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FRB–FORTRAN routines for the exact
computation of free rigid body motions

ELENA CELLEDONI

Department of Mathemathical Scinces, NTNU
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We present two algorithms and their corresponding FORTRAN routines for the exact computation

of free rigid body motions. The methods use the same description of the angular momentum part

m by Jacobi elliptic functions, and suitably chosen frames for the attitude matrix/quaternion Q/q
respectively. The frame transformation requires the computation of elliptic integrals of the third

kind. Implementation and usage of the routines are described, and some examples of drivers are

included. Accuracy and performance are also tested to provide reliable numerical results.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and anal-

ysis; G.1.7 [Numerical Analysis]: Ordinary differential equations-One step (single-step) meth-

ods; G.1.10 [Applications]: Rigid bodies

General Terms: Numerical methods, rigid bodies

Additional Key Words and Phrases: Rigid body, Jacobi elliptic integrals, splitting methods, atti-

tude rotation.

1. INTRODUCTION

Due to the recent interest in computing rigid body dynamics using Jacobi elliptic
functions and integrals we present here FORTRAN subroutines for use in the com-
putation of problems of rigid bodies subject to external forces. We consider both
the equations for the angular momentum (in the body frame), and the equations
for the reconstruction of the frame itself (kinematic equations).

The free rigid body plays an important role in physics and engineering [Whittaker
1937] [Leimkuhler and Reich 2004]. In fact rigid body integrators are used as bu-
liding blocks in problems of celestial mechanics, molecular dynamics, etc. [Morton
et al. 1974], [Touma and Wisdom 1994], [Dullweber et al. 1997].

The exact solution of the free rigid body equations can be successfully employed
in connection with splitting methods allowing the use of fairly large step sizes of
integration [Celledoni and Säfstöm 2006], [Celledoni et al. 2008], [van Zon and
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Schofield 2007b], [van Zon and Schofield 2007a].
A typical application is the case of a rigid body subjected to gravity or to an

external torque. Exact analytic solution of such rigid body equations (including the
kinematic equations) are known, but only for special choices of the inertia tensor
[Romano 2008].

1.1 The problem and the exact solution

We consider the motion of a rigid body with a fixed point (free rigid body, FRB)

ṁ = m× I−1m, (1)

Q̇ = Q Î−1m, (2)

where m = (m1,m2,m3)T is the body representative of the angular momentum
vector and I = diag(I1, I2, I3) is the inertia tensor. Here × denotes the vector
product in R and the hat-map ̂ : R3 → so(3) is defined as

v =

 v1

v2

v3

 7→ v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0


and satisfies v̂u = v × u for all u,v ∈ R3.

Equation (1) is Euler equation (written for the angular momentum rather than
for the angular velocity ω = I−1m), while (2) is the equation of the attitude
rotation of the free rigid body, transforming a chosen orthogonal frame fixed in
space (say the canonical frame in R3, {e1, e2, e3}) into a chosen orthogonal frame
attached to the body, both having the origin in the body fixed point. The kinetic
energy of this system is

T =
m2

1

2I1
+
m2

2

2I2
+
m2

3

2I3
,

and the equations are Hamiltonian. The three components of the (spatial angular
momentum) vector Qm are constants of motion. In particular, the norm of the
(body) angular momentum, G = ‖m‖, is a constant of motion.

Equations (1) and (2) can be explicitly integrated in terms of elliptic functions.
The integration is done in two steps. First, Euler equation (1) is integrated to
give m(t). Then, equation (2) becomes a time dependent linear equation for Q(t),
which can be integrated exploiting the constancy of the spatial angular momentum
vector.

Note that, due to the obvious SO(3)-symmetry and scaling invariance of equa-
tions (1) and (2), we may restrict ourselves to describe their solutions with initial
conditions (Q0,m0) at t = t0 such that

Q0 = 1 , ‖m0‖ = 1 .

(Abusing notation, we denote the identity matrix by 1).
From now on, we assume that the three moments of inertia I1, I2, I3 are pairwise

distinct and we order them in ascending order, I1 < I2 < I3.
ACM Transactions on Mathematical Software, Vol. xx, No. xx, xx 2008.



Free rigid body algorithm · 113

1.2 Solution of the Euler equation

The expression of the solutions of (1) involve the three Jacobi elliptic functions sn,
cn and dn, whose definition is recalled in the Appendix. As mentioned, we consider
only solutions with unit norm. Given T , define the positive constants

Ijh = |Ij − Ih| , ∆j = |1− 2TIj | , Bjh =
(Ij∆h

Ijh

)1/2

for j, h = 1, 2, 3, j 6= h, and

k =
(∆1I32

∆3I21

)1/2

, λ1 =
(∆1I23

I1I2I3

)1/2

, λ3 =
(∆3I12

I1I2I3

)1/2

. (3)

Let m(t) be a solution of Euler equation (1) with unit norm and energy T . We
distinguish three cases.
(i) If 2TI2 > 1 > 2TI1, then

m(t) =
(
σB13 dn(λt− ν, k) , B21 sn(λt− ν, k) , B31 cn(λt− ν, k)

