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Abstract

In this paper a nonlinear finite shear pipe formulation for a freely suspended offshore pipe completely

submerged in water is developed. The pipe model is three-dimensional and capable of undergoing

finite extension, shearing, twist and bending. The formulation is well suited for simulation and control

applications. The pipe extends from a surface vessel to the seabed. A potential theory formulation

of a surface vessel suited for dynamic positioning and low speed manoeuvring is used as the upper

boundary condition. The stability properties of the system is established. The pipe formulation is

shown to be energy dissipating, and the total system is shown to be input-output passive, taking the

vessel thrusters as input and the velocity vector as output. A numerical implementation based on

the finite element method is presented along with simulation results that are in agreement with the

theoretical results.
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1. Introduction

The unprecedented global demand for oil and gas, coupled with the high commodity prices, drives

the demand for pipelines in the offshore petroleum industry. Even more, the pipelines are required to

be longer, larger and at deeper water depths then ever before. Mathematical models are essential in the

design, installation and operation of pipelines. The motivation for this work is to develop a pipemodel

suitable for simulating the freely suspended pipe in a pipeline installation operation. The dynamic

behavior of the pipe model should be as close to a “real-world” pipe as possible. This implies that

the model needs to be three-dimensional and include finite extension, shearing, twist and bending. A

continuous model is considered rather than a discrete one, as it yields a better system understanding.

The stability properties of a continuous system are more easily found, and may directly be imposed

on the discretization done in implementing the model. When the stability of the pipe model has been

shown, it becomes applicable for designing model based automatic controllers. The advantages gained
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in a pipeline installation operation by using an automatic control system, computing an optimal path

and speed for the vessel, are increased accuracy and lay rates. Equipped with a suitable pipemodel,

the implementation of an automatic control system is limited to a software extension of the dynamical

positioning (DP) system, which has already become common practice in pipeline installation. The

model is valid for any kind of slender marine structure suspended freely in water such as pipelines,

cables, umbilicals, mooring lines, flexible and stiff risers. However the authors have chosen to limit the

study to a pipeline being installed from a surface vessel.

1.1. Mathematical Models

The catenary equation has been known for centuries, and it was used in modeling the pipelay

operation in its infancy. This equation is extensively treated by Irvine (1981). The catenary equation

does not account for bending stiffness, and an extension was made to amend this deficiency by Plukett

(1967) and Dixon and Rutledge (1968). Today, the method of choice to simulate pipes and similar

structures are computer tools such as ABAQUS, OFFPIPE, RIFLEX and SIMLA, which are based

on discrete finite element models. These models are constructed by joining predefined beam or bar

elements to a complete structure. Finite element models are versatile, and high quality discrete dynamic

models can be obtained without exact knowledge of the modeled system. Modeling and simulation

of a pipelay using ABAQUS is found in (Martinsen, 1998). Proving stability of a finite element

model is difficult. However, if a system of partial differential equations (PDE) of the pipe is known,

the stability can be proven for this system. Discretization of this continuous system using the finite

element method (FEM) yields a semi discrete finite element model that is suited for simulations and

inherits the stability properties of the continuous system. The key feature of the model developed in

this paper is the choice of parametrization which yields a continuous momentum equation on a form

which strongly resembles the classical Euler equation of rigid body dynamics. It is well suited for both

mathematical and numerical analysis. The high complexity of finite element models makes it unsuited

for closed loop automatic control. For this reason simpler models that contains the main dynamics

only, such as (Jensen et al., 2008) based on the robot equation, has been preferred for feed-back control

applications.

1.2. Model Based Controllers

Mechanical flexible systems are continuous, and in theory infinite-dimensional. In practice these

systems are modeled as finite-dimensional with a large number of dimensions. The fundamental prob-

lem of actively controlling very flexible systems is to control a large-dimensional system with a much

smaller dimensional controller. This topic was addressed as early as in the 1970’s by Balas (1978).

It shows that controllers based on finite dimensional models can become unstable when connected to

infinite-dimensional systems. This is due to the unmodeled modes in the system, named the spillover,

which the controller does not account for. An unstable control system may cause disastrous behavior.

In this paper the stability of the developed pipemodel is shown. A controller based on this model can

thus be shown to be stable, such that the closed loop system is stable and the disastrous effects are

avoided.
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2. Mathematical Model

A nonlinear finite shear pipe formulation for a freely suspended offshore pipe completely submerged

in water is developed in this section. The model of the pipe dynamics is a partial differential equation

extending the nonlinear finite shear beam formulation developed and investigated by Simo et al. in

a series of papers published in the mid and late 1980s (Simo, 1985; Simo and Vu-Quoc, 1986, 1988;

Simo et al., 1995). The formulation is a three-dimensional generalization of the formulation originally

developed by Reissner (1982). This model again can be regarded as a convenient parametrization of

a three-dimensional extension of the classical Kirchhoff-Love rod model (Love, 1944). The extension

includes finite extension and finite shearing of the rod. In this paper the hydrodynamic and hydrostatic

effects caused by the marine environment is accounted for. The model is developed for low speed

applications such as pipe line installation and risers, which implies that the hydrodynamic drag will

dominate the added mass terms. Thus it is a reasonable assumption to neglect the acceleration term

of the damping.

The pipe extends from a surface vessel and down to the seabed, which gives rise to the boundary

conditions. A vessel model in the time domain, suitable for low speed manoeuvring and station keeping,

is taken as the upper boundary condition. The vessel model is obtained by considering the forces and

moments on a rigid body as well as hydrodynamic radiation forces and wave loads. The dynamic vessel

model is a system of ordinary differential equations in the time domain and state space.

In this section, the notation and reference frames are introduced, followed by the kinematics and

the dynamic pipe model with boundary conditions.

2.1. Notation

Bold face lower and upper case letters denote vectors and matrices respectively. A superscript

denote the reference frame of coordinate vectors. This may be omitted if the frame dependency

is evident. The derivative with respect to time is denoted by a superposed dot, and the material

derivative is denoted by a prefixed ∂S . The usual inner product of a, b ∈ R
n is denoted 〈a, b〉 or

equivalently aTb.

2.2. Model Preliminaries

The pipe is in a classical point of view a rod, which is a three-dimensional body whose reference

configuration can be described by a smooth curve ϕr, which at each point has attached a cross-section

plane (Figure 1). The tangent of the curve ϕr is assumed to be normal to each cross-section, intersecting

at the centroid. Any configuration of the pipe is thus given by a smooth curve ϕ : [0, L]→ R
3 denoted

the line of centroids. L is the total length of the undeformed beam reference configuration ϕr. The

cross-sections are assumed to remain unchanged in shape but not necessarily remain normal to the

tangent ∂Sϕ (shearing), while the beam is undergoing motion, which is the case for the Euler-Bernoulli

beam. The position of any point on the line of centroid is given by ϕ (S) and the orientation of the

cross-section at ϕ(S) is given by the rotation matrix Re
t (S). Thus the configurations of the pipe are

completely defined by specifying the evolution of the position vector of the line of centroids ϕ (S, t)
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and the orthogonal rotation matrix Re
t (S, t) along the material variable S. The configuration space

for the elastic pipe is

C =
{
(ϕ, Re

t ) |S ∈ [0, L]→ R
3 × SO (3) | 〈∂Sϕ (S) ,Re

te
e
1〉 > 0

}
(1)

The reference configuration is taken as (ϕr, Re
t,r) ∈ C such that

ϕr (S) = See
1, Re

t,r(S) = I3×3. (2)

2.3. Reference Frames

Three orthonormal reference frames e, t and b are used in this paper as illustrated in Figure 2.

Let e be an inertial frame with origin Oe and base e1, e2, e3, called the spatial frame. Let Oe be

fixed at the seabed and at the base of the pipe (S = 0). Let t (S) be a moving frame with base

t1 (S) , t2 (S) , t3 (S), with t2 (S) and t3 (S) directed along the principal axis of the cross-section plane,

and t1 (S) normal to the plane in order to form a right-hand system. The origin Ot (S) is located at

point ϕ (S) on the centroid. This frame is called the material frame. Let b with basis b1, b2, b3 with

origin Ob in the mass center of the vessel, oriented in accordance with (SNAME, 1950), be denoted

the body fixed frame. The three rotation matrices

Re
t (S),Re

b,R
t
b ∈ SO(3) (3)

are respectively defined for i = 1, 2, 3 as

te
i (S) = Re

t (S)ee
i , be

i = Re
be

e
i , bt

i = Rt
bt

t
i. (4)

Matrix Re
t denotes the rotation from e to t and the coordinate transformation from t to e, and

equally for Re
b and Rt

b. Noting that a rotation matrix of composite rotations is the product of rotation

matrices, Re
b can be found to be

Re
b = Re

t (L)Rt
b. (5)

2.4. Kinematics

In this section the derivatives with respect to time t and space S of ϕ (S, t) and Re
t (S, t) required in

the pipe equations of motion are found. The material stress resultant and stress couple are presented.

