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AN “hp” CERTIFIED REDUCED BASIS METHOD FOR

PARAMETRIZED ELLIPTIC PARTIAL DIFFERENTIAL

EQUATIONS∗

JENS L. EFTANG† , ANTHONY T. PATERA‡ , AND EINAR M. RØNQUIST§

Abstract. We present a new “hp” parameter multi-domain certified reduced basis method
for rapid and reliable online evaluation of functional outputs associated with parametrized elliptic
partial differential equations. We propose a new procedure and attendant theoretical foundations
for adaptive partition of the parameter domain into parameter subdomains (“h”-refinement); subse-
quently, we construct individual standard reduced basis approximation spaces for each subdomain
(“p”-refinement). Greedy parameter sampling procedures and a posteriori error estimation are the
main ingredients of the new algorithm. We present illustrative numerical results for a convection-
diffusion problem: the new “hp”-approach is considerably faster (respectively, more costly) than the
standard “p”-type reduced basis method in the online (respectively, offline) stage.

Key words. reduced basis; a posteriori error estimation; Greedy sampling; h-type; p-type; hp
convergence; parameter domain decomposition

AMS subject classifications. 35J25, 65M12, 65N15, 65N15, 65N30

1. Introduction. The certified reduced basis (RB) method provides a computa-
tional framework for rapid and reliable computation of functional outputs associated
with parametrized partial differential equations. Given any input parameter vector—
e.g., geometric factors or material property coefficients—the RB field approximation
is constructed as a Galerkin-optimal linear combination of pre-computed “truth” fi-
nite element (FE) “snapshots” for judiciously chosen parameters; the RB output ap-
proximation is then evaluated as a functional of the RB field approximation. The
methodology is originally introduced in [1, 17] and then further analyzed in [18, 19];
for a review of both earlier and more recent contributions, see [20].

For problems in which the field variable varies smoothly with the parameters good
RB approximations can be obtained with very few snapshots: the RB approximation
converges exponentially fast [7, 20]. Furthermore, rigorous a posteriori upper bounds
for the error in the RB approximation (with respect to the truth discretization) can
be readily developed [20]. Finally, under an assumption on “affine” parameter de-
pendence (perhaps only approximate [4, 10]), both the RB output approximation
and the associated RB output error bound can be computed very efficiently by an
offline-online computational procedure [20]. The RB method is especially attractive
in important engineering contexts in which low marginal (online) computational cost
is advantageous: “real-time”—such as parameter estimation [15] and optimal control—
and “many-query”—such as multiscale [5] or stochastic simulation [6].

The RB approximation space is specifically constructed to provide accurate ap-
proximations for any parameter value in a predefined parameter domain. Hence, larger
parameter domains typically induce larger RB spaces and greater computational cost.
In this paper, we propose a new procedure for adaptive partition (“h”-refinement) of
the parameter domain into smaller parameter subdomains: a hierarchical splitting of

∗This work has been supported by the Norwegian University of Science and Technology and
AFOSR Grant number FA 9550-07-1-0425.

†Department of Mathematical Sciences, NTNU (eftang@math.ntnu.no)
‡Department of Mechanical Engineering, MIT (patera@mit.edu)
§Department of Mathematical Sciences, NTNU (ronquist@math.ntnu.no)

Submitted to SIAM Journal on Scientific Computing, Dec. 14th, 2009.

1



2 J. L. EFTANG, A. T. PATERA, AND E. M. RØNQUIST

the parameter (sub)domains based on proximity to judiciously chosen parameter an-
chor points within each subdomain. Subsequently, we construct individual standard
RB approximation spaces (“p”-refinement) over each subdomain. Greedy sampling
procedures and rigorous a posteriori error estimation play important roles in both the
“h”-type and “p”-type stages of the algorithm.

In this new approach, the RB approximation associated with any new parame-
ter value is, as always, constructed as a linear (Galerkin) combination of snapshots
from the parameter (sub)domain in which the parameter value resides. However, we
expect the online computational cost of the new approach to be greatly reduced rel-
ative to the online cost of the standard RB approach due to the smaller parameter
(sub)domains and lower dimensional local RB approximation spaces associated with
the “hp” approximation. The method should be particularly effective for problems in
which the solution has very different structure in different regions of the parameter
domain—problems for which a snapshot from one parameter region may be of limited
value for the RB approximation in another parameter region.

The notion of parameter domain refinement within the model order reduction
framework is considered in several earlier works. In [2, 3], a reduced-order parame-
ter multi-element “interpolation” procedure is introduced for aeroelasticity problems.
The approach [2, 3] and our approach here share a similar error-adaptive domain-
decomposition foundation. However, the approach of [2, 3] and the approach described
in the current paper are quite different in conception: interpolation on a manifold (in
[2, 3]) rather than Galerkin projection (here); parameter domain partition based on
a Voronoi diagram rather than a hierarchical tree structure decomposition; heuristic
error indicators rather than rigorous error bounds; and less strict rather than strict
offline-online segregation. However, our own approach cannot yet treat problems of
the complexity considered in [2, 3].

In other related work [11, 21], adaptive train sample refinement is considered to
render the Greedy parameter sampling procedure more efficient: richer samples are
consided only as needed in the Greedy iterations [21] and only where needed in the
parameter domain [11]. Our approach invokes a similar technique: we include new
points in the train sample within each subdomain at each new level of “h”-refinement;
we thus effectively adapt the train sample to “difficult” parameter regions.