)T
, (4)

with λ = σλ3, for some ν ∈ R and σ = ±1.
(ii) If 2TI2 < 1 < 2TI3, then

m(t) =
(
B13 cn(λt−ν, k−1) , B23 sn(λt−ν, k−1) , σB31 dn(λt−ν, k−1)

)T
, (5)

with λ = σλ1, for some ν ∈ R and σ = ±1.
(iii) If 2TI2 = 1 and m(0) is not an equilibrium, then

m(t) =
(
σ′B13 sech(λt− ν) , tanh(λt− ν) , σ′B31 sech(λt− ν)

)T
,

with λ = σλ3, for some ν ∈ R, σ = ±1 and σ′ = ±1.

One can easily verify by differentiation that these expressions satisfy the Euler
equations , see e.g. [Lawden 1989]. Solutions of We included the case when 2TI2 = 1
for completeness, the occurrence of these solutions in numerical computations is
quite rare. Note that in the first two cases the phase ν can be taken modulo the
period of the Jacobi elliptic functions.

Remark Solutions with norm G are obtained from the given formulas of with the
substitutions m 7→ Gm and T 7→ T/G2.

1.3 Integration of the rotation matrix

We will follow the presentation of [Celledoni et al. 2008]. Here and in the following
we denote by a dot the Euclidean scalar product in R3 (and later on also in R4).
Moreover, we use the inner product

〈A,B〉 :=
1
2

tr (ATB)

on the space of 3 × 3 skew-symmetric matrices. Note that 〈û, v̂〉 = u · v for all
u,v ∈ R3.

ACM Transactions on Mathematical Software, Vol. xx, No. xx, xx 2008.



114 · Celledoni and Zanna

It is convenient to factorize the attitude matrix Q(t) in the product

Q(t) = P (t0)TY (t)P (t) (6)

with P (t), Y (t) ∈ SO(3) such that

P (t)m(t) = e3 and Y (t)e3 = e3 ∀ t , Y (t0) = 1 . (7)

Note that any unit vector v(t) orthogonal to m(t) can be used to construct the
matrix P (t) = [v(t),w(t),m(t)]T , where w(t) = m(t)× v(t), and P (t) is therefore
not unique.

Assuming a P (t) satisfying (7) is fixed, we can write Y (t) = exp(ψ(t)ê3) where
ψ(t) is the rotation angle. One can show that

ψ(t) =
∫ t

t0

(
2T + w(s) · v̇(s)

)
ds (mod2π) . (8)

Since ‖m(t)‖ = 1 implies that ṁ(t) is ortohogonal to m(t), a possible choice is
that of taking v(t) aligned with ṁ(t).

The expression of the angle ψ(t) corresponding to this choice and with m(t) as
in (4) with unit norm and energy T such that 2TI2 > 1 > 2TI1, is

ψ(t) = 2T (t− t0) +
∆2

λI2

[
Π
(
am(λt− ν), n, k

)
−Π

(
am(λt0 − ν), n, k

)]
(9)

with k, λ and ν as in (4) and n = B−1
23 .

The expression of ψ uses the elliptic integral of the third kind, Π, and the am-
plitude function am, whose definitions are recalled in the Appendix.

Remark If 2TI3 > 1 > 2TI2 then ψ is as in (9) with k replaced by k−1, with λ
and ν as in case (ii) of subsection 1.2, and with n = B−1

21 .

This algorithm equals that of [Lawden 1989], except for the sign of ψ. A similar
algorithm is given in [Cushman 2000].

For another choice of P we refer to [van Zon and Schofield 2007a] where P (t) =
[v(t),w(t),m(t)]T is such that v = m×e3

‖m×e3‖ and w = m×v
‖m×v‖ .

1.4 Formulation in quaternions

Sometimes it might be convenient to represent the equations (1) and (2) in quater-
nions. The quaternions (of unit norm) are the elements of the unit sphere of R4,

S3 = {q = (q0, q) ∈ R×R3 | q2
0 + ‖q‖2 = 1},

equipped with a Lie-group structure with product

(p0,p)(q0, q) := (p0q0 − p · q, p0q + q0p + p× q),

identity e = (1,0) and the inverse of (q0, q) ∈ S3 is q−1 = (q0,−q). The quaternion
product extends to R4.

The ‘Euler–Rodriguez’ map E : S3 → SO(3) defined by

E(q) = 1 + 2q0q̂ + 2q̂2 (10)
ACM Transactions on Mathematical Software, Vol. xx, No. xx, xx 2008.
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transforms any quaternion of unit norm into a rotation on R3 and is onto. Note
that E(q) = E(−q).

The Lie algebra of S3 is

s3 = TeS
3 =

{
u = (0,u) : u ∈ R

}
.

If m is a solution of the Euler equations (1) and q ∈ S3 then Q = E(q) is a
solution of of Arnold equation (2) if and only if

q̇ =
1
2
qω (11)

with ω = (0, I−1m).
The analogous of the Euler equations (1) in S3 is ṁ = 1

2 (mω − ωm).
As in section 1.3 we consider a factorization of the solution q of (11) as follows

q(t) = p(t0)−1 y(t) p(t) (12)

and the conditions, in parallel to (7), are

p(t)m(t)p(t)−1 = e3 and y(t)e3y(t)−1 = e3 ∀ t , y(t0) = e . (13)

Let m be a solution of the Euler equations with unit norm. Then, a q(t) of the
form (12) satisfies (11) and q(t0) = e if and only if y(t) = (cos ψ(t)

2 , e3 sin ψ(t)
2 ) with

ψ(t) =
∫ t

t0

(
2T + 2e3 · p(s)ṗ(s)−1

)
ds (mod2π) . (14)

Remark It is possible to show that a quaternion p satisfying (13) is determined,
up to the sign, once the square of the 4-th component, p2

3, and the relative signs of
p0 and p3 are known, [Celledoni et al. 2008]. Assuming m and p2

3 known, one has
the following dependence among the components of p,

p2
0 =

1 +m3

2
− p2

3, p1 =
p3m1 + p0m2

1 +m3
, p2 =

p3m2 − p0m1

1 +m3
. (15)

Assume m is a solution of the Euler equations with unit norm and 2TI2 > 1 >
2TI1 then for different choices of p satisfying (13) we obtain different angles ψ. In
what follows we distinguish three cases giving rise to three different algorithms.

(1) If we choose

p(t)=
1√
2

(√
1 +m3(t) ,

m2(t)√
1 +m3(t)

, − m1(t)√
1 +m3(t)

, 0

)
,

then the corresponding angle is

ψ(t) =
t− t0
I3

+
I31

I1I3λ

[
Π (ϕ(t), n, k) + f(t)−Π (ϕ(t0), n, k)− f(t0)

]
, (16)

where ϕ(s) = am(λs− ν, k) with λ, k and ν as in (4), n = −(B31/B13)2 and

f(s) = B−1
21 B13B31 arctan

(
B−1

13 B21 sd(λs− ν, k)
)
.

This is a rescaled version of the algorithm presented in [Kosenko 1998].
ACM Transactions on Mathematical Software, Vol. xx, No. xx, xx 2008.
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(2) Taking

p2
3 =

1 +m3

4
+

I32m2

4I2I3‖ṁ‖
(
m3−B32

)
, sign(p0p3) = sign

(
m1m3

I31

I1I3
+m1

1− 2TI1
I1

)
and determining (p0, p1, p2) according to (15), we retrive the angle ψ of (9),
and we obtain the quaternion formulation of the algorithm of section 1.3.

(3) Taking

p2
3 =

1 +m3

4
− m2(1 +m3)

4
√

1−m2
3

, sign(p0p3) = sign(m3m2 −m1)

and determining (p0, p1, p2) according to (15), the rotation angle we obtain is

ψ =
∫ t

t0

2TI3 −m2
3

I3(1−m2
3)
ds =

t− t0
I3

+
I31

λI3I1

(
Π(am(λt−ν), n, k)−Π(am(λt0−ν, n, k)

)
with n = −B−2

31 B
−2
13 .

This produces a quaternion version of the algorithm based on rotation matrices
recently considered by van Zon and Schofield [van Zon and Schofield 2007a].

2. THE ALGORITHMS

In this sections we present an overview of the algorithms that perform the FRB
computations in the interval [t0, t0 +h]. The parameters k, λ1, λ3 are defined in (3).
The two algorithms differ in the choice of the frame P (t), for matrices, and p(t),
for quaternions in the updates (6) and (12).

Algorithm 1. Rigid body with rotation by matrices

(1) Set up the initial parameters
(2) if λ3 = 0 or λ1 = 0 (special case) then
(3) Update rotation matrix Q by a 2-dim rotation
(4) else (generic motion)
(5) Compute k
(6) if k < 1 then
(7) Compute parameters ν, λ, n as in (4)
(8) Compute frame P at t = t0
(9) Compute the angular momentum m and ṁ at t = h

(10) else
(11) Set k 7→ 1/k.
(12) Compute parameters ν, λ, n as in (5)
(13) Compute frame P at t = t0
(14) Compute the angular momentum m and ṁ at t = t0 + h

(15) end if
(16) Compute angle ψ by (9)
(17) Compute new frame at P at t = t0 + h using angle ψ
(18) Update attitude Q using frame P at t0 and t0 + h and input Q0 by (6).
ACM Transactions on Mathematical Software, Vol. xx, No. xx, xx 2008.
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(19) end if

Algorithm 2. Rigid body with rotation by quaternions

(1) Set up the initial parameters
(2) if λ3 = 0 or λ1 = 0 (special case) then
(3) Update rotation quaternion q by a 2-dim rotation
(4) else (generic motion)
(5) Compute k
(6) if k < 1 then
(7) Compute parameters ν, λ, n as in (4)
(8) Compute frame at p at t = t0

(9) Compute the angular momentum m at t = t0 + h

(10) Compute angle ψ as in (16)
(11) Compute new frame p at t = t0 + h using angle ψ
(12) Update attitude q using frame at t0 and t0 + h and input q0 by (12).
(13) else
(14) Set k 7→ 1/k.
(15) Compute parameters ν, λ, n as in (5)
(16) Compute frame p at t = t0

(17) Compute the angular momentum m at t = t0 + h

(18) Compute angle ψ as in (16)
(19) Compute new frame p at t = t0 + h using angle ψ
(20) Update attitude q using frame p at t0 and t0 + h and input q0 by (12).
(21) end if
(22) end if

Specifically, for each algorithm, a suitable choice for the frame P (t) (resp. p(t)) is
made by means of the momentum. For the rotation matrix, we choose P based on m
and its derivative, see section 1.3. For the quaternion algorithm, we make the choice
described in case (1), see 1.4. The angle ψ(t), whose computation will be described
later, defines a planar rotation Y (t) (resp. y(t)) given as Y (t) = exp(ψ(t)ê3) which
is a Givens rotation, and y(t) = (cos(ψ(t)/2), e3 sin(ψ(t)/2)). Finally the three
rotations in (6) and (12) are composed, either with two 3× 3 matrix products (one
involving a Givens rotation), or with two quaternions products.

3. USAGE AND IMPLEMENTATION

The fundamental FORTRAN routines that implement Algorithms 1 and 2 are

subroutine frb step(Piout, Qout, h, aInert, Piin, Qin)
subroutine quat step(Piout, qout, h, aInert, Piin, qin)

ACM Transactions on Mathematical Software, Vol. xx, No. xx, xx 2008.
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where Piout = m(h), Piin = m0 are the angular momentum vectors out and in,
normalized to unit vectors, Qout = Q(h), Qin = Q0 are the 3× 3 attidude matrices
out and in, qout = q(h), qin = q0 are the quaternions (4 dimensional vector) out
and in, h is the time step of integration and finally aInert is a 3-dimensional vector,
with elements I1 < I2 < I3.

A typical application of the routines would be through some splitting method.
Assume that the original interval of integration is [0, Tfin] and that this interval is
divided in NSteps sub-intervals with stepsize hi. In each of these sub-intervals,
the flow of the system F = A + B is approximated by a splitting method, which
requires the alternation of two (or more) elementary flows A and B for a certain
number of internal steps NInternalSteps. Either A or B might be free rigid body
sub-problems. The stepsizes hij must obey the requirement

∑
j hij = hi.

A typical driver for the subroutines would look like:

Initialization
do i=1:NSteps

do j= 1:NInternalSteps

other computations
frb computations (Piout, Qout, hij, aInert, Piin, Qin)

other computations
enddo

enddo

Finalization

Fig. 1. A typical driver for equations with a free rigid body component solved with a splitting
method

3.1 Rescaling of the inputs and reordering of the inertia moments

Algorithms 1 and 2 assume ‖m0‖ = 1. To treat the general case, it suffices to
rescale both the angular momentum and time: under the change of variable m 7→
m/G, t 7→ Gt, equation (1) remains invariant. Therefore we scale m to m/‖m0‖
(G = ‖m0‖) and h to ‖m0‖h prior and soon after the computational routine (see
figure 2).

. . .

do j= 1:NInternalSteps

other computations
Compute G = ‖Piin‖, set Piin := Piin/G, hijG := G ∗ hij
frb computations (Piout, Qout, hijG, aInert, Piin, Qin)

Set back Piout := G ∗ Piout
other computations

enddo

. . .

Fig. 2. How to adjust time stepping in order to deal with non-normalized inertia moments

We also assume that the inertia moments are sorted in increasing order, I1 < I2 <
I3. If this is not the case, one needs to find a permutation matrix P (P−1 = PT )
that sorts the inertia moments J = PIP−1, J1 < J2 < J3. As permutation matrices
ACM Transactions on Mathematical Software, Vol. xx, No. xx, xx 2008.
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are orthogonal, they have property that P(a×b) = Pa×Pb, and this implies that
n = Pm obeys the equation

ṅ = n× J−1n

By a similar token, P ̂(I−1m)P−1 = ̂J−1(Pm), hence the matrix R = QPT obeys
the differential equation

Ṙ = RĴ−1n.

When necessary, the permutation (that shuffles the rows of m, and, correspond-
ingly, the columns of Q) is performed before/after the computational if the inertia
moment change with time or when the components of the vector fields are easy to
permute.

. . .

do j= 1:NInternalSteps
other computations

Set i1 := 1, i2 := 2, i3 := 3

if NOT(aInert(1) < aInert(2) < aInert(3)) then
Find indices i1, i2, i3 such that aInert(i1) < aInert(i2) < aInert(i3).

Set Piin := Piin([i1, i2, i3]), aInert := aInert([i1, i2, i3])

Set Qin := Qin(:, [i1, i2, i3])
end if

Compute G = ‖Piin‖, set Piin := Piin/G, hijG := G ∗ hij
frb computations (Piout, Qout, hijG, aInert, Piin, Qin)

Set back Piout := G ∗ Piout
Set back Qout := Qout(:, [i1, i2, i3])
Set back Piout := Piout([i1, i2, i3]), aInert := aInert([i1, i2, i3])

other computations

enddo
. . .

Fig. 3. A permutation that shuffles the rows of m is applied before and after the call to the

subroutine that performs the rigid body computations. Such permutation is important when the

inertia moments change with time. When the inertia moments are constants with time, it often
suffices to apply the permutation and its inverse at the beginning and end of the computations.

When the inertia moments do not change with time, the permutation can be
applied once and for all in the initialization procedure.

3.2 Elliptic integrals of the first kind and Jacobi elliptic functions for the update of
the angular momentum

In order to update the momentum solution of the Euler equations (1) (see also lines
(9), (14) of Algorithm 1 and (9), (17) of Algorithm 2), it is necessary to compute
elliptic integrals of the first kind and the Jacobi elliptic functions sn, cn,dn.

Elliptic integrals of the first kind can be computed very rapidly by using algo-
rithms based on the arithmetic geometric mean (AGM) sequence and the ascend-
ing/descending Landen transformations [Abramowitz and Stegun 1992].

As an example, consider the formulae for the momentum vector in (4): once we
have computed the constants k, B13, B21, B31, λ using the inertia moments and the
constants of motion we have to determine the phase ν and the sign σ(= ±1). This

ACM Transactions on Mathematical Software, Vol. xx, No. xx, xx 2008.
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is done using the initial condition m(t0) = m0. The computation of ν requires the
calculation of an elliptic integral of the first kind.

Once the phase ν is computed, the Jacobi elliptic functions sn(λt−ν, k), cn(λt−
ν, k) and dn(λt− ν, k) should be evaluated.

Both these tasks require the computation of the AGM sequence with the same
initial conditions, and the computation of two Landen transformations (one ascend-
ing and one descending) to compute the elliptic integral and the amplitude for the
elliptic functions. These tasks are implemented in the subroutine EgellpjX step
described here in the sequel, see also [Celledoni and Säfstöm 2006].

We proceed as follows. Assume {an}n, {bn}n, {cn}n is the AGM sequence with
a0 = 1, b0 =

√
1− k2, c0 = k and an+1 = an+bn

2 , bn+1 =
√
anbn, cn+1 = an−bn

2 .
In this sequence cn → 0 as n → ∞, and we denote with N the index such that
cN ≤ eps, (with eps the machine epsilon). Given φ0, the transformation

tan(φn+1 − φn) =
bn
an

tan(an), (17)

is such that

lim
n→∞

φn
2nan

=
∫ φ0

0

dθ√
1− k2sin2θ

, (18)

so

φN
2NaN

≈
∫ φ0

0

dθ√
1− k2sin2θ

. (19)

Using the components of the initial condition m(t0) we obtain the equations

σdn(λt0 − ν) =
m1(t0)
B13

, sn(λt0 − ν) =
m2(t0)
B21

, cn(λt0 − ν) =
m3(t0)
B31

.

Since we have

sn(λt0 − ν) = sin(am(λt0 − ν)), cn(λt0 − ν) = cos(am(λt0 − ν)),

see the definitions in the appendix, asm2(t0) andm3(t0) are known, we can compute
the amplitude am(λt0 − ν). We will denote its value by ϕ0 in what follows. From
m1(t0) we find σ. The map am can be inverted (see 21), we have

λt0 − ν =
∫ ϕ0

0

dθ√
1− k2sin2θ

.

Now we can use (17) with φ0 := ϕ0 and (19), to approximate the right hand side
of the last equation and compute λt0 − ν. Finally the argument where sn, cn and
dn are to be evaluated is simply λt− ν = λt0 − ν + λh.

To proceed at the numerical evaluation of the Jacobi elliptic functions one first
approximates the amplitude ϕ1 := am(λt− ν) using the descending transformation

sin(2φn−1 − φn) =
cn
an

sin(φn), n = N,N − 1, . . . 0,

starting with φN = 2NaN (λt − ν), and obtaining ϕ1 = φ0. Finally sn(λt − ν) =
sin(ϕ1), cn(λt− ν) = cos(ϕ1) and dn(λt− ν) =

√
1− k2 sin(ϕ1)2.
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An alternative way of proceeding would be to use addition formulae for the
Jacobi elliptic functions, [Byrd and Friedman 1971], and rewrite the momentum
components as products of Jacobi elliptic functions depending separately on ν and
λt. This approach is interesting when we want to compute also the derivative of the
exact solution with respect to the initial condition (tangent map). See for example
[Bates and Fassò 2007] for the use of the tangent map of the flow of the Euler top
in numerical simulations. However such strategy might require more evaluations of
elliptic functions per time step compared to the present algorithm.

3.3 Elliptic integrals of the third kind for the update of the attitude

In order to update the angle ψ in (9) and (16) (see also line (16) of Algorithm 1
and lines (10) and (18) of Algorithm 2), it is necessary to compute elliptic integrals
of the third kind.

The same techniques used for the elliptic integrals of the first kind can be used also
for the elliptic integral of the third kind, but their performance is not so uniform,
and other algorithms are preferred instead. Our implementation in the FORTRAN
subroutines frb step and quat step makes use of Carlson’s algorithms rf, rj, and
rc [Carlson and Notis 1981] that have been acclaimed to produce accurate values
for large sets of parameters. These methods are among the most common routines
for elliptic integrals of the third kind in several scientific libraries, see for instance
[Press et al. 1996]. There exist other implementations based on theta functions;
these are used for instance by [van Zon and Schofield 2007a].

An alternative to the exact computation of the elliptic integral of the third kind
is the approximation by a quadrature method. Unless quadrature is performed
to machine accuracy, the resulting methods will be semi-exact, in the sense that,
though Q is approximated only to the order of the underlying method, by construc-
tion, they integrate the angular momentum exactly, they preserve Qm (because of
the properties of the matrix P in Proposition 2.2 of [Celledoni et al. 2008]), and
they are time-symmetric if the underlying quadrature formula is symmetric.

Other authors [van Zon and Schofield 2007b] approximate the integral∫ u

u0

ds

1− n sn2 s

by a quadrature based on Hermite interpolation, as the function sn and its derivative
can be easily computed at the end points of the interval. Alternatively, one can
write the same integral in the Legendre form:∫ am(u)

am(u0)

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
. (20)

This format is convenient when using quadrature formulas because it requires tab-
ulating the sine function in the quadrature nodes instead of sn(λ(t − ν)). Thus,
(20) can be approximated as∫ am(u)

am(u0)

f(θ)dθ ≈
p∑
i=1

bif(ϕ0 + ai∆ϕ),

where ∆ϕ = am(u)− am(u0) and bi and ai are weights and nodes of a quadrature
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formula, respectively. Our package includes a subroutine eint gauss.f that uses
Gaussian quadrature (i.e., quadrature based on orthogonal polynomials), because
of its high order. In particular, Gauss–Legendre quadrature with p points attains
the maximal quadrature order 2p. Numerical experiments [Celledoni et al. 2008] in-
dicate that this approximation is very effective. With respect to the exact methods,
the semiexact methods obtained with this approach are more directly comparable
to the preprocessed discrete Moser-Veselov methods of [Hairer and Vilmart 2006],
see also [McLachlan and Zanna 2005].

3.4 Fortran components

The main FORTRAN computational subroutines are frb step and quat step and
are invoked as

call frb step(Piout, Qout, h, aInert, Piin, Qin)
call quat step(Piout, qout, h, aInert, Piin, qin)

with the same meaning for the symbols as in §3. The subroutines frb step and
quat step include the following components:

EgellipX step : Computes the momentum using the AGM and ascending/descending
Landen transformation, see section 3.2 for a closer description.

ellint pi : Computes the elliptic integral of the third kind between ϕ1 and ϕ2

as difference of two incomplete elliptic integrals betwen 0 and ϕ2 and 0 and ϕ1.
If the angles ϕi, i = 1, 2, are larger than π/2, the complete elliptic integral is
also computed. The integrals are computed by calling the computational routine
ellpi.

ellpi : Computes incomplete elliptic integrals between 0 and ϕi ≤ π/2, i = 1, 2,
using rf, rj, rc.

Other subroutines:

eint gauss : Computes the elliptic integrals of the third kind from 0 to ϕ using
Gaussian quadrature. To use this quadrature, you must edit the file frb step.f
or quat step.f and change the subroutine call

call ellint pi(ellpival,phinoll,phiout,ak,ann)

to

call eint gauss(ellpival,phinoll,phiout,ak,ann,np)

which performs Gaussian quadrature with 1 ≤ p = np ≤ 10 nodes (order 2p).
This approximation is suitable only if the time-step of integration is not too large.
In this case, the eint gauss.f routine should be also be compiled and linked.

Driver examples:

driver example0 : This is an example of computations of a free rigid body in the
interval [0, Tfin] (single step of length h = Tfin). The input data are loaded from
the data file init example0.dat and written in the output file out example0.dat.
This driver uses the computational routine frb step.f.
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driver example1 : This is an example of computations of a heavy top in the inter-
val [0, Tfin] with step-size h and a sixth-order splitting method [Blanes and Moan
2002]. The input data (including initial condition, initial attitude Q, inertia mo-
ments, u0, and the coefficients of the splitting methods) are loaded from the data
file init example1.dat and the results written in output file out example1.dat.
This driver uses the computational routine frb step.f.

driver example2 : This is similar to driver example0, except that it uses quater-
nions (quat step.f) instead of rotations (frb step.f). Input data: init example2.dat
and output data: out example2.dat.

3.5 Portability: compilation requirements

This package is compatible with FORTRAN 95 (f95, g95, gfortran compilers).
To compile, the main computational routines frb step/quat step must be linked
to a driver. As an example,

gfortran --optimize -o driver example1 driver example1.f frb step.f

compiles the computational subroutine with the driver driver example1.f (in-
cluded) to the executable file driver example1.

4. TEST EXAMPLES

4.1 Accuracy

The accuracy of numerical methods for the approximation of rigid bodies depends
on the inertial matrix I and the initial condition m0 for the angular momentum, see
[Fassò 2003; Celledoni et al. 2008]. We perform an accuracy test of the exact com-
putational routines (frb step, quat step, through the drivers driver example0
and driver example2) using the same approach as [Celledoni et al. 2008]: we
consider values of the form I1/I3 < I2/I3 < 1 for the inertia matrix (other val-
ues correspond to time-reparametrization) and we visualize the average number of
significant digits in the triangle

T = {(x, y) ∈ R2 : 0 < 1− y ≤ x < y < 1}

where x = I1/I3 and y = I2/I3 (see Figure 4) in the following manner. We construct
a discretization of this triangle by superimposing a rectangular grid (100 points in
the x direction and 50 in the y direction). For each point (x, y) in the interior of
the triangle, we solve 20 initial value problems with initial condition m0 in the
first octant. The initial Q is the identity matrix (identity quaternion resp.). This
set of initial parameters is identical for both methods. Thereafter, we compute
the average log10 of the error for each method (whose absolute value corresponds
to the number of significant digits). The “reference” solution is computed with
MATLAB’s ode45, setting both absolute and relative error to machine accuracy.
The results of the experiments are shown in Figure 5, computed with a single
integration step size h = 1. The conclusion is that the computational routines
provide accurate results (order of machine accuracy) for large portions of the data
sets. The “reference” solution is not fully reliable in the top left corner of the
triangle, due to the properties of the problem.
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Fig. 4. Parametrization domain for the matrix of inertia. x-axis: I1/I3, y-axis: I2/I3.
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Fig. 5. Average log10 error for the various values of the matrix of inertia with step size h = 1.

Comparison of exact methods. Top: Matrix case. Bottom: Quaternion case.

4.2 Performance

As far as performance is concerned, we have tested the computational time of
the exact routines versus the class of dmv methods [Hairer and Vilmart 2006] (in
FORTRAN), that approximate to given order the equations (1)-(2) using modified
inertia moments. To our knowledge, these methods are among the most efficient
routines for the numerical approximation of free rigid bodies. The integration of
(1)-(2) is performed in the interval [0, 10] with several step sizes h, performing
N = b10/hc steps (even though the exact methods would give the exact solution
with a single step).

The cost of the exact algorithms varies between 8 and 20 times the cost of the
approximate dmv algorithms (of order 6, 8, 10), and this indicates that the exact
methods indeed can be competitive when large step sizes are used. We have also
tested the semi-exact variants, for which the computation of the elliptic integral of
third kind (20) is replaced by Gaussian quadrature (eint gauss routine). In these
cases, the cost is reduced to about a third, and this is reasonable, as the cost of a
Gaussian quadrature corresponds approximatively to the cost of a elliptic integral
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Fig. 6. Average CPU time (y-axis) versus step size (x-axis) for the exact routine based on rotations

(solid line and diamonds) and on quaternions (solid line and crosses) relative to the cheapest dmv

method (line y = 1) for several values of the step size. The exact methods are 8-20 times more
expensive than the approximate dmv methods (triangles). The other classes of methods are the

semi-exact methods (stars for rotation matrices and circles for quaternions). See text for details.

of the third kind, while the exact method requires the computation of three of
those.

More extensive testing of the the semi-exact methods and comparison with the
dmv methods, as well as application to heavy bodies, satellite simulations and molec-
ular dynamics can be found in [Celledoni et al. 2008].

4.3 Application in splitting methods

In the last example we illustrate the application of our algorithms to splitting
methods. We consider the problem

ṁ = m× I−1m + f(Q)

Q̇ = Q Î−1m

where f(Q) = [u(2),−u(1), 0]T , with u = QTu0. This problem is split in rigid
body motion plus torque, which we solve by a sixth-order splitting method [Blanes
and Moan 2002]. The integration is performed in the inteval [0, 5.0e+04], with time
step h = 0.5 and initial conditions

m0 =

 −3.4790957088547336e-01
−1.9822914599675923e-01
−9.1633189192763642e-01

 , u0 =

 9.5586303547238536e-05
4.8777318247201465e-04
−8.6772148817192390e-04

 ,
inertia moments I1 = 1, I2 = 1.0126869887825154, I3 = 3.3062374224730378 and
initial attitude Q0 = I, the identity matrix (data in init example1.dat). The
driver of this example is driver example1. This is an example of perturbed rigid
body motion, as ‖u0‖2 = 10−3. The numerical trajectory (see Figure 7) stays
nicely bounded over very long time. A close-up on the trajectory reveals that the
trajectory evolves on a torus close to the unperturbed problem. The braids are a
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Fig. 7. The vector mi ≈ m(ih) for the perturbed rigid body motion over long time integration

and close-up to a section of the trajectory. The trajectory stays nicely bounded over very long
time. A close-up reveals that the orbit is on a torus close to the unperturbed problem.

consequence of the fact that the integration time is an integer multiple of the step
size h.

5. CONCLUSION

In this paper we have described two algorithms, with associated FORTRAN sub-
routines, for the exact computation of free rigid body motions. The algorithms rely
on computation of elliptic functions, which we compute using iteration algorithm
that always converge, whereas standard iterative procedures might require good
starting values for convergence.

The FORTRAN routines are meant for use within splitting methods, and are
relevant in mechanics, celestial mechanics, molecular biology and applications where
it is possible to decompose the underlying dynamics in a free rigid body motion
plus a torsion/force component.

The cost of the proposed routines is higher than other existing methods (a factor
between 8 and 20, with respect to highly efficient methods for rigid body dynamics
hitherto [Hairer and Vilmart 2006]). However, this is not a major problem, as
typically the calculation of inter-body forces (order N2 force evaluations for N
bodies) is much more demanding than the rigid body part (order N rigid body
evaluations).

Extensive numerical tests [Celledoni et al. 2008] have indicated that the use
of exact routines produces better results especially in regimes where the error of
the underlying splitting is not so large. If the splitting error is large, this error
would typically subsume errors that come, for instance, by less accurate rigid body
simulations, and the gain of using the exact routines becomes less evident. For
this reason, the proposed methods are particularly indicated for nearly-integrable
problems, in which case we expect superior numerical results with respect to other
numerical procedures.
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Appendices

Jacobi elliptic functions

We collect here a few facts about the elliptic functions we use in the article. Given
0 ≤ k < 1, the function

ϕ 7→ F (ϕ, k) :=
∫ ϕ

0

dθ√
1− k2 sin2 θ

(21)

is called (incomplete) elliptic integral of the first type with modulus k and is a
diffeomorphism R→ R. Its inverse F ( · , k) is an odd function

am( · , k) : R→
(
− π

2
,
π

2

)
which is called amplitude of modulus k. The Jacobi elliptic functions sn and cn of
modulus k are the functions R→ [−1, 1] defined as

sn(u, k) = sin(am(u, k)) , cn(u, k) = cos(am(u, k))

and are periodic of period 4K(k), where K(k) = F (π2 , k) (the so called complete
elliptic integral of the first type of modulus k). Moreover,

dn(u, k) =
√

1− k2sn(u, k)2 , sd(u, k) =
sn(u, k)
dn(u, k)

.

For given k, the u-derivatives of these functions satisfy sn′ = cn dn, cn′ = −sn dn
and dn′ = −k2sn cn.

The (incomplete) elliptic integral of the third kind with modulus 0 < k ≤ 1 and
parameter n ∈ R is the function Π( · , n, k) : (−π2 ,

π
2 )→ R defined by

Π(ϕ, n, k) :=
∫ ϕ

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
, (22)

(Legendre form), or equivalently

Π(ϕ, n, k) =
∫ F (ϕ,k)

0

ds

1− n sn(s, k)2
.

Coefficients of the splitting schemes

Given the differential equation

y′ = F (y) = A(y) +B(y),

denote by ϕ
[F ]
τ the flow of the vector-field F from time t to time t + τ . Given a

numerical approximations y(j) ≈ y(tj), we consider symmetric splitting schemes of
the type

y(j+1) = ϕ
[A]
a1h
◦ ϕ[B]

b1h
◦ ϕ[A]

a2h
◦ · · · ◦ ϕ[A]

am+1h
◦ · · ·ϕ[B]

b1h
◦ ϕ[A]

a1h
y(j),

where h = tj+1 − tj . A typical splitting is obtained separating the contributions
arising from the from kinetic (A) and potential (B) energy of the system. For this
reason, (twice) the number s of the coefficients bi is called the stage number of the
splitting method. The effective error is defined as Ef = s p

√
||c||2, where c is the
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vector of coefficients of the elementary differentials of the leading error term and p
is the order of the method. We refer to [Blanes and Moan 2002; McLachlan and
Quispel 2002] for background and notation.

For completeness, we report the coefficients of the method used in the accompa-
nying examples:
RKN6a14 (order 6, 14 stages, effective error Ef = 0.63):

a1 = 0.0378593198406116, b1 = 0.09171915262446165,
a2 = 0.102635633102435, b2 = 0.183983170005006,
a3 = −0.0258678882665587, b3 = −0.05653436583288827,
a4 = 0.314241403071477, b4 = 0.004914688774712854,
a5 = −0.130144459517415, b5 = 0.143761127168358,
a6 = 0.106417700369543, b6 = 0.328567693746804,
a7 = −0.00879424312851058, b7 = 1/2− (b1 + · · ·+ b6),
a8 = 1− 2(a1 + · · ·+ a7).

(23)
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