2.4.1. Time Derivatives

Differentiating equation (4) with respect to time t yields

ṫ
e

i = S (we) te
i , S (we) = Ṙ

e

t (Re
t )

T
(6)

where S (we (S, t)) is a skew-symmetric tensor field that defines the spin of the moving frame, and

the associated axial vector we (S, t) defines the vorticity. S (·) : R
3 → TISO (3) is the skew-symmetric

operator. The time derivative of the rotation matrix is given by the two forms

Ṙ
e

t = Re
tS
(
wt
)

(7)

Ṙ
e

t = S (we)Re
t . (8)
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The linear velocity vector is given in the spatial and material frames respectivly as

ϕ̇ ∈ R
3, vt = (Re

t )
T

ϕ̇. (9)

By differentiating equation (9), the linear acceleration in the two frames becomes

ϕ̈ ∈ R
3, v̇t = (Re

t )
T

ϕ̈− (Re
t )

T
[we × ϕ̇] . (10)

2.4.2. Space Derivatives

The material derivative of the position vector is denoted ∂Sϕ (S, t) ∈ R
3. The derivative with

respect to S of the rotation matrix is, like the time derivative, obtained from differentiating equation

(4). The kinematic differential equations of the rotation matrix is given by the two alternative forms:

∂SRe
t = Re

tS
(
ωt
)

(11)

∂SRe
t = S (ωe)Re

t . (12)

where

S
(
ωt
)

= ∂S (Re
t ) (Re

t )
T
. (13)

The difference of the spatial derivative of (7) and the time derivative of (11) yields the equation

ω̇t = ∂Swt + ωt ×wt = (Re
t )

T [∂Swe + ωe ×we] , (14)

that relates ω and w, which will be needed in the stability proof.

2.4.3. Stress

The material stress resultant nt and stress couple mt are obtained from the bilinear quadratic

energy function Ψ(γt,ωt) (Simo, 1985),

nt =
∂

∂γt
Ψ, mt =

∂

∂ωt
Ψ, (15)

where

Ψ(γt,ωt) =
1

2


 γt

ωt




T 
 CT 03×3

03×3 CR




 γt

ωt


 (16)

and extension γt and shearing ωt are the material strain measures

γt = (Re
t )

T (∂sϕ− t1) , (17)

and

CT = diag [EA,GA2, GA3] > 0, (18)

CR = diag [GJ,EI2, EI3] > 0. (19)

The constants E and G are interpreted as the Young’s modulus and the shear modulus, A is the cross-

sectional area of the pipe, A2 and A3 are the effective shear areas, {I2, I3} are the principal moments
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of inertia of the cross-section plane relative to principal axes t2, t3 of ϕr, and J is the Saint Venant

torsional modulus. Hence

nt = CT γt (20)

mt = CRωt (21)

and in spatial form

ne = Re
tn

t = Re
tCT (Re

t )
T

[∂Sϕ− t1], (22)

me = Re
tm

t = Re
tCR (Re

t )
T

ωe. (23)

For later use, the time derivative of γt given in (17) is found to be

γ̇t = −S
(
wt
)
(Re

t )
T

(∂Sϕ) + (Re
t )

T
(∂Sϕ̇) = (Re

t )
T [∂Sϕ̇−we × (∂Sϕ)] . (24)

2.5. Dynamics

The equations of motion for the nonlinear pipe model in the spatial frame is

mP ϕ̈ = ∂Sne − fe
g −Re

tf
t
D (25)

Ie
ρẇ

e + we × Ie
ρw

e = ∂Sme + (∂Sϕ)× ne −DRwe (26)

where

mP - mass per unit length

Re
tf

t
D - transversal hydrodynamic damping matrix

ne - resultant internal force vector

fe
g - restoring forces vector (gravitation and buoyancy)

Ie
ρ - mass moment of inertia matrix

DR - constant damping matrix of rotation

me - resultant internal torque vector

The matrix Ie
ρ (S, t) is the time dependent inertia tensor given by

Ie
ρ = Re

tJ
t
ρ (Re

t )
T
, J t

ρ = diag [J1, J2, J3] ≥ 0 (27)

where J t
ρ is the inertia tensor for the cross section in the reference configuration.

2.5.1. Hydrostatic Restoring Terms

The pipe is assumed to be completely submerged, and thus the restoring forces per unit length are

the sum of the gravitational and the buoyancy, as defined by Archimedes. No moments are generated.

The restoring forces acts on the beam in the e3 direction only and is given in e as

fe
g = (mP − ρwA) ge3 (28)

where ρw is the mass density of ambient water and g is the gravitational constant.
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2.5.2. Hydrodynamic Damping Terms

The hydrodynamic forces on a submerged body are given by Morison’s equation found in (Faltinsen,

1990). For low velocities the added mass term can be neglected. This is a reasonable assumption for

risers, mooring lines and pipes. An estimate for the drag forces acting on a cylindrical shape in three

dimensions is

f t
D =

1

2
dρwDT




∣∣vt
r1

∣∣ vt
r1((

vt
r2

)2
+
(
vt

r3

)2)1/2

vt
r2((

vt
r2

)2
+
(
vt

r3

)2)1/2

vt
r3




(29)

where d is the outer pipe diameter and

DT = diag[D1, D2, D3] ≥ 0 (30)

where D1, D2, D3 ≥ 0 are damping coefficients, and the relative velocity vt
r of the pipe in the water is

vt
r =

(
Re

t

)T
(ϕ̇e − ve

c) (31)

where ve
c = ve

c

(
ϕTe3, t

)
is the current vector in the inertial frame. The rotational damping is directly

proportional to the angular velocity, and

DR = diag[D4, D5, D6] ≥ 0 (32)

where D4, D5, D6 ≥ 0 are damping coefficients.

2.6. Boundary Conditions

2.6.1. Seabed

The lower end of the pipe is assumed to be fixed to the seabed. The boundary condition for S = 0

is thus

ϕ (0, t) = ϕ0 = 0, Re
t (0, t) = Re

t,0 = I3×3 (33)

2.6.2. Vessel

The upper end of the pipe is fixed to a surface vessel, which will be the boundary condition at

S = L. In recent years there has been a significant drive to develop time-domain models for simulation

and control system design based on data obtained from seakeeping programs such as ShipX and

WAMIT. These programs use potential theory to compute the potential coefficients (added mass and

potential damping) and the existing wave loads (Froude-Krylov and diffraction forces) for a given vessel

design (Fossen, 2002) and (Fossen and Smogeli, 2004). Following Perez and Fossen (2007), a potential

theory formulation for a surface vessel suited for dynamic positioning and low speed manoeuvring

is developed. This model is adopted as the boundary condition of the pipe at S = L, ϕ(L, t) and

Re
t (L, t) = Re

b(t)(R
t
b)

T.

Let η ∈ R
3 × S3 be the generalized coordinate position vector given in the spatial frame e and

ν ∈ R
6 be the generalized velocity vector given in the body frame b, both defined by Fossen (2002) as

η = [x, y, z, φ, θ, ψ]
T

and ν = [u, v, w, p, q, r]
T

(34)
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Note that Euler angles are used to represent the vessel attitude. The equations of motion are linear

and given by

η̇ = J (η)ν (35)

Mν̇ + CRBν + CAν + B (∞)ν + µ + Gη = τ b + τ̄ b. (36)

Let

M , MRB + MA (37)

where the rigid body inertia matrix MRB is found from Euler’s first and second axioms of conservation

of linear and angular momentum and is given by

MRB =


 mV I3×3 03×3

03×3 Ib
V


 (38)

wheremV is the total vessel mass and Ib
V = diag[Ia, Ib, Ic] ∈ R

3×3 is the body inertia tensor. MA = A

(∞) and B (∞) are the constant infinite frequency added mass and potential damping matrices. As

the frame used is not inertial, the Coriolis and centripetal terms for the rigid body CRB and the added

mass CA are accounted for and appears as

CRB , MRBUL and CA , MAUL (39)

where U = ‖ve‖, and

L ,




0 · · · 0 0

0 · · · 0 1

0 · · · −1 0

...
. . .

...
...

0 · · · 0 0




∈ R
6×6. (40)

The matrix G is the restoring matrix. From the computation of the radiation forces the term

τ̄ b , B (∞) ν̄ (41)

appears where ν̄ is the requested velocity in the body frame, equivalent to ve in the inertial frame.

External forces including control forces are collected in the τ b vector.

For t the term µ is a convolution term representing the fluid memory effects and given as

µ ,

∫ t

0

K (t− ξ) [ν (ξ) + ULη (ξ)] dξ (42)

where K (t) is a matrix of retardation functions (Ogilvie, 1964):

K (t) =

∫
∞

0

(B (ω)−B (∞)) cos (ωt) dω. (43)

For the pipeline installation application, and following Kristiansen et al. (2005), U ≈ 0. Hence B (∞) =

0 and (42) reduces to

µ (t) ,

∫ t

0

K (t− ξ) ν (ξ) dξ (44)

= H (s)ν (45)

≈ Dpν (46)
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where Dp = H (0) is a frequency-independent constant matrix approximating the transfer matrix

H (s) at low frequencies. Further more τ̄ b = 0 and the resulting linear state-space model becomes

Mν̇ + CRBν + CAν + Dpν + Gη = τ b. (47)

In hydrodynamics it is common to assume linear super position (Faltinsen, 1990). Nonlinear Coriolis

and damping terms can be added directly in the time-domain model (47) according to:

Mν̇ + C (ν)ν + D (ν) ν + g (ϕ,Re
b) = τ b (48)

with relaxations

Gη ←→ g (ϕ,Re
b) (49)

CRB ←→ CRB (ν) (50)

CA ←→ CA (ν) (51)

and

C (ν) = CRB (ν) + CA (ν) (52)

D (ν) = Dp + Dv (ν) (53)

where Dv (ν) is quadratic viscous damping due to cross-flow drag and surge resistance. Note that

τ b = τ b
ctrl + τ b

exc if control forces are applied to the vessel.

A metacentric stable surface vessel has restoring forces and moments in heave, roll φ and pitch θ

that will resist inclinations away from the steady-state equilibrium. The restoring forces and moments

will depend on the vessel’s metacentric height, the location of the center of gravity (CG), the center

of buoyancy (CB) and the shape and size of the water plane, denoted by Awp. For every vessel and

load a transversal metacentric height GMT ∈ R and a longitudinal metacentric height GML ∈ R can

be computed.

The equilibrium in heave is obtained when the gravity and buoyancy forces balance. When the

heave position ϕT (L, t)e3 is changed due to external forces, or the heave equilibrium zeq change due

to i.e. waves, a force ge
l ∈ R

3 is generated to restore the balance. This force is modeled in the e frame

by

ge
l = −Awpρwg

(
ϕT (L, t)e3 − zeq

)
e3 (54)

where Awp is assumed to be constant for small changes in heave.

From geometric considerations, the moment arms in roll and pitch can be found to be

rb
r =




−GML sin θ

GMT sinφ

0


 . (55)

The pipe model is developed without Euler angles and it is thus desired to avoid these in the vessel

mode. The Euler angles are removed from the equation by observing that

sin θ = − (Re
be1)

T
e3 (56)

sinφ ≈ cos θ sinφ = (Re
be2)

T
e3 (57)
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The approximation cos θ = 1 is generally true for small pitch angles. Equation (55) now becomes

rb
r =




GML (Re
be1)

T
e3

GMT (Re
be2)

T
e3

0


 (58)

and the restoring moment term is thus

ge
r = re

r × f e
r

=
(
Re

br
b
r

)
× (mV ge3) . (59)

It is assumed that there is no moment due to heave. Thus the nonlinear restoring forces term of (48)

is given in the body frame b as

gb (ϕ (L, t) ,Re
b (t)) =


 (Re

b)
T

ge
t

(Re
b)

T
ge

r


 . (60)

The spatial representation of (48) is obtained by applying the following kinematic transformations:

η = Jν ⇔ ν = J−1η

η̇ = J̇ν + Jν̇ ⇔ ν̇ = J−1
(
η̇ − J̇J

−1
η
) (61)

where

J =


 Re

b 03×3

03×3 Re
b


 ∈ R

6×6 and J−1 = JT. (62)

The resulting spatial vector representation of (48) is

Mη(η)η̈ + Cη(η, η̇)η̇ + Dη(η, η̇)η̇ + gη(ϕ,Re
b) = Jτ b (63)

where

Mη (η) = JMJ−1 (64)

Cη (η, η̇) = J
[
C (η)−MJ−1J̇

]
J−1 (65)

Dη (η, η̇) = JD (η)J−1 (66)

gη (ϕ,Re
b) = Jg (ϕ,Re

b) (67)

The following properties of (63) holds as M = MT > 0 and Ṁ = 0:

P1) Mη (η) = MT
η (η) > 0, ∀ η ∈ R

6

P2) sT
[
Ṁη (η)− 2Cη (η, η̇)

]
s = 0, ∀ s,η ∈ R

6

P3) Dη (η, η̇) > 0, ∀ η ∈ R
6

Note that the skew-symmetry property of C does not hold for Cη. These properties will be used in

the later passivity analysis. When transforming from a moving frame to an inertial frame the Coriolis

terms of the linear motion are canceled.
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Let the pipe be fixed to the center of gravity of the vessel such that

η̇ =


 ϕ̇ (L, t)

we (L, t)


 and η̈ =


 ϕ̈ (L, t)

ẇe (L, t)


 . (68)

The forces and moments acting between the pipe and vessel are for the total system internal forces,

and by Newton’s third law the following relationship holds:

Jτ b = −


 ne(L, t)

me (L, t)


 . (69)

3. Passivity

In this section the system is shown to be input-output passive based on the energy functions of the

pipe and the vessel respectively. Let the total energy of the system be given as

E = EP + EV ≥ 0 (70)

where EP and EV are respectively the total energy of the pipe and the surface vessel. The pipe energy

function, EP is the sum of kinetic energy TP and potential energy UP (Simo and Vu-Quoc, 1986),

EP = TP + UP (71)

where

TP =
1

2

L∫

0

mp ‖ϕ̇‖
2
2 +

〈
we, Ie

ρw
e
〉
dS (72)

UP =

L∫

0

Ψ
(
γt,ωt

)
dS +

L∫

0

〈
fe

g,ϕ
〉
dS. (73)

The vessel energy function EV is the sum of the kinetic TV and potential energy UV ,

EV = TV + UV (74)

where

TV =
1

2
νTMν. (75)

and

UV =
1

2
Awpρwg

(
ϕT (L, t) e3 + href

)2
+

1

2
mV g

{
GML

[
(Re

be1)
T

e3

]2
+GMT

[
(Re

be2)
T

e3

]2}
(76)

Equations (75) and (76) are given in b. The time derivative of (70) is given as:

Ė = ĖP + ĖV . (77)
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For the pipe ĖP is given as the sum of the derivatives of the kinetic energy ṪP and potential energy

U̇P respectively, where

ṪP =

L∫

0

〈ϕ̇,mpϕ̈〉+
〈
we, Ie

ρẇ
e
〉
dS =

L∫

0

〈
ϕ̇,
[
∂Sne − fe

g −Re
tf

t
D

]〉
dS+

L∫

0

〈
we,

[
(Ie

ρw
e ×we) + ∂Sme + (∂Sϕ)× ne −DRwe

]〉
dS (78)

and

U̇P =

L∫

0

〈
nt, γ̇t

〉
+
〈
mt, ω̇t

〉
dS +

L∫

0

〈
fe

g, ϕ̇
〉
dS

=

L∫

0

〈ne, [∂Sϕ̇− (we × (∂Sϕ))]〉 dS +

L∫

0

〈me, [∂Swe + (ωe ×we)]〉 dS +

L∫

0

〈
fe

g, ϕ̇
〉
dS

= 〈ne, ϕ̇〉
∣∣L
0

+ 〈me,we〉
∣∣L
0
−

L∫

0

〈∂Sne, ϕ̇〉+ 〈∂Sme,we〉+ 〈we, (∂Sϕ)× ne〉 dS +

L∫

0

〈
fe

g, ϕ̇
〉
dS

(79)

ĖP = 〈ne, ϕ̇〉
∣∣L
0

+ 〈me,we〉
∣∣L
0
−

L∫

0

〈
ϕ̇,Re

tf
t
D

〉
dS −

L∫

0

〈we,DRwe〉 dS (80)

If the terms related to damping in equation (80) are neglected, only the boundary conditions are

effecting the energy, and the pipe is seen to be energy conservative. Investigating the integral term for

the rotational damping it is readily seen that

L∫

0

〈we,DRwe〉 dS =

L∫

0

(
3∑

i=1

Di+3 (we
i )

2

)
dS ≥ 0 ∀we (81)

such that this term will always have a negative contribution. The restoring term is rewritten into

L∫

0

〈
ϕ̇,Re

tf
t
D

〉
dS =

1

2
dρw

L∫

0

〈ϕ̇,Π(ϕ̇− ve
c)〉 dS ≥ 0, ∀

∣∣ve
c,i

∣∣ ≤ |ϕ̇i| (82)

where

Π = Re
tDTΓ (Re

t )
T
≥ 0, (83)

Γ = diag

[∣∣vt
r1

∣∣ ,
((
vt

r2

)2
+
(
vt

r3

)2)1/2

,
((
vt

r2

)2
+
(
vt

r3

)2)1/2
]
≥ 0. (84)

The current in the water is an external force which is present in this equation. In order to establish

stability of the pipe, assume no current such that ve
c = 0. Then it is evident that ĖP ≤ 0 which proves

that the pipe model is asymptotically stable. Note that this property will hold as long as |(ve
c)i| < |ϕ̇i|.

Considering the vessel, equations (75) and (76) are differentiated to find ṪV and U̇V . Applying

equation (48) and property P2 in the appropriate reference frame to the resulting equations,

ṪV = νTτ b − νT−Dν − νTgb (85)

U̇V = νTgb. (86)

12



Summing equations (85) and (86) yields Ė as

ĖV = νTτ b − νTDν. (87)

Applying property P3, to equation (87) yields ĖV ≤ νTτ b, which shows that the vessel is input-output

passive with input τ and output ν.

The derivative of the energy of the total system in equation (77) can now be found from equations

(80) and (87). The lower boundary condition S = 0 is given as

〈ne, ϕ̇〉 |0 = 〈me,we〉 |0 = 0, (88)

and the upper boundary condition is given by equation (69) where the pipe is connected to the vessel

in the center of gravity, as defined in equation (68). The total rate of change of energy of the pipe and

vessel system is

Ė = 〈ne, ϕ̇〉
∣∣L
0

+ 〈me,we〉
∣∣L
0
−

L∫

0

〈
ϕ̇,Re

tf
t
D

〉
dS

−

L∫

0

〈we,DRwe〉 dS + ηTτ e − ηTDηη

=−

L∫

0

〈
ϕ̇,Re

tf
t
D

〉
dS −

L∫

0

〈we,DRwe〉 dS − ηTDηη

≤0 (89)

which implies that the system dissipates energy. By considering the energy function as a cost function,

Lyapunov analysis shows that the combined system is asymptotically stable. If a control force τ control

is added in the vessel model (48), the analysis will show that the system is input-output passive with

the control force τ control as the input and the vessel velocity ν as the output, that is

Ė ≤ νTτ b
control. (90)