In §2 we give the general problem statement along with various entities required
throughout the paper. In §3 we review the standard (“p”-type) RB method; in §4 we
present the new “h”-type RB method and provide an a priori convergence theory for
a “zeroth order” approximation in the one-parameter case; in §5 we present the new
“hp”-type RB method as a combination of the “p”- and “h”-type methods. In §6 we
present numerical results for a convection-diffusion model problem and in particular
we compare the computational cost of the new “hp”-approach to the standard method.
Finally, we conclude in §7 with some final remarks.

2. Problem Statement. We shall consider linear, elliptic, second-order equa-
tions. We denote the physical domain by Ω ⊂ R

2, and we introduce the spaces
L2(Ω) = {v :

∫

Ω
v2 dΩ < ∞}, H1(Ω) = {v ∈ L2(Ω) : |∇v| ∈ L2(Ω)}, and H1

0 (Ω) =
{v ∈ H1(Ω) : v|∂Ω = 0}. We further define the space associated with the exact
solution (hence e) Xe ≡ Xe(Ω) such that H1

0 (Ω) ⊆ Xe(Ω) ⊂ H1(Ω). We de-
note the admissible parameter domain by D ⊂ R

P ; a point in D shall be denoted
µ = (µ1, . . . , µP ).

For each µ ∈ D, a(·, ·;µ) is an Xe–coercive and Xe–continuous bilinear form and
f(·;µ) is an Xe–bounded linear functional. To accomodate an efficient offline–online
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computational procedure, we assume that a and f admit affine expansions as

a(·, ·;µ) =

Qa
∑

q=1

aq(·, ·)Θq
a(µ), f(·;µ) =

Qf
∑

q=1

fq(·)Θq
f (µ), (2.1)

for modest Qa and Qf , where the aq and fq are µ-independent continuous bilinear
forms and linear functionals, respectively, and the Θq

a and Θq
f are µ-dependent contin-

uous functions. (The assumption (2.1) can be relaxed with the empirical interpolation
method [4, 10] for the construction of good affine approximations to a and f .) For
simplicity, we introduce Q = max{Qa, Qf}.

The exact problem statement reads: Given any µ ∈ D, find ue(µ) ∈ Xe such that

a(ue(µ), v;µ) = f(v;µ), ∀v ∈ Xe. (2.2)

The output of interest can then be evaluated as a functional of the field variable,
say s(µ) = l(ue(µ);µ) for some Xe–bounded linear functional l(·;µ). In this paper,
however, for simplicity of exposition, we consider no particular output(s) of interest;
our “hp” procedure does not depend on the output functional(s) chosen.

We next introduce a “truth” finite element (FE) space X ≡ XN (Ω) ⊂ Xe(Ω)
of finite dimension N . The truth discretization of (2.2) reads: For any µ ∈ D, find
u(µ) ∈ X such that

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X. (2.3)

We assume that X is rich enough that the error between the truth and exact solutions
is in practice negligible. The reduced basis approximations will be built upon truth
snapshots u(µn) ≈ ue(µn), 1 ≤ n ≤ N , for judiciously chosen µ1, . . . ,µN ∈ D and
the reduced basis error shall be measured with respect to the truth FE approximation.

For any µ ∈ D, let as(·, ·;µ) denote the symmetric part of a(·, ·;µ)—for all
v, w ∈ X, as(w, v;µ) = 1

2 (a(w, v;µ) + a(v, w;µ)); further, let µ̄ ∈ D denote a fixed
reference parameter. We then define the parameter-independent X–inner-product and
corresponding X-norm as

(·, ·)X ≡ as(·, ·; µ̄), ‖ · ‖X =
√

(·, ·)X , (2.4)

respectively. By our assumptions, ‖ · ‖X is equivalent to the H1 norm.
Finally, we introduce for all µ ∈ D the coercivity and continuity constants of

a(·, ·;µ) with respect to the X-norm,

α(µ) ≡ inf
w∈X

a(w, w;µ)

‖w‖2X
, γ(µ) ≡ sup

v∈X
sup
w∈X

a(v, w;µ)

‖v‖X‖w‖X
, (2.5)

respectively. For any particular µ ∈ D, we further introduce lower and upper bounds,

0 < αLB(µ) ≤ α(µ), (2.6)

∞ > γUB(µ) ≥ γ(µ), (2.7)

which shall play a role in our computational procedures. We shall also require lower
and upper bounds over D,

α = inf
µ∈D

α(µ), (2.8)

γ = sup
µ∈D

γ(µ), (2.9)
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for the purposes of our theoretical arguments.
We shall later require the following lemma,
Lemma 2.1. Let Θq

a : D → R, 1 ≤ q ≤ Qa, Θq
f : D → R, 1 ≤ q ≤ Qf , satisfy

Lipschitz conditions

|Θq
a(µ1)−Θq

a(µ2)| ≤ Ca|µ1 − µ2|, ∀µ1,µ2 ∈ D, 1 ≤ q ≤ Qa, (2.10)

|Θq
f (µ1)−Θq

f (µ2)| ≤ Cf |µ1 − µ2|, ∀µ1,µ2 ∈ D, 1 ≤ q ≤ Qf . (2.11)

Then, given any µ1,µ2 ∈ D, there exists a positive constant C̃ such that

‖u(µ1)− u(µ2)‖X ≤ C̃|µ1 − µ2|. (2.12)

Proof. We have

a(u(µ1), v;µ1) = f(v;µ1), ∀v ