cubics, consider 2-stage methods.
We find that there are methods that are pseudo-energy-preserving of order 3 that are
not energy-preserving, but all methods that are pseudo-energy-preserving of order 4 are
energy-preserving. These satisfy 5 conditions on their 6 parameters; there is a 1-parameter
family of such methods, given by (10) for 2-node quadratures exact on quadratics. Thus
p(2, 3) = 4.

Clearly no explicit RK method can be energy-preserving, even for (nonlinear) polyno-
mial Hamiltonians. However, one can find explicit RK methods that are pseudo-energy-
preserving to low orders. At orders 1 to 4 there are 1, 1, 1, and 3 conditions to preserve
energy (and be consistent). The methods

0 0 0
2
3

2
3 0
1
4

3
4

0 0 0 0
1
3

1
3 0 0

5
6 − 5

48
15
16 0

1
10

1
2

2
5

(14)

are the unique minimal-stage methods that are pseudo-energy-preserving of orders 3 and
4 but no higher.

Further results on energy-preserving integrators and the structure of B-series are con-
tained in our forthcoming article [2].
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