4. Application Example

The case of offshore pipeline installation is investigated in this section. Pipelines are installed with

purpose build pipelay vessels with dynamic positioning systems. The pipe is clamped on to the vessel

by heavy tension equipment, and is extended by pipe elements welded onto the pipe end in a production

line accommodating either S-lay or J-lay, which are the two main pipelay methods. The two methods

are seen to be complementary in Parinet and Frazer (2007). The methods are well described in recent

text books on pipelaying, such as Braestrup et al. (2005), Guo et al. (2005) and Palmer and King

(2004). The present trends in deepwater pipelay systems in general are well described by Heerema

(2005) and the references therein. The coefficient matrices for the vessel is obtained from the Marine

Systems Simulator (MSS) available at (Fossen and Perez, 2004).
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4.1. Numerical Implementation

A FEM is implemented for numerical simulations. Taking the inner product of (25)–(26) with

admissible test functions

V = {(u,ϑ) |S ∈ [0, L]→ R
3 × R

3 | (u,ϑ)
∣∣
S=0

= (0,0)}, (91)

such that

T(ϕ,Re

t
)C := {(u,S(ϑ)Re

t ) | (u,ϑ) ∈ V}, (92)

to obtain (using Gauss’s theorem) the weak formulation of the initial boundary problem (25)–(26),

with boundary conditions (33) and (69),

Gdyn(Φ,R
e
t ; u,ϑ) ,

∫ L

0

〈mP (ϕ̈),u〉+ 〈[Iρ(ẇ
e) + we × (Iρw

e)] ,ϑ〉 dS+

∫ L

0

〈f e
g,u〉+ 〈DRwe,ϑ〉 dS +Gstat(Φ,R

e
t ; u,ϑ)+

〈
[Mη(η)η̈ + Cη(η, η̇)η̇ + Dη(η, η̇)η̇] , (uT,ϑT)T

〉∣∣∣∣
S=L

= 0, (93)

for all test functions (u,ϑ) ∈ V , where (the static part)

Gstat(Φ,R
e
t ; u,ϑ) ,

∫ L

0

〈
ne,

[
du

dS
− S(ϑ)(∂Sϕ)

]〉
+

〈
me,

dϑ

dS

〉
dS+

∫ L

0

〈f e
g,u〉 dS +

〈
gη(ϕ,Re

b), (u
T,ϑT)T

〉∣∣∣∣
S=L

. (94)

Parameterizing of the rotation matrix Re
t in Euler angles Θ = (φ, θ, ψ)T → Re

t (Θ), locally diffeo-

morphic to SO(3) ' RP
3, yields the transformations

we = ΠeΘ̇, ẇe = ΠeΘ̈ + Π̇eΘ̇,

∂Sωe = Πe(∂SΘ), Θ = (φ, θ, ψ)T,
(95)

where

Πe =




cos θ cosψ − sinψ 0

cos θ sinψ cosψ 0

− sin θ 0 1


 . (96)

Hence, the configuration space for Euler angles becomes

C̃ := {(ϕ,Θ)|S ∈ [0, L]→ R
3 × R

3 | 〈∂Sϕ(S),Re
t (Θ〉)e1 > 0} (97)

with test functions

Ṽ := {(u, ϑ̃) |S ∈ [0, L]→ R
3 × R

3 | (u, ϑ̃)
∣∣
S=0

= (0,0)}, (98)

such that

T(ϕ,Θ)C̃ := {(u, ϑ̃) | (u, ϑ̃) ∈ Ṽ}. (99)

The weak formulation (93) for the configuration space (97) is semi discretized in N nodes with uniform

sub interval
⋃N−1

i=1 [Si, Si+1] = [0, L], and using linear shape functions N i
h(S) such that

ϕ ≈ ϕh =
∑N

i=1 ϕi(t)N
i
h(S), Θ ≈ Θh =

∑N
i=1 Θi(t)N

i
h(S),

uh =
∑N

i=1 uiN
i
h(S), ϑ̃h =

∑N
i=1 ϑ̃iN

i
h(S),

(100)
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The semi discretized problem is finally obtained on the form

M̃h(xi)ẋi = F̃ h(xi), x(t) ∈ R
12N (101)

where

xi =
[
ϕi,Θi, ϕ̇i, Θ̇i

]T
, for i = 1, . . . , N, (102)

M̃h(xi) ∈ R
12N×12N is the system mass matrix, and F̃ h(xi) ∈ R

12N is the force vector for the

discretized system. The embedded Matlab ODE-solver ode15s, suitable for stiff problems, is used to

solve the semi discretized problem (101). Note that the integrals in the weak formulation (93) are

approximated using two point Gaussian quadrature for each interval [Si, Si+1] ⊂ [0, L], except for the

integral ∫ L

0

〈
ne,

[
du

dS
− S(ϑ)(∂Sϕ)

]〉
+

〈
me,

dϑ

dS

〉
dS, (103)

which is approximated by a reduced one point Gaussian quadrature, to avoid shear locking (Simo and

Vu-Quoc, 1986).

