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A globally convergent numerical method

and adaptivity for a hyperbolic coefficient

inverse problem

Larisa Beilina5, Michael V. Klibanov∗

February 4, 2009

A globally convergent numerical method for a multidimensional Coefficient
Inverse Problem for a hyperbolic equation is presented. It is shown that this
technique provides a good starting point for the so-called finite element adaptive
method (adaptivity). This leads to a natural two-stage numerical procedure,
which synthesizes both these methods. Numerical examples are presented.

1 Introduction

This paper is a continuation of the previous publication of the authors [5], where a new
globally convergent numerical method for a Coefficient Inverse Problem (CIP) for a hyper-
bolic PDE was developed. Compared with [5], the main new element here is a synthesis
of the method of [5] with the locally convergent so-called finite element adaptive method,
which we call “adaptivity” for brevity. The adaptivity technique for inverse problems was
previously developed in [6, 7, 8, 9, 4]. The underlying reason of this synthesis is that the
estimate of the difference between the correct solution and the computed one in the global
convergence Theorem 6.1 depends on a small positive parameter η. This parameter incor-
porates both the error in the boundary data and errors generated by some approximations
of the numerical procedure of [5]. The error in the boundary data models the error in
measurements and is, therefore unavoidable. At the same time, two other approximation
errors cannot be made zero, and they are not parts of previously developed locally conver-
gent techniques. On the other hand, since η is small, then Theorem 6.1 guarantees that
the solution obtained by the technique of [5] provides a good approximation for the correct
solution of the CIP. Therefore, this solution can be used as a good starting point for a sub-
sequent enhancement via a locally convergent numerical method, which is the adaptivity
in our case. As a result, a natural two-stage numerical procedure is developed here. On
the first stage, the globally convergent method of [5] provides a good approximation for
the correct solution. And on the second stage, this approximation is taken as the starting
point for the adaptivity technique, which provides an enhancement, i.e., a better approxi-
mation for the correct solution. The adaptivity technique is based on several applications
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of the quasi-Newton method. Convergence of Newton-like methods for general ill-posed
problems was proven in [3].

We call a numerical method for a CIP globally convergent if: (1) a theorem is proven,
which ensures that this method leads to a good approximation for the correct solution of
that CIP, regardless on the availability of a priori given good first guess for that solution,
and (2) this theorem is confirmed by numerical experiments. On the other hand, conver-
gence of a locally convergent numerical method to the correct solution can be guaranteed
only if the starting point is located in a small neighborhood of this solution.

There are four more new elements of this paper compared with [5]: (1) The globally
convergent algorithm is different from one in [5] in the sense that now “inner” iterations
with respect to terms in certain quasilinear elliptic equations are used until they converge.
Whereas previously a priori chosen number of iterations was used. This change requires
a modification of the proof of the convergence Theorem 6.1 compared with [5]. (2) The
stopping rule for the globally convergent part differs from one of [5]. Namely, we now
evaluate certain L2 norms at the boundary rather than inside of the domain of interest.
(3) The first rigorous explanation is presented of the meaning of the so-called ψ function
in the adaptivity technique in an estimate of the difference between correct and computed
solutions. This is unlike the previous heuristic argument of [9], where the function ψ was
introduced for a CIP. (4) 2-D numerical examples are different from ones of [5].

A conventional way to solve numerically a CIP for a PDE is via the minimization of
a least squares objective functional. This functional characterizes the misfit between the
data and the solution of that PDE with a “guess” for the unknown coefficient. However, it is
well known that the phenomenon of multiple local minima and ravines of these functionals
represents the major obstacle in this approach. Because of this phenomenon, any gradient-
like method of the minimization of such a functional would likely converge to a local
minimum, which is located far from the correct solution. Furthermore, due to the ill-posed
nature of CIPs, a global minimum, even a well pronounced one, is not necessarily close to
the correct solution. Hence, there is no guarantee that the calculated coefficient is indeed
close to the correct one. Hence, one needs to know a priori a good first approximation for
the solution. At the same time, in many important applications such an approximation
is unavailable. The method of [5] relies on the structure of the underlying differential
operator instead of using a least squares objective functional. Thus, the phenomenon of
local minima is avoided in this method.

The adaptivity technique minimizes least squares objective functionals on a sequence of
adaptively refined meshes until images are stabilized (usually on 4-5 refined meshes). The
minimization is performed via the quasi-Newton method. The key idea of the adaptivity
is that on each step a posteriori analysis shows subdomains where the biggest error in the
solution is. These are those subdomains where the gradient of the Lagrangian attains its
maximal values (within certain range). An important point here is that those subdomains
are found without a priori knowledge of the solution. Thus, additional finite elements are
used in such subdomains. It was shown in previous publications that the adaptivity is
capable to significantly improve reconstruction results. At the same time, it was shown
numerically in the recent publication [10] that the adaptivity cannot provide good quality
images unless a good first guess about the solution is known a priori. This is because the
quasi-Newton method is a locally convergent one. The latter leads to a logical conclusion
that a synthesis of the adaptivity with the globally convergent method of [5] should be used.
In our numerical experiments we image a medium with small inclusions in it, although we
do not assume a priori knowledge of such a structure. We refer to [1] and references cited
there for another approach to imaging of small inclusions.



There are also some other numerical methods for multidimensional CIPs, which do not
use a good first guess for the solution. While the current paper works with a single measure-
ment event, they work for some CIPs with the data resulting from multiple measurements
[12, 13, 14, 24, 25, 26]. These publications were discussed in [5].

In section 2 we formulate both forward and inverse problems. In section 3 we transform
the inverse problem to the Dirichlet boundary value problem for a nonlinear integral differ-
ential equation in which the unknown coefficient is not present. Since this transformation
was described in several previous publications [19, 5], we outline it only briefly here for the
sake of completeness. It is the numerical solution of the resulting equation, which repre-
sents the major difficulty. The numerical method of this solution was the main new point
of [5], In section 4 we formulate the layer stripping procedure with respect to s > 0, which
is the parameter of the Laplace transform of the original hyperbolic PDE. Note that we do
not use the inverse Laplace transform, since approximations for the unknown coefficient
are obtained in the “Laplace’s domain”. In section 5 we describe the algorithm. Section 6
is devoted to the convergence analysis. In section 7 we briefly describe the method of the
solution of the forward problem. In section 8 we describe the main ideas of the adaptivity
technique referring to the proof of a posteriori estimate to [7, 8, 9]. In particular, the above
mentioned rigorous explanation of the meaning of the function ψ is given in subsection 8.2.
In section 9 numerical experiments are presented. We summarize our results in section
10. Some procedures are outlined only briefly in this paper, since they were discussed in
details in [5].

2 Statements of Forward and Inverse Problems

As the forward problem, we consider the Cauchy problem for a hyperbolic PDE. The
case of a boundary value problem in a finite domain is not considered in our theoretical
derivations only because an analogue of the asymptotic behavior (9) is not proved in this
case, since (9) is actually derived from Theorem 4.1 of [29]. That theorem establishes a
certain asymptotic behavior of the fundamental solution of a hyperbolic equation near the
characteristic cone.

Consider the Cauchy problem for the hyperbolic equation

c (x) utt = ∆u in R3 × (0,∞) , (1)

u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2)

Equation (1) governs a wide range of applications, including e.g., propagation of acoustic
and electromagnetic waves. In the acoustical case 1/

√
c(x) is the sound speed. In the 2-D

case of EM waves propagation in a non-magnetic medium, the dimensionless coefficient
c(x) = εr(x), where εr(x) is the relative dielectric function of the medium, see [15], where
this equation was derived from Maxwell’s equations in the 2-D case. Let d1 and d2 be two
positive constants and Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C 3.
We assume that the coefficient c (x) of equation (1) is such that

c (x) ∈ [d1, 2d2] , d1 < d2, c (x) = 2d1 for x ∈ R3�Ω, (3)

c (x) ∈ C2
(
R3
)
, (4)

We consider the following
Inverse Problem. Suppose that the coefficient c (x) satisfies (3) and (4), where the

positive numbers d1 and d2 are given. Assume that the function c (x) is unknown in the
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domain Ω. Determine the function c (x) for x ∈ Ω, assuming that the following function
g (x, t) is known for a single source position x0 /∈ Ω

u (x, t) = g (x, t) ,∀ (x, t) ∈ ∂Ω × (0,∞) . (5)

A priori knowledge of constants d1, d2 corresponds well with the Tikhonov concept for ill-
posed problems [30]. In applications the assumption c (x) = 2d1 for x ∈ R3�Ω means that
the target coefficient c (x) has a known constant value outside of the medium of interest
Ω. Another argument here is that one should bound the coefficient c (x) from the below by
a positive number to ensure that the operator in (1) is a hyperbolic one on all iterations
of our method. Since we do not impose any “smallness” conditions on numbers d1 and d2,
our numerical method is not a locally convergent one. The function g (x, t) models time
dependent measurements of the wave field at the boundary of the domain of interest. In
practice measurements are performed at a number of detectors, of course. In this case the
function g (x, t) can be obtained via one of standard interpolation procedures, a discussion
of which is outside the scope of this publication. In the case of a finite time interval, on
which measurements are performed, one should assume that this interval is large enough
and thus, the t-integral of the Laplace transform over this interval is approximately the
same as one over (0,∞) .

Consider the Laplace transform of the functions u,

w(x, s) =

∞∫

0

u(x, t)e−stdt, for s > s = const. > 0, (6)

where s is a certain number. It is sufficient to choose s such that the integral (6) would
converge together with corresponding (x, t)-derivatives. We call the parameter s pseudo
frequency. The equation for the function w is

∆w − s2c (x)w = −δ (x− x0) c(x0),∀s ≥ s = const. > 0 (7)

with the following condition at the infinity

lim
|x|→∞

w(x, s) = 0,∀s ≥ s = const. > 0. (8)

Under some natural conditions linked with the regularity of geodesic lines generated by
the eikonal equation corresponding to the function c(x) the following asymptotic behavior
takes place (see Lemma 2.1 in [5])

Dβ
xD

γ
sw(x, s) = Dβ

xD
γ
s

{
exp [−sl (x, x0)]

f (x, x0)

[
1 +O

(
1

s

)]}
, s→ ∞, (9)

where |β| ≤ 2, γ = 0, 1, x 6= x0, f (x, x0) is a certain function, f (x, x0) 6= 0 for x 6= x0 and
l (x, x0) is the length of the geodesic line connecting points x and x0.

We briefly mention now that the idea of [5] can also be extended to similar CIPs for the
parabolic PDE

c(x)Ut = ∆U − a (x)U, (10)

U (x, 0) = δ (x− x0) .

To do this, one needs to apply the following analogue of the above Laplace transform

W (x, s) =

∞∫

0

U (x, t) exp
(
−s2t

)
dt.



Hence, ∆W −
(
s2c (x) + a(x)

)
W = −δ (x− x0) and also W satisfies (8). In the electro-

magnetic case equation (10) governs propagation of a component of the electric field in a
conductive medium with the conductivity function σ (x) := c(x). In the case of diffuse opti-
cal tomography one can usually assume that the diffusion coefficient D := 1/c ≡ const. > 0
and the target of the CIP is the spatially changing absorption coefficient µa (x) := a (x),
see, e.g., [2].

Although we have only one condition (5) rather than “traditional” two boundary condi-
tions for our inverse problem, the information about the normal derivative of the function
w at ∂Ω is actually inscribed in (5), because the original equation (6) holds in a wider
domain and the coefficient c (x) is known outside of Ω. To formalize the latter, one should
consider the boundary value problem for equation (7) for x ∈ R3�Ω with the boundary
condition (5) and condition (8). Solution of this problem provides the normal derivative of
the function w at ∂Ω. The question of uniqueness of this Inverse Problem is a well known
long standing open problem. It is addressed positively only if the function δ (x− x0) above
is replaced with a such a function f(x) ∈ C∞

(
R3
)

that f(x) 6= 0,∀x ∈ Ω. An example of
this function is function is

f(x) = Cε exp

(
−|x− x0|2

ε2

)
,

∫

R3

f (x) dx = 1,

where ε > 0 is a small positive number and the positive constant Cε is chosen such
that the above integral equals 1. Corresponding theorems are proved via the method of
Carleman estimates [19, 20]. In principle, one can replace the δ (x− x0)− function with
a δ (x− x0)− like smooth function, which is not zero in Ω. The resulting function w̃
will be close to the function w in a certain sense, and the above mentioned uniqueness
result would be applicable then. In principle our numerical method can be extended to
this case, although a corresponding development is outside of the scope of this publication.
It is an opinion of the authors that because of applications, it makes sense to develop
numerical methods, assuming that the question of uniqueness of the above inverse problem
is addressed positively.

3 Nonlinear Integral Differential Equation Without the

Unknown Coefficient

It follows from (6), (7) and the maximum principle that w(x, s) > 0,∀s ≥ s. Consider the
function v = lnw. Since x0 /∈ Ω, then (6) and (8) lead to

∆v + |∇v|2 = s2c (x) in Ω, (11)

v (x, s) = lnϕ (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] , (12)

where ϕ (x, s) is the Laplace transform (6) of the function g (x, t). We eliminate the
coefficient c (x) from equation (11) via the differentiation with respect to s, since ∂sc (x) =
0. To “isolate” the unknown coefficient in (11), introduce a new function

H (x, s) =
v

s2
. (13)

It follows from (13) and (9) that

Dα
x (H) = O

(
1

s

)
, Dα

xDs(H) = O

(
1

s2

)
, s→ ∞. (14)
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By (11)
∆H + s2 (∇H)2 = c (x) . (15)

Denote
q (x, s) = ∂sH (x, s) . (16)

By (14) and (16)

H (x, s) = −
∞∫

s

q (x, τ) dτ.

We truncate this integral as

H (x, s) ≈ −
s∫

s

q (x, τ) dτ + V (x, s) , (17)

where s > s0 is a large number and

V (x, s) ≈ H (x, s) =
lnw (x, s)

s2
. (18)

The number s should be chosen in numerical experiments. We call V (x, s) the “tail”, this
function is unknown, and this is why we use ” ≈ ” here. By (14) the tail is small for
large values of s. In principle, therefore, one can set V (x, s) := 0. However, our numerical
experience shows that it would be better to update somehow the tail function in an iterative
procedure. We call the updating procedure “iterations with respect to tails”.

Thus, we obtain from (15)- (17) the following (approximate) integral nonlinear differen-
tial equation

∆q − 2s2∇q ·
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2

(19)

+2s2∇q∇V − 2s∇V ·
s∫

s

∇q (x, τ) dτ + 2s (∇V )2 = 0

In addition, (12), (13) and (16) imply that the following Dirichlet boundary condition is
given for the function q

q (x, s) = ψ (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] , (20)

where

ψ (x, s) =
ϕs
ϕs2

− 2 lnϕ

s3
.

Suppose for a moment that the function q is approximated together with its derivatives
Dα
xq, |α| ≤ 2. Then the corresponding approximation for the target coefficient can be found

via (15) as
c (x) = ∆H + s2 (∇H)2 , (21)

where the functionH is approximated via (17). Although any value of the pseudo frequency
s ∈ [s, s] can be used in (21), but we found in our numerical experiments that the best
value is s := s. If integrals would be absent and the tail function would be known, then this
would be the classic Dirichlet boundary value problem for the Laplace equation. However,
the presence of integrals implies the nonlinearity and represents the main difficulty here.



Another obvious difficulty is that equation (19) has two unknown functions q and V . The
reason why we can handle this difficulty is that we treat functions q and V differently:
while we iteratively find approximations for q being sort of “restricted” only to equation
(19), we find updates for V using solutions of forward problems (1), (2) and the formula
(18). In those forward problems corresponding approximations for the unknown coefficient
c, obtained from (21), are used.

4 A Sequence of Elliptic Dirichlet Boundary Value Problems

We approximate the function q (x, s) as a piecewise constant function with respect to the
pseudo frequency s. That is, we assume that there exists a partition s = sN < sN−1 <
... < s1 < s0 = s, si−1 − si = h of the interval [s, s] with a sufficiently small grid step size
h such that q (x, s) = qn (x) for s ∈ (sn, sn−1). Hence,

∫ s

s
∇q(x, τ)dτ = (sn−1 − s)∇qn(x) + h

n−1∑

j=1

∇qj(x), s ∈ (sn, sn−1). (22)

We approximate the boundary condition (20) as a piecewise constant function,

qn (x) = ψn (x) , x ∈ ∂Ω, (23)

where

ψn (x) =
1

h

sn−1∫

sn

ψ (x, s) ds. (24)

On each subinterval (sn, sn−1] , n ≥ 1 we assume that functions qj (x) , j = 1, ..., n − 1 are
known. We obtain an approximate equation for the function qn (x) . Then we multiply this
equation by the Carleman Weight Function (CWF) of the form

Cn,λ(s) = eλ(s−sn−1), s ∈ (sn, sn−1], (25)

and integrate with respect to s over (sn, sn−1). In (24) λ >> 1 is a parameter, which
should be chosen in numerical experiments. Theorem 6.1 provides a recipe for this choice.
We obtain (see details in [5])

Ln (qn) := ∆qn −A1,n

(
h

n−1∑

i=1

∇qi
)
∇qn +A1n∇qn∇V − εqn

= 2
I1,n
I0

(∇qn)2 −A2,nh
2

(
n−1∑

i=1

∇qi (x)
)2

+ 2A2,n∇V
(
h

n−1∑

i=1

∇qi
)

−A2,n (∇V )2 , n = 1, ..., N,

(26)

where I0 := I0 (λ, h) , A1,n := A1,n (λ, h) , A2,n := A2,n (λ, h) are certain integrals involving
the CWF. Thus, we have obtained the Dirichlet boundary value problem (23), ( 26) for a
nonlinear elliptic PDE with the unknown function qn (x) . In this system the tail function
V is also unknown. An important observation is that

|I1,n (λ, h)|
I0 (λ, h)

≤ 4s2

λ
. (27)
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Therefore, by taking λ >> 1, we mitigate the influence of the nonlinear term with (∇qn)2
in (26), which enables us to solve a linear problem on each iterative step. We have added
the term −εqn to the left hand side of equation (26), where ε > 0 is a small parameter.
We are doing this because, by the maximum principle, if a function p(x) is the classical
solution of the Dirichlet boundary value problem

Ln (p) − εp = f(x) in Ω, p |∂Ω= pb(x),

then [22] (Chapter 3, §1)

max
Ω

|p| ≤ max

[
max
∂Ω

|pb| , ε−1 max
Ω

|f |
]
.

On the other hand, if ε = 0, then the analogous estimate would be worse because of the
involvement of some constants depending on maxΩ |∇qj|. Therefore, it is anticipated that
the introduction of the term −εqn should provide a better stability of our process, and we
have indeed observed this in our computations.

5 The Algorithm

The above considerations lead to the algorithm described in this section. In particular,
we describe here our procedure for iterative updates of the tails. We refer to subsection
5.4 of [18] for the first procedure of this sort, which was applied to a linearized CIP. Be-
low Ck+α

(
Ω
)

are Hőlder spaces, where k ≥ 0 is an integer and α ∈ (0, 1) [22]. Denote
|f |k+α = ‖f‖Ck+α(Ω) ,∀ f ∈ Ck+α

(
Ω
)
. Our algorithm reconstructs iterative approxima-

tions cn,i (x) ∈ Cα
(
Ω
)

of the function c (x) only inside the domain Ω. On the other hand,
to iterate with respect to tails, we need to solve the forward problem (1), (2). To do
this, we need to extend each function cn,k (x) outside of the domain Ω in such a way that
the resulting function ĉn,k ∈ Cα

(
R3
)
, ĉn,k ≥ d1 in Ω and ĉn,k = 2d1 outside of Ω. The

corresponding procedure is rather standard and is described in section 5 of [5]. In this
section we mention convergencies of certain “sub-procedures”. Numerical specifications of
corresponding convergence criteria are given in subsection 9.1.

In accordance with (17), (21) and (22) denote

Hn,i (x) = hqn,i + h

n−1∑

j=1

qj (x) + Vn,i (x) , x ∈ Ω, (28)

cn,i (x) = ∆Hn,i + s2n (∇Hn,i)
2 , (29)

where functions qj, qn,i, Vn,i are defined in this section below. Here mn is the number of
iterations with respect to tails for the given n where i = 1, ...,mn. In our algorithm we set

q0 := 0, q0
1,1 := 0, V1,1 (x) := V 0

1,1 (x) , (30)

q0n,1 := qn−1, Vn,1 (x) := Vn−1,mn−1
(x) , for n ≥ 2, (31)

where V 0
1,1 (x) is a certain starting value for the tail function, which is specified in subsection

9.1.
Step n1, n ≥ 1. Suppose that functions q1, ..., qn−1, q

0
n,1 := qn−1 ∈ C2+α(Ω), cn−1 ∈

Cα(Ω) and the tail function Vn,1(x, s) ∈ C2+α(Ω) are constructed, see (30), (31) . We



now construct the function qn,1. To do this, we solve iteratively the following Dirichlet
boundary value problems

∆qkn,1 −A1n


h

n−1∑

j=1

∇qj


 · ∇qkn,1 − εqkn,1 +A1n∇qkn,1 · ∇Vn,1 =

2
I1n
I0

(
∇qk−1

n,1

)2
−A2nh

2



n−1∑

j=1

∇qj (x)




2

(32)

+2A2n∇Vn,1 ·


h

n−1∑

j=1

∇qj (x)


−A2n (∇Vn,1)2 , qkn,1 ∈ C2+α

(
Ω
)
, k = 1, 2, ...,

qkn,1 (x) = ψn (x) , x ∈ ∂Ω. (33)

We call these “iterations with respect to the nonlinear term”. We iterate here until the
process converges. Then we set

qn,1 = lim
k→∞

qkn,1 in the C2+α
(
Ω
)

norm.

Next, we reconstruct an approximation cn,1 (x) , x ∈ Ω for the unknown function c (x)
using the resulting function qn,1 (x) and formulas (28), (29) at i = 1. Hence, cn,1 ∈ Cα(
Ω
)
. Assume that cn,1 (x) ≥ d1 in Ω. Construct the function ĉn,1 (x) ∈ Cα

(
R3
)
. Next,

solve the forward problem (1), (2) with c (x) := ĉn,1 (x) . We obtain the function un,1 (x, t) .
Calculate the Laplace transform (6) of this function and obtain the function wn,1(x, s) this
way. Next, following (18), we set for x ∈ Ω

Vn,2 (x, s) =
1

s2
lnwn,1(x, s) ∈ C2+α

(
Ω
)
. (34)

Step ni, i ≥ 2, n ≥ 1. Suppose that functions qn,i−1, Vn,i (x, s) ∈ C2+α
(
Ω
)

are con-
structed. We now iterate with respect to the tail only. That is, we solve the boundary
value problem

∆qn,i −A1n


h

n−1∑

j=1

∇qj


 · ∇qn,i − εqn,i +A1n∇qn,i · ∇Vn,i

= 2
I1n
I0

(∇qn,i−1)
2 −A2nh

2



n−1∑

j=1

∇qj (x)




2

+ 2A2n∇Vn,i ·


h

n−1∑

j=1

∇qj (x)


−A2n (∇Vn,i)2 ,

(35)

qn,i (x) = ψn (x) , x ∈ ∂Ω. (36)

Having the function qn,i, we reconstruct the next approximation cn,i ∈ Cα(Ω) for the target
coefficient using (28), (29), and, assuming that cn,i(x) ≥ d1 in Ω, construct the function
ĉn,i ∈ Cα(R3). Next, we solve the forward problem (1), (2) with c (x) := ĉn,i (x) , calculate
the Laplace transform (6) and update the tail as in (34), where (wn,1, Vn,2) is replaced with

9



(wn,i, Vn,i+1) . We iterate with respect to i until convergence occurs at the step i := mn.
Then we set

qn := qn,mn ∈ C2+α
(
Ω
)
, cn := cn,mn ∈ Cα

(
Ω
)
,

Vn+1,1 (x, s) =
1

s2
lnwn,mn(x, s) ∈ C2+α

(
Ω
)
. (37)

If functions cn(x) did not yet converge, then we proceed with Step (n+ 1)1 , provided
that n < N , where N is a prescribed iteration number, N ≤ N, see Theorem 6.1. However,
if either functions cn(x) converged, or n = N, then we stop. It follows from (34) that in
principle, to update the tail, one can solve the problem (7), (8) for s = s instead of the
problem (1), (2). However, our computational experience shows that it is better to proceed
via solving the problem (1), (2) and calculating the Laplace transform then. We do not
yet have an explanation for this.

6 Global Convergence

By the concept of Tikhonov for ill-posed problems [30], which we follow, one should assume
first that there exists an “ideal” exact solution of an ill-posed problem with the exact data.
Next, one should assume the presence of an error of the level ζ in the data, where ζ > 0 is a
small parameter. Suppose that an approximate solution is constructed for each sufficiently
small ζ. This solution is called a “regularized solution”, if it tends to the exact solution as
ζ → 0.

6.1 Exact solution

First, we introduce the definition of the exact solution. We assume that there exists a
coefficient c∗ (x) ∈ [2d1, 2d2] satisfying condition (4), and this function is an exact solution
of our Inverse Problem with the exact data in g∗(x, t) in (8). The Laplace transform (6) of
the function g∗ (x, t) leads to the exact function ϕ∗ (x, s) = w∗ (x, s) ,∀ (x, s) ∈ ∂Ω× [s, s].
Here the function w∗ (x, s) ∈ C2+α

(
R3� {|x− x0| < γ}

)
,∀γ > 0,∀s ≥ s is the solution of

the forward problem (7), (8) with c (x) := c∗ (x). Also, let

H∗ (x, s) =
ln [w∗ (x, s)]

s2
, q∗ (x, s) =

∂H∗ (x, s)

∂s
, V ∗ (x, s) = H∗ (x, s) .

The function q∗ satisfies an obvious analogue of equation (19) with the boundary condition
(see (20)

q∗ (x, s) = ψ∗ (x, s) , (x, s) ∈ ∂Ω × [s, s] , (38)

where

ψ∗ (x, s) =
1

ϕ∗s2
· ∂ϕ

∗

∂s
− 2 lnϕ∗

s3
.

Definition. We call the function q∗ (x, s) the exact solution of the problem (19), (20)
with the exact boundary condition ψ∗ (x, s).

Hence,
q∗ (x, s) ∈ C2+α

(
Ω
)
× C∞ [s, s] . (39)

We now follow (22)-(26). First, we approximate functions q∗ (x, s) and ψ∗ (x, s) via piece-
wise constant functions with respect to s ∈ [s, s] . Let

q∗n (x) =
1

h

sn−1∫

sn

q∗ (x, s) ds, ψ
∗
n (x) =

1

h

sn−1∫

sn

ψ∗ (x, s) ds. (40)



Then

q∗ (x, s) = q∗n (x) +Qn (x, s) , ψ∗ (x, s) = ψ
∗
n (x) + Ψn (x, s) , s ∈ [sn, sn−1] ,

where by (6.1) functions Qn,Ψn are such that

|Qn (x, s)|2+α ≤ C∗h, |Ψn (x, s)|2+α ≤ C∗h, n = 1, ..., N, for s ∈ [sn, sn−1] , (41)

where the constant C∗ = C∗
(
‖q∗‖C2+α(Ω)×C1[s,s]

)
> 0 depends only on the C2+α

(
Ω
)
×

C1 [s, s] norm of the function q∗ (x, s). Hence, we can assume that

max
1≤n≤N

|q∗n|2+α ≤ C∗. (42)

Without a loss of generality, we assume that

C∗ ≥ 1. (43)

By the Tikhonov concept, the constant C∗ should be known a priori. By Lemma 2.1, it is
reasonable to assume that C∗ is independent on s, although we do not use this assumption.
By (40)

q∗n (x) = ψ
∗
n (x) , x ∈ ∂Ω. (44)

Hence we obtain the following analogue of the equation (26) from (39)

∆q∗n −A1,n

(
h

n−1∑

i=1

∇q∗i (x)

)
∇q∗n +A1,n∇q∗n∇V ∗

= 2
I1,n
I0

(∇q∗n)2 −A2,nh
2

(
n−1∑

i=1

∇q∗i (x)

)2

(45)

+2A2,n∇V ∗

(
h
n−1∑

i=1

∇q∗i (x)

)
−A2,n |∇V ∗|2 + Fn (x, h, λ) ,

where the function Fn (x, h, λ) ∈ Cα
(
Ω
)

and

max
λh≥1

|Fn (x, h, λ)|α ≤ C∗h. (46)

We also assume that the function g(x, t) in (8) is given with an error. This naturally
produces an error in the function ψ (x, s) in (20). An additional error is introduced due to
the averaging in (24). Hence, it is reasonable to assume that

∥∥∥ψ∗
n (x) − ψn (x)

∥∥∥
C2+α(∂Ω)

≤ C∗ (σ + h) , (47)

where σ > 0 is a small parameter characterizing the level of the error in the data ψ (x, s) .
The parameter h can also be considered as a part of the error in the data, since we have
replaced a smooth s-dependent function with a piecewise constant one.
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6.2 Convergence theorem

First, we reformulate the Schauder theorem in a simplified form, which is convenient for
our case, see Chapter 3, §1 in [22] for this theorem. Assuming that

s > 1, λh ≥ 1, (48)

it was shown in [5] that
max

1≤n≤N
{|A1,n| + |A2,n|} ≤ 8s2. (49)

Introduce the positive constant M ∗ = M∗
(
‖q∗‖C2+α(Ω)×C1[s,s] , s

)
= M∗ (C∗, s) by

M∗ = 2C∗ max

(
8s2, max

1≤n≤N
{|A1,n| + |A2,n|}

)
. (50)

Hence, (49) and (50) imply that
M∗ = 16C∗s2. (51)

Consider the Dirichlet boundary value problem

∆u+
3∑

j=1

bj(x)uxj
− d(x)u = f (x) , x ∈ Ω,

u |∂Ω= g (x) ∈ C2+α (∂Ω) .

Assume that the following conditions are satisfied

bj, d, f ∈ Cα
(
Ω
)
, d (x) ≥ 0; max

(
|bj |α , |d|α

)
≤ 1.

By the Schauder theorem, there exists unique solution u ∈ C 2+α
(
Ω
)

of this boundary
value problem, and with a constant K = K (Ω) > 0 depending only on the number the
domain Ω the following estimate holds

|u|2+α ≤ K
[
‖g‖C2+α(∂Ω) + |f |α

]
. (52)

In the formulation of Theorem 6.1 we provide estimates (56)-(61) via M ∗ and also use
(51) to obtain estimates via s. This formulation is almost the same as one in [5]. Note that
the definition of the norm in the space Cα(Ω) implies that

|f1f2|α ≤ |f1|α |f2|α , ∀f1, f2 ∈ Cα
(
Ω
)
. (53)

Theorem 6.1. Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈
C3. Suppose that (42)-(44) and (46)-(48) hold. Let the exact coefficient c∗ (x) satisfies
(4) and c∗ ∈ [2d1, 2d2] , c

∗ (x) = 2d1 for x ∈ R3�Ω, where numbers d1, d2 > 0 are
given. For any function c (x) ∈ Cα

(
R3
)

such that c (x) ≥ d1 in Ω and c (x) = 2d1

in R3�Ω consider the solution u (x, t) of the Cauchy problem (1), (2). Let wc (x, s) ∈
C2+α

(
R3� {|x− x0| < γ}

)
,∀γ > 0 be the Laplace transform (6) of u (x, t) and Vc (x) =

s−2 lnwc (x, s) ∈ C2+α
(
Ω
)

be the corresponding tail function. Suppose that the cut-off
pseudo frequency s is so large that both for c∗ (x) and any such function c (x) the following
estimates hold (see (14))

|V ∗|2+α ≤ ξ, |Vc|2+α ≤ ξ, (54)



where ξ ∈ (0, 1) is a sufficiently small number. Let V1,1 (x, s) ∈ C2+α
(
Ω
)

be the initial tail
function and let (see (30))

|V1,1|2+α ≤ ξ. (55)

Denote η := 2 (h+ σ + ξ + ε) . Let K = K (Ω) > 0 be the constant of the Schauder theorem
in (52) and N ≤ N be the total number of functions qn calculated by the above algorithm.
Suppose that the number N = N (h) is connected with the step size h via N (h) h = β,
where the constant β > 0 is independent on h. Let β be so small that

β ≤ min

(
2

7
,

1

162KC∗s4
,

1

162C∗s4

)
≤ min

(
2

7
,

1

16KM∗s2
,

C∗

(M∗)2

)
. (56)

In addition, let the number η and the parameter λ of the CWF satisfy the following esti-
mates

η ≤ η0 (Ω,M∗, d1) = η0

(
Ω, ‖q∗‖C2+α(Ω)×C1[s,s] , d1, s

)

= min

(
1

2
,

1

4K
,

d1

32 · 16C∗s4
,

1

8C∗s2

)
= min

(
1

2
,

1

4K
,

d1

32M∗s2
,

2

M∗

)
, (57)

λ ≥ λ0 (C∗,K, s, η) = max

(
164 (C∗)4 s8, 6 · 162 (C∗)2Ks4,

1

η2

)
. (58)

Then for every integer n ∈
[
1, N

]
the following estimates hold

∣∣∣qkn,1 − q∗n

∣∣∣
2+α

, |qn,i − q∗n|2+α ≤ 2KM∗

(
1√
λ

+ 3η

)
= 32C∗Ks2

(
1√
λ

+ 3η

)
, (59)

∣∣∣qkn,1
∣∣∣
2+α

, |qn,i|2+α ≤ 2C∗, (60)

|cn,i − c∗|α ≤ 8M∗s2
(

1√
λ

+ 3η

)
= 128C∗s4

(
1√
λ

+ 3η

)
. (61)

In addition, functions cn,i (x) ≥ d1 in Ω and ĉn,k (x) ≥ d1 in R3.
Proof. The major part of the proof is the same as one in [5]. The only thing we prove

now is the convergence of functions qkn,1 for k → ∞, because it was not proven in [5].The
idea of the proof is to consider the differences q̃kn,i = qkn,i − q∗n, q̃n,i = qn,i − q∗n, obtain
Dirichlet boundary value problems for linear elliptic equations for them via subtracting
(45) from either (32) or (35), and (44) from either (33) or (36), and then sequentially use

the estimate (52) of the Schauder theorem to estimate norms
∣∣∣q̃kn,i

∣∣∣
2+α

, |q̃n,i|2+α from the

above. In doing so, one needs to estimate differences of tails Ṽn,k = Vn,k − V ∗ using (37),

(54) and (55), as
∣∣∣Ṽn,k

∣∣∣
2+α

≤ 2ξ ≤ η.

It follows from [5] that given the number n, estimates (59) and (60) for
∣∣qkn,1 − q∗n

∣∣
2+α

,
∣∣qkn,1

∣∣
2+α

can be proven, using the above outlined idea, without the proof of convergence of functions
qkn,1, k → ∞. Hence, we assume now that these estimates are valid. Consider for example
the case n = 1, since other cases are similar. Let m, r > 2 be two positive integers. Denote
am,r = qm1,1 − qr1,1. Setting in (32), (33) n = 1, k := m, then k := r and subtracting two
resulting equations, we obtain

∆am,r − εam,r +A1,1∇amr · ∇V1,1 = 2
I1,1
I0

∇am−1,r−1 ·
(
∇qm−1

1,1 + ∇qr−1
1,1

)
, (62)

am,r |∂Ω= 0. (63)
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For the vector function f = (f1, f2, f3) , fi ∈ Cα
(
Ω
)

denote

|f |α =




3∑

j=1

∣∣fxj

∣∣2
α




1/2

.

Hence, |∇am−1,r−1|α ≤
√

3 |am−1,r−1|2+α and by (60)
∣∣∣∇qm−1

1,1 + ∇qr−1
1,1

∣∣∣
α
≤ 4

√
3C∗.Hence,

(27) and (53) lead to
∣∣∣∣2
I1,1
I0

∇am−1,r−1 ·
(
∇qm−1

1,1 + ∇qr−1
1,1

)∣∣∣∣
α

≤ 100C∗s2

λ
|am−1,r−1|2+α . (64)

Applying (52) to (62), (63), and taking into account (58) and (64), we obtain

|am,r|2+α ≤ 100KC∗s2

λ
|am−1,r−1|2+α ≤ 100

6 · 162C∗s2
|am−1,r−1|2+α . (65)

Since by (43) and (48) C∗s2 > 1, then (65) implies that

|am,r|2+α ≤ 1

10
|am−1,r−1|2+α . (66)

It follows from (66) that the sequence
{
qk1,1
}∞
k=1

satisfies the Cauchy convergence criterion.
�.

Remarks:
1. It often happens in the computational practice of ill-posed problems that theoretical

estimates of convergence theorems are more pessimistic than ones obtained in numerical
studies, and also some discrepancies between analytical results and their numerical imple-
mentations often occur. Our computational experience tells us that this is exactly our case
in reference to estimates (56)- (61). It seems to be at the first glance that because of (61),
one can stop the iterative process at n = 1. However, our numerical experience shows that
this way one cannot obtain good images. Hence, we use in our computations a stopping
rule, which is different from (61). Actually, we do not use the C 2+α(Ω) norm to verify
convergence, because it is rather complicated in the computational practice to consider
this norm and also because all norms in finite dimensional spaces are equivalent, and we
work in a finite dimensional space of finite elements in our computations. In addition, we
have used the δ− function in (1) and the whole space R3 only for the sake of a convenient
formulation of the asymptotic behavior (9). In our computations we use the plane wave
and a bounded domain G for the solution of the forward problem. Other main discrepan-
cies between our theory and the computational implementation are listed in subsection 7.2
of [5]. In particular, it is stated there that we verify the asymptotic behavior at s → ∞
computationally.

2. Truncating integrals at a high pseudo frequency s is a natural thing to do, because one
routinely truncates high frequencies in physics and engineering. By truncating integrals,
we actually come up with a different, although a quite reasonable mathematical model.

3. One of the back bones of the theory of ill-posed problems is that the number of
iterations can be chosen as a regularization parameter, see, e.g., page 157 of [16]. Therefore,
we have a vector (s,N,m1, ...,mN ) of regularization parameters, see details about their
choice in subsection 8.2. Setting N (h) h = β = const. > 0 is in an agreement with, e.g.,
Lemma 6.2 on page 156 of [16], since this lemma shows a connection between the error in
the data and the number of iterations (that lemma is proven for a different algorithm). The



(a) GFDM (b) G = GFEM ∪GFDM (c) GFEM = Ω

Figure 1: The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is
applied, and a mesh (c), where we use FEM, with a thin overlapping of structured
elements. The solution of the inverse problem is computed in the square Ω and
c(x) = 1 for x ∈ G�Ω.

number β is small because our algorithm is originated by equation (19), which contains
nonlinear terms with s-integrals of the Volterra type. It well known that in general solutions
of nonlinear integral equations of the Volterra type can be estimated only on sufficiently
small intervals.

7 Computations of the Forward Problem

In this paper we work with the computationally simulated data. That is, the data are
generated by computing the forward problem (68) with the given function c(x). To solve
the forward problem, we use the hybrid FEM/FDM method described in [11]. The compu-
tational domain in all our tests G = GFEM ∪GFDM is set as G = [−4.0, 4.0] × [−5.0, 5.0].
This domain is split into a finite element domain GFEM := Ω = [−3.0, 3.0] × [−3.0, 3.0]
and a surrounding domain GFDM with a structured mesh, see Figure 1. The space mesh
in Ω consists of triangles and in GFDM - of squares with the mesh size h̃ = 0.125 in the
overlapping regions. At the top and bottom boundaries of G we use first-order absorbing
boundary conditions [17] which are exact in this particular case since the plane wave is
initialized in normal direction into G in all our tests. At the lateral boundaries, mirror
boundary conditions allow us to assume an infinite space domain in the lateral direction.

The forward problem is computed in the domain G ⊂ R2 (Figure 1). The coefficient
c(x) is unknown only in domain Ω ⊂ G and

c(x) = 1 in G�Ω. (67)

The trace of the solution of the forward problem is recorded at the boundary ∂Ω. Next,
the coefficient c(x) is “forgotten”, and our goal is to reconstruct this coefficient for x ∈ Ω
from the data ϕ (x, s) . The boundary of the domain G is ∂G = ∂G1 ∪ ∂G2 ∪ ∂G3. Here,
∂G1 and ∂G2 are respectively top and bottom sides of the largest domain of Figure 1 and
∂G3 is the union of left and right sides of this domain. In our first test the forward problem
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t = 0.5 t = 3.7 t = 5.9 t = 6.9

t = 7.5 t = 8.5 t = 9.6 t = 11.2

Figure 2: Test 1: Isosurfaces of the simulated exact solution to the forward problem (68)
at different times with a plane wave initialized at the top boundary.



t = 2.1 t = 4.3 t = 4.3 t = 4.8

t = 5.9 t = 6.4 t = 9.1 t = 10.7

Figure 3: Test 2: Isosurfaces of the simulated exact solution to the forward problem (68)
with a plane wave initialized at the bottom boundary.

clearpage
clearpage

is

c (x)
∂2u

∂t2
−4u = 0, in G× (0, T ),

u(·, 0) = 0,
∂u

∂t
(·, 0) = 0, in G,

∂nu
∣∣
∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣∣
∂G1

= ∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= ∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ),

(68)

where T is the final time and f(t) is the plane wave defined as

f(t) =
(sin (st−π/2) + 1)

10
, 0 ≤ t ≤ t1 :=

2π

s
, T = 17.8t1.

Thus, the plane wave is initialized at the top boundary ∂G1 and propagates into G for
t ∈ (0, t1]. First order absorbing boundary conditions [17] are used on ∂G1 × (t1, T ] and
∂G2 × (0, T ], and the Neumann boundary condition is used on the bottom boundary ∂G3.
In the second test we consider the case when the plane wave is initialized at the bottom
boundary and use the Neumann boundary condition at the top boundary. In the integral
(6) of the Laplace transform we integrate for t ∈ (0, T ) .
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8 The Adaptivity Technique

In this section we describe the adaptivity technique, for the sake of completeness, as well
as for the sake of the above mentioned rigorous explanation of the meaning of the ψ
function. However, we are not proving the estimate (95) here for the Frechet derivative of
the Lagrangian and instead refer for details to [7, 8, 9].

To use the adaptivity technique, we formulate the inverse problem for the boundary
value problem (68) as an optimization problem, where we seek the unknown coefficient
c(x), which gives the solution of the boundary value problem (68) for the function u(x, t)
with the best least squares fit to the time domain observations g (x, t) , see (5). Denote
QT = Ω × (0, T ) , ST = ∂Ω × (0, T ) . Our goal now is to find the function c(x) which
minimizes the Tikhonov functional

E(u, c) =
1

2

∫

ST

(u |ST
− g(x, t))2dσdt+

1

2
γ

∫

Ω

(c− c0)
2 dx, (69)

where γ is the regularization parameter and c0 is an initial guess for the unknown coefficient
c. On the first step of the adaptivity we take the same mesh as one we have used for the
globally convergent method. The first guess c0 = c0 (x) is also taken the one, which was
obtained on the globally convergent stage. On each follow up step of the adaptivity when
mesh refinement is used, the function c0 (x) is taken from the previous step. In doing so,
values of that function are linearly interpolated from the coarser grid on the finer grid.
Note that since c (x) = 1 in the domain G�Ω, then given the function g(x, t) = u |∂Ω,
one can uniquely determine the function u(x, t) for (x, t) ∈ (G�Ω)× (0, T ) as the solution
of the boundary value problem for equation (68) for with boundary conditions on both
boundaries ∂G and ∂Ω. Hence, one can uniquely determine the function p (x, t) ,

∂u

∂n
|ST

= p (x, t) . (70)

Since we deal with computationally simulated data, in our computations both functions
p (x, t) and g (x, t) are calculated from the solution of the forward problem (68) with the
correct value of the coefficient c(x).

Denote

H2
u (QT ) = {f ∈ H2(QT ) : f(x, 0) = ft(x, 0) = 0},

H1
u(QT ) = {f ∈ H1(QT ) : f(x, 0) = 0},

H2
ϕ(QT ) = {f ∈ H2(QT ) : f(x, T ) = ft(x, T ) = 0},

H1
ϕ(QT ) = {f ∈ H1(QT ) : f(x, T ) = 0},

U = H2
u(QT ) ×H2

ϕ(QT ) × C2(Ω),

Ū = H1
u(QT ) ×H1

ϕ(QT ) × L2(Ω),

Ū1 = L2 (QT ) × L2 (QT ) × L2 (Ω)

(71)

where all functions are real valued. Hence, U ⊂ Ū ⊂ Ū1 as sets, U is dense in Ū and Ū
is dense in Ū1. Also denote ((·, ·)) the inner product in Ū1 and [·] the norm generated by
this product.

To solve the problem of the minimization of the functional (69), we introduce the La-
grangian

L(v) = E(u, c) +

∫

QT

ϕ · (cutt − ∆u) dxdt,∀ϕ ∈ H2
ϕ (QT ) , (72)



where ϕ ∈ H2
ϕ (QT ) is the Lagrange multiplier and v = (u, ϕ, c) ∈ U . Since the function u

solves equation (68) then L(v) = E(u, c). This is because the second term in L(v) is zero.
Integration by parts and (72) leads to

L(v) = E(u, c) −
∫

QT

c(x)utϕtdxdt+

∫

QT

∇u∇ϕdxdt−
∫

ST

pϕdσdt. (73)

We search for a stationary point of the functional L(v), v ∈ U satisfying

L′(v) (v) = 0, ∀v̄ = (ū, ϕ̄, c̄) ∈ Ū (74)

where L′(v)(·) is the Frechet derivative of L at the point v. To find the Frechet derivative
L′(v) (v) , consider L (v + v) − L (v) ∀v̄ ∈ Ū and single out the linear, with respect to v,
part of this expression. Hence, we obtain from (73) and (74)

L′(v) (v) =

∫

Ω

c̄


γ (c− c0) −

T∫

0

utϕtdt


 dx−

∫

QT

c(x) (ϕtut + utϕt) dxdt (75)

+

∫

QT

(∇u∇ϕ+ ∇u∇ϕ) −
∫

ST

pϕdσdt = 0,∀v̄ = (u, ϕ, c) ∈ Ū .

Integration by parts in (75) leads to

L′(v) (v) =

∫

Ω

c̄


γ (c− c0) −

T∫

0

utϕtdt


 dx+

∫

QT

ϕ̄ (cutt − ∆u) dxdt (76)

+

∫

QT

ū (cϕtt − ∆ϕ) dxdt+

∫

ST

ū [(u− g) − ∂nϕ] dσdt,∀v̄ = (u, ϕ, c) ∈ Ū .

Hence (74) and (75) imply that every integral term in formula (76) equals zero. We obtain
that if (u, ϕ, c) = v ∈ U is a minimizer of the Lagrangian L(v) in (73), then

cutt −4u = 0, (x, t) ∈ QT , (77)

u(x, 0) = ut(x, 0) = 0, (78)

∂nu |ST
= p (x, t) ; (79)

cϕtt −4ϕ = 0, (x, t) ∈ QT , (80)

ϕ(x, T ) = ϕt(x, T ) = 0, (81)

∂ϕ

∂n
|ST

= (u− g) (x, t) , (x, t) ∈ ST ; (82)

γ(c− c0) −
∫ T

0
utϕt dt = 0, x ∈ Ω. (83)

The boundary value problem (80)-(82) should be solved backwards in time. Uniqueness and
existence theorems for initial boundary value problems (77)-(79) and (80)-(82), including
the case of weak H1

u (QT ) and H1
ϕ (QT ) solutions, can be found in Chapter 4 of [23]. We

minimize L(v) in an iterative process via solving on each step boundary value problems
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(77)-(79) and (80)-(82). We find weak solutions of problems (77)-(79), (80)-(82) via the
FEM.

To formulate the FEM for boundary value problems (77)-(79) and (80)-(82) we intro-
duce finite element spaces W u

h ⊂ H1
u (QT ) and Wϕ

h ⊂ H1
ϕ (QT ) for functions u and ϕ

respectively. These spaces consist of continuous piecewise linear functions in space and
time satisfying initial conditions u (x, 0) = 0 for u ∈ W u

h and ϕ (x, T ) = 0 for ϕ ∈ W ϕ
h .

We also introduce the finite element space Vh ⊂ L2 (Ω) of piecewise constant functions
for the target coefficient c(x) and denote Uh = W p

h ×Wϕ
h × Vh ⊂ Ū . So, we consider Uh

as a discrete analogue of the space Ū . Since all norms in a finite dimensional space are
equivalent, it is convenient for us to intorduce in Uh the same norm as one in Ū1. The
functional L (vh) is defined in terms of (73) and L′ (v) (v) is defined in terms of (75). The
FEM for (74) now reads: Find vh ∈ Uh, such that

L′ (vh) (v) = 0, ∀v ∈ Uh. (84)

We solve this discrete problem using the quasi-Newton method with the limited storage
[27]. More precisely, let ch (x) ∈ Vh be a piecewise constant approximation of the unknown
coefficient c(x). We compute iteratively the sequence {cmh } , m = 1, ... of approximations
of ch as

cm+1
h (x) = cmh (x) − αHmgm(x), (85)

where α is the step length computed via the line-search algorithm [28]. Here, Hm is the
Hessian of the Lagrangian. The Hessian is computed by the usual BFGS update formula
of the Hessian:

Hm+1 = (I − dmsmymT )Hm(I − dmymsmT ) + ρsmsmT ,m = 1, ...,

where
dm = 1/(ymT sm),m = 1, ... (86)

and
ym = gm+1 − gm.

Corrections sm in (86) are defined as sm = cm+1
h − cmh . In our computations we have used

a special BFGS update formula with limited storage for the Hessian [27] where we store a
finite number n = m−1 of corrections for the computed gradients and parameters in (86).
When n = 0 then the quasi-Newton method is the usual gradient method with H 0 = I.
The nodal values of the gradient gm(x) are given by (see (83))

gm(x) = γ(cmh − c0) −
∫ T

0
umhtϕ

m
ht dt. (87)

Here umh ∈W u
h , ϕ

m
h ∈W u

h are functions u and ϕ obtained on the mth iteration via solving
boundary value problems (77)-(79) and (80)- (82) respectively with c := cmh , c0 := c1h, see
subsection 8.3 for our stopping criterion.

8.1 A posteriori error estimate for the Lagrangian

When performing computational experiments, we are concerned with the accuracy of ob-
tained results. We now address the issue of a posteriori error bound that estimates the
error of the finite element approximation of the function c in terms of the residual error
obtained in the reconstruction process. The latter error bound can be evaluated once the
FEM solution has been computed, since this solution is used then for the derivation of



that error bound. The resulting a posteriori error estimate enables us to estimate and
adaptively control the finite element error to a desired tolerance level via refining the mesh
locally.

Let v ∈ U be a minimizer of the Lagrangian L on the space Ū , and vh be a minimizer
of this functional on Uh. That is, v is a solution of the problem (75) and vh is a solution
of the problem (84). Since the second stage of our two-stage procedure, the adaptivity,
is a locally convergent numerical method and the first good approximation for the second
stage is obtained on the first stage, we can assume that we work in a small neighborhood
of the exact solution v∗ ∈ U of our original CIP. Thus, we assume that

‖v − v∗‖Ū ≤ δ and ‖v − vh‖Ū ≤ δ, (88)

where δ is a sufficiently small positive number. We now obtain a posteriori error estimate
for the error in the Lagrangian,

L(v) − L(vh) =

∫ 1

0

d

dε
L(εv + (1 − ε)vh)dε

=

∫ 1

0
L′(εv + (1 − ε)vh) (v − vh) dε = L′(vh) (v − vh) +R,

(89)

where R is the second order, with respect to v − vh, remainder term, |R| ≤ C ‖v − vh‖2
Ū

with a certain positive constant C (in principle, more details can be given here, which,
however, is outside of the scope of this paper. We ignore R because of (88).

Let Ph : Ū1 → Uh be the operator of the orthogonal projection of the space Ū1 on the
subspace Uh. Since v ∈ U and U ⊂ Ū1 as a set, we can apply the operator Ph to the
element v. In other words, Ph (v) := vIh is the interpolant of v via finite elements of Uh.
Using the Galerkin orthogonality (84) with the splitting v − vh = (v − vIh) + (vIh − vh), we
obtain the following error representation:

L(v) − L(vh) ≈ L′ (vh) (v − vIh), (90)

involving the residual L′(vh)(·) with v − vIh appearing as the interpolation error. This
splitting is one of the main tricks in the adaptivity idea, because it allows us to use the
Galerkin orthogonality (84) and then to use the standard estimates of interpolation errors.
We estimate v − vIh in terms of derivatives of v and the mesh parameters h in space and
τ in time. Finally we approximate the derivatives of v by corresponding derivatives of
vh, see details in [7]-[9]. It turns out that the dominating contribution of the error in the
Lagrangian (72) is presented in residuals of the reconstruction and it is estimated from the
above by

γmax
Ω

|ch − c0| + max
Ω

∫ T

0
|uhtϕht| dt.

This observation indicates that the error in the Lagrangian can be decreased by refining
the grid locally in those regions, in which the absolute value of the gradient with respect
to c attains its maximum. The latter forms the basis for the adaptivity technique, see
Section 8.3.

8.2 A posteriori error estimate for the unknown coefficient

A more general a posteriori error estimate is the one, which can be used to estimate the
error in the reconstructed coefficient rather than the error in the Lagrangian [9]. This
estimate involves the solution ṽ ∈ Ū of the following problem

−L′′(vh) (v̄, ṽ) = ((ψ, v̄)) ∀v̄ ∈ Uh, (91)
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where the function ψ ∈ Ū is a function of our choice, ((·, ·)) is the L2 inner product in
Ū in space and time, and L′′(vh)(·, ·) is the second Frechet derivative (the Hessian) of the
Lagrangian L(v) at vh. The second Frechet derivative of the Lagrangian expresses the
sensitivity of the derivative of the Lagrangian (72) with respect to changes in v.

The main goal in the adaptive error control is to find a mesh with a few nodes as possible
such that |c − ch| ≤ ε for a given tolerance ε, where ch ∈ Vh is the third component of
the vector function vh, i.e., ch is an approximation of the function c, which is found in our
computations. Thus, in the adaptive algorithm, the solution obtained on a coarse mesh will
be interpolated to the refined mesh and used then as an initial guess for a new optimization
procedure. Following the ideas of [9], a posteriori estimate of the error between the exact
coefficient c and the computed one ch involves the solution of the problem (91).

Assuming existence of the solution of the problem (91), we obtain by choosing v = v−vh
in (91)

((ψ, v − vh)) = −L′′(vh)(v − vh, ṽ)

= −L′(v)(ṽ) + L′(vh)(ṽ) +R = L′ (vh)(ṽ) +R,
(92)

where L′ (v) (vh) = 0 due to (74), and again R is the second order remainder term.
Since ṽ ∈ Ū and Ū ⊂ Ū1 as a set, we can apply the projection operator Ph to ṽ.

Hence, Phṽ := ṽIh is the interpolant of ṽ. Using splitting ṽ =
(
ṽ − ṽIh

)
+ ṽIh, the Galerkin

orthogonality
L′(vh)(ṽ

I
h) = 0, ∀ṽIh ∈ Vh,

and ignoring R, we obtain from (92)

((ψ, v − vh)) ≈ L′(vh)(ṽ) = L′(vh)(ṽ − ṽIh) + L′(vh)(ṽ
I
h) = L′

(
vh)(ṽ − ṽIh

)
.

Hence, we have obtained the following analog of a posteriori error estimate for the error
in the Lagrangian (90)

((ψ, v − vh)) ≈ L′(vh)(ṽ − ṽIh). (93)

We conclude, that the concrete form of the estimate (93) is the same as one for the
Lagrangian L(v) with only v − vIh replaced with ṽ − ṽIh, compare (93) with (90). Hence,
to estimate |((ψ, v − vh))| , we can use estimates for the derivative of the Lagrangian, thus
ending up with the same problem as one in subsection 8.1.

We now provide the first rigorous explanation of the meaning of the estimate from the
above of |((ψ, v − vh))| in (93), which is formulated in (94). Let {ψk}Mk=1 ⊂ Uh be an
orthonormal basis in the finite dimensional space Uh. Assume that for each function ψk
there exists unique solution ṽψk

∈ Ū of the problem (91) such that ‖ṽψk
− v∗‖Ū ≤ δ (see

(88)). Denote ṽIψk
= Phṽψk

. By (93) we have the following approximate estimate

|((ψk, v − vh))|2 ≤
∣∣L′(vh)(ṽψk

− ṽIψk
)
∣∣2 .

Using splitting v − vh =
(
vIh − vh

)
+
(
v − vIh

)
again, noting that v − vIh = (I − Ph) v and

that by the definition of the orthogonal projection
((
ψk, v − vIh

))
= ((ψk, (I − Ph) v)) = 0,

we conclude that numbers ((ψk, v − vh)) are Fourier coefficients of the vector function
vIh − vh ∈ Uh with respect to the orthonormal basis {ψk}Mk=1 in the space Uh. Hence,

[
vIh − vh

]2
=

M∑

k=1

|((ψk, v − vh))|2 ≤
M∑

k=1

∣∣L′(vh)(ṽψk
− ṽIψk

)
∣∣2 ,



[
vIh − vh

]
≤
(

M∑

k=1

∣∣L′(vh)(ṽψk
− ṽIψk

)
∣∣2
)1/2

. (94)

Hence, estimates
∣∣∣L′(vh)(ṽψk

− ṽIψk
)
∣∣∣ from the above for all k = 1, ...,M would provide us

with an estimate of the difference between the interpolant of our target minimizer of the
Lagrangian and the minimizer of this Lagrangian on the subspace Uh, which will be found
in computations. Note that an analogous estimate was not obtained previously in [9].

Similarly to [7]-[9] we estimate ṽ−ṽIh in terms of derivatives of ṽ and the mesh parameters
h in space and τ in time. Finally we approximate the derivatives of ṽ by corresponding
derivatives of ṽh, see details in [7]-[9]. Then the estimate of the right hand side of (93) is
expressed in terms of residuals of the reconstruction and associated dual weights and has
the following form

| ((ψ, v − vh)) | ≤
∣∣L′(vh)(ṽ − ṽIh)

∣∣ ≤
∫

QT

Ru1
σϕ̃ dxdt

+

∫

QT

Ru2
σeϕ dxdt+

∫

ST

Rϕ1
σeu dxdt

+

∫

QT

Rϕ2
σeu dxdt+

∫

QT

Rϕ3
σeu dxdt

+

∫

QT

Rc1σec dx+

∫

Ω
Rc2σec dxdt, (95)

where ṽ = (ũ, ϕ̃, c̃) is a solution of the problem (91) for a chosen function ψ ∈ Uh and
ST = ∂Ω × (0, T ). Residuals are defined as

Ru1
= max

S⊂∂K
h−1
k

∣∣[∂suh
]∣∣, Ru2

= chτ
−1
∣∣[∂tuh

]∣∣,

Rϕ1
=

∣∣uh|ST
− g
∣∣, Rϕ2

= max
S⊂∂K

h−1
k

∣∣[∂sϕh
]∣∣, Rϕ3

= chτ
−1
∣∣[∂tϕh

]∣∣,

Rc1 =

∣∣∣∣
∂ϕh
∂t

∣∣∣∣ ·
∣∣∣∣
∂uh
∂t

∣∣∣∣ , Rc2 = γ|(ch − c0)| (96)

and different weights σ have the following form:

σeϕ = C1τ |[∂tϕ̃h]| + C1h |[∂sϕ̃h]| ,
σeu = C1τ |[∂tũh]| + C1h |[∂sũh]| ,
σec = C2

∣∣[c̃h]
∣∣,

(97)

where [ṽ] on a space element K (or time-interval J) denotes the maximum of the modulus
of the jump of the quantity ṽ across a face of K (or boundary node of J). In particular
[∂sṽ] on a space-element K denotes the maximum of the modulus of the jump in the normal
derivative of ṽ across a side of K. Also, [∂tṽ] on a time-interval J is the maximum of the
modulus of the jump of the time derivative of ṽ across a boundary node of J . Here C1 and
C2 are interpolation constants.

Thus, to find weights (97) in estimates (95), we need to compute the problem (91) to
find the function ṽ. It follows from (94) that choosing different functions ψk from the
orthonormal basis {ψk}Mk=1 of the subspace Uh in the problem (91), we obtain an approx-
imate a posteriori control of the error between the interpolant vIh of the exact minimizer
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v ∈ U and computed minimizer vh ∈ Uh of the Lagrangian. The main difficulty here is
in the solvability of the problem (91). A certain numerical method for the solution of
this problem was proposed in [9], and it was confirmed by numerical examples. However,
questions of convergence and stability of that method, so as the question of existence of
solution of the problem (91) are open. Still, we can come up with a simplified estimate
(94) which does not require solution of the problem (91), although assumes its existence,
see next subsection. Our computational experience shows that this estimate is sufficient
for our goal.

8.3 The adaptive algorithm

In this section we present our adaptive algorithm based on computations of the residuals
for the computed coefficient c. The initial guess value c0 for the unknown coefficient c
in our adaptive algorithm on the initial mesh is taken from the solution obtained by the
above globally convergent algorithm.

One can see from (94) and (95) that the error in the reconstructed coefficient consists
out of a sum of integrals of different residuals multiplied by the interpolation errors. Thus,
to estimate the error in the unknown coefficient, we need to compute the approximated
values of (uh, ϕh, ch) together with the residuals and interpolation errors. We refine the
mesh adaptively at the end of the optimization procedure (85), (87). Hence, we can assume
that the values of the residuals Rϕi

, i = 2, 3 and interpolation errors σeϕ for the adjoint
solution ϕh are small and we ignore them in (95). Value of the residual Rϕ1

is small because
||uh|ST

− g|| << 1 and we can ignore it as well in (95). Thus, we compute only dominating
residuals Rc1 and Rc2 . Our computational experience shows that this is enough, i.e., that
the approximate error estimate (98) is sufficient for the solution enhancement via the
adaptivity technique.

It follows from (94) that if a solution of the problem (91) exists for each function ψk, then
we can write the following approximate estimate for the error in the computed unknown
coefficient

∥∥cIh − ch
∥∥
L2(Ω)

≤MC2A (Ω) |[c̃h]|
T∫

0

(
max

Ω
Rc1 (x, t) + max

Ω
Rc2 (x, t)

)
dt, (98)

where A (Ω) is the area of the domain Ω (volume in the 3-d case) and M is the dimension
of the subspace Uh. If, however, solution of the problem (91) does not exist for some (or
all) functions ψk, then it follows from (90) that the integral term in (98) estimates from
the above the error in the Lagrangian,

|L(v) − L(vh)| ≈
∣∣L′(vh)

(
v − vIh

)∣∣ ≤ A (Ω) |[ch]|
T∫

0

(
max

Ω
Rc1 (x, t) + max

Ω
Rc2 (x, t)

)
dt.

(99)
Thus, we can hope to decrease the error via locally refining mesh in those regions, where
values of residuals Rc1 (x, t) , Rc2 (x, t) are close to the maximal ones. Estimates (??) and
(95) allow us to control the error in the computed reconstructed coefficient ch. Since
residuals Rc1 and Rc2 are independent on the solution of the problem (91), our algorithm
does not use that solution. Although estimates (98) and (99) are approximate ones, our
computational experience shows that they are sufficient.

In our computations we use the following version of the adaptive algorithm.



0. Choose an initial mesh Kh and an initial time partition J0 of the time interval (0, T ].
Start with an initial guess c0 = cglob, which was computed in the above globally
convergent algorithm, and compute the sequence of cm in the following steps:

1. Compute the solution um of the forward problem (77)-(79) on Kh and Jk, with
c(x) = cm.

2. Compute the solution ϕm of the adjoint problem (80)-(82) backwards in time on Kh

and Jk.

3. Update the coefficient c := ch on Kh and Jk using the quasi-Newton method (85)

cm+1 = cm − αHmgm.

4. Stop computing c if either the norm of the gradient gm of the Lagrangian with
respect to the coefficient in (87) is ||gm||L2(Ω) < θ or norms ||gn||L2(Ω) are stabilized.
Otherwise set m = m+ 1 and go to step 1. Here, θ is the tolerance in quasi-Newton
updates. In our computations we took θ = 10−5.

5. Compute the residuals, Rc1 , Rc2 and refine the mesh at all points where

T∫

0

(
max

Ω
Rc1 (x, t) + max

Ω
Rc2 (x, t)

)
dt > tol. (100)

Here tol is a tolerance chosen by the user.

6. Construct a new mesh Kh and a new time partition Jk. On Jk the new time step τ
should be chosen with respect to the CFL condition. Interpolate the reconstructed
coefficient ch from the previous mesh to the new mesh. Return to the step 1 and
perform all the steps of the optimization algorithm on the new mesh.

9 Numerical Testing

9.1 Results of reconstruction using the globally convergent algorithm

We have performed numerical experiments to reconstruct the medium, which is homo-
geneous with c (x) = 1 except of two small squares, where c (x) = 4, see Figure 1-c).
However, we have not assumed a priori knowledge of neither the structure of this medium
nor of the background constant c (x) = 1 for x ∈ Ω� those two squares, although, fol-
lowing the Tikhonov concept (as mentioned in section 2), we have assumed the knowl-
edge of the constant d1 = 1/2, see (3) and (67). Because of this, the starting value for
the tail V1,1 (x, s) was computed via solving the forward problem (68) for c ≡ 1. Let
wc≡1 (x, s) be the corresponding function w (x, s) at s = s. Then, using (18), we took
V1,1 (x, s) = s−2 lnwc≡1 (x, s) .

It was found in [5] that for domains G,Ω specified in section 7 the interval [s, s] =
[6.7, 7.45] is the optimal one, and so we have used it in our numerical studies. We have
chosen the step size with respect to the pseudo frequency h = 0.05. Hence, N = 15 in our
case. We have chosen two sequences of regularization parameters λ := λn and ε = εn for
n = 1, ..., N , which are the same as ones in [5],

λn = 20, n = 1, 2;λn = 200, n = 3, 4, 5;λn = 2000, n ≥ 6;

εn = 0, n = 1, 2; εn = 0.001, n = 3, 4, 5; εn = 0.01, n = 6, 7,

εn = 0.1, n ≥ 8.
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a) c9,2 b) c10,2 c) c11,2 d) c12,2

Figure 4: Test 1.1: spatial distribution of ch after computing qn,k;n = 9, 10, 11, 12, where
n is number of the computed function q.

Once the function qn is calculated, we update the function c := cn as in (28), (29), see
subsection 7.3 of [5] for some numerical details. The resulting computed function is c (x) :=
cN (x). Comparing with [5], in the current work we choose a completely different stopping
rule. In calculating iterations with respect to the nonlinear term (Section 5), we consider
norms F kn,

F kn = ||qkn,1|∂Ω − ψn||L2(∂Ω).

We stop our iterations with respect to nonlinear terms when either

either F kn ≥ F k−1
n or F kn ≤ ε,

where ε = 0.001 is a small tolerance number of our choice. In other words, we stop
iterations, when either F k

n starts to grow or are too small. Next, we iterate with respect to
the tails and use the same stopping criterion. Namely, we stop our iterations with respect
to tails when either

F n,i ≥ F n,i−1 (101)

or
F n,i ≤ ε, (102)

where F n,i =||qn,i|∂Ω − ψn||L2(∂Ω). So, in accordance with Section 5 the number i, on
which these iterations are stopped, is denoted as i := mn. Once the criterion (101)-(102) is
satisfied, we take the last computed tail Vn,mn , set Vn+1,1 := Vn,mn and run computations
again. This difference allows us to get a more flexible stopping rule in global convergence
algorithm. Hence, the number mn of iterations with respect to tails is chosen automatically
“inside” of each iteration for qn. Thus, numbers mn vary with n. This is different from [5],
where numbers mn where not chosen automatically.

In all our tests we have introduced the multiplicative random noise in the boundary
data, gσ, by adding relative error to computed data g using the following expression

gσ
(
xi, tj

)
= g

(
xi, tj

) [
1 +

αj(gmax − gmin)σ

100

]
.

Here, g
(
xi, tj

)
= u

(
xi, tj

)
, xi ∈ ∂Ω is a mesh point at the boundary ∂Ω, tj ∈ (0, T ) is

a mesh point in time, αj is a random number in the interval [−1; 1], gmax and gmin are
maximal and minimal values of the computed data g, respectively, and σ = 5% is the noise
level.

Computations were performed on 16 parallel processors in NOTUR 2 production system
at NTNU, Trondheim, Norway (67 IBM p575+ 16-way nodes, 1.9GHz dual-core CPU,
2464 GB memory).



a) c10,2 b) c11,1 c) c12,1 d) c13,1

Figure 5: Test 2.1: spatial distribution of ch after computing qn,k;n = 10, 11, 12, 13 where
n is number of the computed function q.
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a) Test 1.1 b) Test 2.1

Figure 6: The one-dimensional cross-sections of the image of the function cn,k computed
for corresponding functions qn,1. On a) for Test 1.1 along the vertical line passing
through the middle of the right small square; and on b) for Test 2.1 along the
vertical line passing through the middle of the left small square.
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Figure 7: Computed L2-norms of the Fn,i = ||qn,i |∂Ω −ψn||L2(∂Ω).
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Test 1.1

We test our numerical method on the reconstruction of the structure given on Figure
1-c). The plane wave f is initialized at the top boundary ∂G1 of the computational domain
G, propagates during the time period (0, t1] into G, is absorbed at the bottom boundary
∂G2 for all times t ∈ (0, T ) and it is also absorbed at the top boundary ∂G1 for times
t ∈ (t1, T ), see Figures 2.

Figure 4 displays isosurfaces of resulting images of functions cn,k, n = 9, 10, 11, 12.
Figure 6-a) presents the one-dimensional cross-sections of computed images of functions
cn,k superimposed with the correct one along the vertical line passing through the middle
of the right small square. Comparison of images of functions cn,k for different values n and
k shows that the inclusion/background contrasts grow with the grow of n and k.

One can see from Figure 4 that the 3.8 : 1 contrast in the right square is imaged for
n := N = 12 (see below for this choice of N). Thus, we have obtained the 5% error (0.2/4)
in the imaged contrast, which is exactly the same as the noise level in the data. As to
the left square, we got the same contrast. However, location of the left square is shifted
downwards, and both imaged squares are on about the same horizontal level. Values of
the function c(x) = 1 outside of these squares are also imaged accurately.

Using Figure 7-a) which shows computed L2-norms Fn,i, we analyze results of the re-
construction. One can see on Figure 7 that the number mn of iterations with respect to
tails indeed varies with n, since mn is chosen automatically now, using the criterion (101)-
(102). We observe that the computed Fn,i decrease until computing the function q8. Next,
F9,2 > F8,2, F10,2 < F9,2 and then these norms stabilize on n = 11, 12. For n = 13, 14, 15
norms Fn,2 grow steeply. Thus, we conclude, that N = 12 and we take c12,2 as our final
reconstruction result.

Test 2.1

We now test our globally convergent method on the structure given on Figure 1-c).
However, the difference with the previous test is that we use the plane wave, which is
initialized at the bottom boundary of computational domainG, see Fig.2. Figure 5 displays
isosurfaces of resulting images of functions cn,k, n = 10, 11, 12, 13. Figure 6-b) displays the
one-dimensional cross-sections of computed images of functions cn,k superimposed with the
correct one along the vertical line passing through the middle of the left small square. One
can see from Figure 5 that the 3.8 : 1 contrast for n := N = 12 (see below for this choice
of N) in the left square is imaged again with 5% error (0.2/4) which is the same as the
noise level in the data. As to the right square, we got the same 3.8 : 1 contrast. However,
again both squares are imaged on about the same vertical level.

Using Figure 7-b), which shows computed L2-norms Fn,i, we analyze results of the
reconstruction. We observe that computed norms Fn,i decrease with n until computing
the function q7, i.e.., until n = 7 and these numbers grow with the increase of n = 8, 9.
Next, we observe a steep decrease at n = 10 and a stabilization for n = 11, 12. For
n = 13, 14, 15 norms Fn,i grow steeply. Thus, we conclude, that N = 12 and we take c12,1
as our final reconstruction result. We observe, that in both Tests 1.1 and 2.1 the location
of the square, which is located closer to the side from which the plane wave is launched,
is imaged better, while the inclusion/background contrast is imaged well in both small
squares, so as the value of the coefficient c(x) = 1 outside of (imaged) small squares. Thus,
we are prompted to use the adaptivity technique in order to enhance images of locations.

9.2 The synthesis of the globally convergent algorithm with the adaptivity

The goal of two tests of this subsection is to demonstrate the performance of the synthesis
of our globally convergence algorithm with the adaptivity technique. Since the adaptivity



is a locally convergent numerical method, we take the starting point for the adaptivity the
image obtained by the globally convergent method. Below “Test 1.2” (respectively “Test
2.2”) means that we take the image obtained in the above Test 1.1 (respectively in Test
1.2), as the starting point for our finite element adaptive algorithm. The boundary data
g = u |∂Ω in both Tests 1.2 and 2.2 are the same as ones in Test 1.1 and 2.1 respectively,
except that in Test 1.2 we use two noise levels in two ”sub-tests”: 0% and 5%. In Tests 1.2
and 2.2 let Γ be the side of the square Ω, opposite to the side from which the plane wave
is launched and ΓT = Γ × (0, T ) . In some sense the side ΓT is the most sensitive one to
the resulting data.

The adaptive algorithm means, that we find the solution of our problem in an iterative
process, where we start with a coarse mesh shown on Figure 8-a), c), find an approximate
solution by the quasi-Newton method on this mesh, see Section 8.3. Next, we evaluate
residuals as in (100). Then we refine the mesh locally at those regions where residuals have
largest values, construct a new mesh and a new time partition, and repeat the computations
again on this new mesh. We stop iterative process when L2-norms of the computed gradient
for the coefficient are stabilized or started to increase for all further refinements of the mesh.
Let |Rc(x)| = |Rc1(x)| + |Rc2(x)| , see (95) and (99). We refine the mesh at all regions
where

|Rc(x)| ≥ βmax |Rc(x)|, (103)

where β = const ∈ (0, 1) is the tolerance number of our choice. The choice of the parameter
β depends on the behavior of the computed value of max |Rc(x)| in right hand side of (103).
If we take β too small (for example, β = 0), then we will refine mesh almost in the entire
domain Ω, since, realistically, after the optimization procedure |Rc(x)| will be non- zero at
almost all mesh points. Unlike this, our goal is to construct a new mesh with a few nodes
as possible, while still getting a good enhancement of the solution obtained on the globally
convergent stage of our two-stage numerical procedure. Hence, we take only maximal
values of the computed residual |Rc(x)| and refine mesh in a small neighborhood of those
points where this maximal value is achieved. On the other hand, the parameter β can
not be taken too close to 1 also, since in this case the automatic adaptive algorithm will
come up with a too narrow region, where the mesh should be refined. Thus, the choice
of β depends on concrete values of the gradient function |Rc(x)| and should be chosen in
numerical experiments. In (103) we take β = 0.1 on the coarse mesh, β = 0.2 on the one,
two and three refined meshes, and β = 0.6 for all next refinements of the initial mesh.

On all refined meshes we have used a cut-off parameter Ccut for the reconstructed coef-
ficient ch such that

ch =

{
ch, if |ch − cguess| ≥ Cglob

cglob, elsewhere.

We choose Ccut = 0 for m < 3, Ccut = 0.3 for m ≥ 3 in all tests. Here, m is the number of
iterations in quasi-Newton method. Hence, the cut-off parameter ensures that we do not
go too far from cglob. The application of the adaptivity technique allows us to get more
correct locations of both small squares depicted in Figure 1-c).

In the adaptive algorithm we can use box constrains for the reconstructed coefficient.
We obtain these constraints using the solution obtained in the globally convergent part.
Namely, in Tests 1.2 and 2.2 minimal and maximal values of the target coefficient in box
constraints are taken using results of Tests 1.1 and 2.1. So, when conducting Tests 1.1
and 2.1, we have used only the knowledge of the number d1 = 0.5 in (3). Now, since we
know that the solution obtained on the first stage is a good approximation for the correct
solution (Theorem 6.1) and the maximal value of the computed coefficient is 3.8, we set
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opt.it. 4608 elements 5340 elements 8230 elements 14604 elements 23344 elements
1 0.0193568 0.0167242 0.0146001 0.0131787 0.0224184
2 0.0193944 0.0157746 0.0139716 0.0133006 0.0208246
3 0.0133565 0.0208889
4 0.0125237 0.0204343

Table 1: Test 1.2: ||u |ΓT
−g||L2(ΓT ) on adaptively refined meshes. The number of stored

corrections in quasi-Newton method is n = 15. Computations was performed with
the noise level σ = 0% and with the regularization parameter γ = 0.01.

opt.it. 4608 elements 5340 elements 6356 elements 10058 elements 14586 elements
1 0.0992683 0.097325 0.0961796 0.0866793 0.0880115
2 0.0988798 0.097322 0.096723 0.0868341 0.0880866
3 0.0959911 0.096723 0.0876543
4 0.096658

Table 2: Test 1.2: ||u |ΓT
−g||L2(ΓT ) on adaptively refined meshes. The number of stored

corrections in quasi-Newton method is n = 15. Computations was performed with
the noise level σ = 5% and with the regularization parameter γ = 0.01.

d2 = 2 in (3). Thus, in tests 1.2 and 2.2 we enforce that the coefficient c(x) belongs to the
set of admissible parameters, c(x) ∈ CM = {c ∈ C(Ω)|1 ≤ c(x) ≤ 4}.

Test 1.2.

We test the synthesis of both globally convergent and adaptive methods with the starting
point on the coarse mesh taken from the results of Test 1.1 and with the plane wave
initialized at the top boundary of the computational domain G. More precisely, as the
starting point for the coefficient c(x) in the adaptive algorithm on the coarse mesh we take
c12,2, which corresponds to Figure 4-d). The initial coarse mesh is shown on Figures 8-
a,c). We have performed two set of numerical experiments: with introducing σ = 0% and
σ = 5% of the multiplicative random noise in the function g (x, t) in an adaptive procedure.
Testing was performed on 4 times adaptively refined meshes shown on Figure 8. We note
that in both Tests 1.2 and 2.2 boundary points are the same for all refinements of the
initial mesh, since they are located at the common boundary with the subdomain GFDM

(Figure 1) and should be kept unchanged in order to perform the exchange procedure in the
hybrid method when solving the forward problem (68). Figure 8 shows that the adaptivity
technique enhances the quality of the reconstruction obtained on the first stage. We are
able to reconstruct well locations of both small squares while preserving a good initially
obtained inclusion/background contrast, which turns out to be now 4:1 instead of 3.8:1
calculated on the first stage. The value of the coefficient c (x) = 1 outside of small squares
is also imaged well. We observe that the use of the initial coarse mesh with 4608 elements
does not improve the image obtained on Test 1.1.

9.2.1 The case σ = 0%

Images 8-b), f), j), n), s) were obtained with σ = 0% in the boundary data g, with the
regularization parameter γ = 0.01 and without using the smoothness indicator procedure



σ = 0% σ = 0% σ = 5% σ = 5%

a) 4608 elements b) 4608 elements c) 4608 elements d) 4608 elements

e) 5340 elements f) 5340 elements g) 5340 elements h) 5340 elements

i) 8230 elements j) 8230 elements k) 6356 elements l) 6356 elements

m) 14604 elements n) 14604 elements o) 10058 elements p) 10058 elements

r) 23344 elements s) 23344 elements t) 14586 elements u) 14586 elements

Figure 8: Test 1.2: Adaptively refined computational meshes: with σ = 0% - on
a),e),i),m),r), with σ = 5% - on c),g),k),o),t), and correspondingly spatial distri-
bution of the parameter ch: with σ = 0% - on b),f),j),n),s) and with σ = 5% -
on d),h),l),p),u).
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opt.it. 4608 elements 5298 elements 7810 elements 11528 elements 19182 elements
1 0.0992683 0.0976474 0.0976851 0.089979 0.0977153
2 0.0988798 0.0974385 0.0901018 0.097487
3 0.0959911 0.0901153 0.0975039

Table 3: Test 2.2: ||u |ΓT
−g||L2(ΓT ) on adaptively refined meshes. The number of stored

corrections in quasi-Newton method is n = 15. Computations was performed with
the noise level σ = 5% and with the regularization parameter γ = 0.01.

applied to the reconstructed coefficient c(x). As it was stated in subsection 7.3 of [5], this
procedure consists in a local averaging of computed values of cn,i (x) . The effect of using
smoothness indicator procedure can be seen from comparison of σ = 0% and σ = 5%
images of Figure 8. So, when this procedure was not applied, we got more elements in new
adaptively refined meshes and more “washed away” images compared with images for the
case of σ = 5% when this procedure was in place.

In Table 1 we present computed L2-norms of ||u |ΓT
−g||L2(ΓT ) in the quasi-Newton

method for adaptively refined meshes. Here functions u |ΓT
are computed via the forward

problem solutions and the same in two more tests below. We observe that these norms
decrease as meshes are refined. Then they slightly increase and are finally stabilized for
all refinements n > 3 of the initial mesh.

9.2.2 The case σ = 5%

Images 8-d), h), l), p), u) were obtained with σ = 5% in the boundary data g, with
regularization parameter γ = 0.01 and with the smoothing indicator procedure on the
all adaptively refined meshes. The use of the smoothing indicator for the reconstructed
coefficient ch has helped us to obtain more accurate images as well as to get a lesser
number of finite elements in computational meshes. Table 2 presents computed L2-norms
of ||u |ΓT

−g||L2(ΓT ). We observe that norms at the boundary are decreasing as meshes are
refined. Then they slightly increase and are finally stabilized for all refinements n > 3 of
the initial mesh.

Test 2.2

Now we test the synthesis of the globally convergent numerical method with the adap-
tivity with the starting point on the coarse mesh taken from the result of Test 2.1 and
with the plane wave initialized at the bottom boundary of the computational domain G.
The initial guess for the adaptive algorithm on the coarse mesh is the computed coefficient
c12,1(x) presented on Figure 5-c). The boundary data g is taken the same as in Test 2.1,
i.e., with the σ = 5% of the multiplicative random noise.

Again, we have performed tests on 4 times adaptively refined meshes shown on Figure
9-a)-d). Just as in Test 1.2, we observe that the adaptivity technique improves the quality
of the reconstruction, see reconstruction results on Figure 9-e)-h). In Table 3 we present
computed norms of ||u |ΓT

−g||L2(ΓT ). We observe that these norms decrease as meshes are
refined. They decrease until the third refinement. On the fourth refinement they slightly
increase and then they stabilize. Further mesh refinements are not necessary since norms
||u |ST

−g||L2(ST ) are stabilized for all refinements with n > 3 of the initial mesh, and
we get the same reconstruction result with further refinements. Thus, using Table 3, we
conclude that on three times refined mesh we get solution of our inverse problem.



a) 5298 elements b) 7810 elements c) 11528 elements d) 19182 elements

e) 5298 elements f) 7810 elements g) 11528 elements h) 19182 elements

Figure 9: Test 2.2: Adaptively refined computational meshes on a)-d) and spatial distribu-
tion of the parameter ch with σ = 5%, which corresponds to these meshes, on
e)-h).

10 Summary

We have presented a modified globally convergent numerical method of [5] for a multidi-
mensional CIP for a hyperbolic PDE. As it follows from the global convergence Theorem
6.1, the globally convergent numerical method provides a good starting point for the finite
element adaptive method. This naturally leads to a two-stage numerical procedure, which
synthesizes both approaches. On the first stage the globally convergent numerical method
is used. On the second stage solution obtained on the first is used as the starting point for
the locally convergent adaptivity technique. This technique enhances the solution obtained
on the first stage. An important observation of our numerical testing is that the first step
of the adaptivity, when the quasi-Newton method applied on the same coarse mesh, on
which the globally convergent part was working, does not provide a noticeable change for
the image obtained on the globally convergent stage, see Figure 8. Hence, the use of locally
refined meshes, which is the central point of to the adaptivity, is essential here.

The adaptivity is based on a posteriori analysis of: (1) the error in the Lagrangian and
(2) the error in the solution. As a result, one can locate spots where the maximum error
of the reconstructed coefficient likely is. Next, the spatial mesh is refined locally with the
feedback from a posteriori error estimator. The main achievement of the adaptivity is
that one does not need to know in advance the solution of a corresponding CIP for that
a posteriori error analysis. Another new element of this work is that we have rigorously
explained the meaning of the so-called ψ function in the procedure of estimating the error
in the computed coefficient, which was not explained previously. Numerical tests have
shown a good performance of our two-stage procedure.
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