4.2. Simulation

The simulation results for a pipe with the reference length L = 1200 meters, semi discretized in

48 nodes, are presented in Figures 2–9. At time t = 0 s the pipe and the vessel is resting in its static

equilibrium configuration, which is computed from (94) as Gstat(Φ,R
e
t ; u,ϑ) = 0. After 10 second

(t = 10 s) the system is subject to a environmental forces, taken as a linearly shared current velocity

profile with surface velocity 0.8 m/s in the y direction. At t = 30 s a dynamic positioning controller

(PID) is enabled. The objective of the controller is to move the vessel to the the reference position

(780, 0,−800)T ∈ R
3. Note that the choice of origin for the spatial frame, the water surface is given by

the plane (x, y,−800)T , where (x, y)T ∈ R
2. The pipe configurations at t = 0 s, t = 30 s and t = 300 s

are presented in Figure 3. Figure 4 shows that the pipe length will extend from the reference length

during the simulation. The material tension forces, shown in Figure 5, indicates that tension forces will

reach maximum value (upper black dots) when the vessel reaches the reference position (t = 300 s).

For this configuration, the bending and shearing forces are presented in Figures 6–9 and the force

vector fields are shown in Figures 6–7. Figures 8–9 shows the norm of the bending and shearing force

vectors at the initial (t = 0 s) and final (t = 300) configurations respectively.

5. Concluding Remarks

The two objectives presented in the introductory section, that motivated this work, has been

successfully achieved. Firstly, to develop a dynamic model for a freely suspended pipeline with bending

stiffness suitable for simulations. The presented model is in three dimensions and model extension,

sharing, twist and bending. The model is suitable for both S-lay and J-lay pipe installation as the

angle of departure of the pipe from the vessel can be specified by Rt
b. Secondly the pipe model was

shown to be stable by a passivity check. Establishing this property is important as it enables model

based controllers to be designed based on this model. High complexity controllers become more feasible
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as computational power gets cheaper. However, more research should be put into investigating the

numerical methods to make a faster implementation.
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Figure 1: The pipe configuration is given by the line of centroids ϕ, where the reference configuration is given as ϕr .

The cross-section of the pipe at ϕ(S) is spanned by t2(S) and t3(S).

17



p

j(S)

t  (S)

e

b

t  (S)

e

b

t  (S)

b

1

1

1

3

2

2

2

e3

3

Figure 2: Illustration of an S-lay installation in three dimensions with the tree reference frames used. The position of

the center of gravity of the vessel is in the spatial frame is given by p.
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Figure 3: The initial static configuration of the pipe (red dashed line and square). The configuration after 30 s under

the influence of current (blue dashed line and circle). The PID-controller is enabled at t = 30 s. The configuration after

when the PID-controller has moved the vessel to the desired surface position (black line and solid ball).
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Figure 4: The pipe length, sh =
∫ L

0
|∂Sϕh(S)| dS, over the course of the 300 s simulation.
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Figure 5: Material tension forces in the pipe along t3, TF = nt
h,1

, nt
h

= (nt
h,1

, nt
h,2

, nt
h,3

)T. The initial tension at the

time t = 0 (dash-dotted red line). Tension force at the time t = 300 seconds (blue line). Maximal and minimal tension

force over the course of the simulation (black dots).

19



0
200

400
600

800
1000

1200

−1

−0.5

0

0.5

1

x 10
9

−1

−0.5

0

0.5

1

x 10
7

S [m]t2 [N]

t
3

[N
]

Figure 6: Bending force vector field.Bending forces, BF = (mt
h,2

, mt
h,3

)T, mt
h

= (mt
h,1
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)T, at the time

t = 300 seconds.
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Figure 7: Shearing force vector field.Shearing forces SF = (nt
h,2

, nt
h,3

)T, nt
h

= (nt
h,1

, nt
h,2

, nt
h,3

)T at the time t = 300

seconds.
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Figure 8: Bending forces, BF = ‖(mt
h,2

, mt
h,3

)T‖2, mt
h

= (mt
h,1

, mt
h,2

, mt
h,3

)T, in the pipe. The initial bending force

at the time t = 0 (dash-dotted red line). Bending force at the time t = 300 seconds (blue line). Maximal bending force

over the course of the simulation (black dots).
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Figure 9: Shearing forces, SF = ‖(nt
h,2

, nt
h,3

)T‖2, nt
h

= (nt
h,1

, nt
h,2

, nt
h,3

)T, in the pipe. The initial shearing force at the

time t = 0 (dash-dotted red line). Shearing force at the time t = 300 seconds (blue line). Maximal shearing force over

the course of the simulation (black dots).
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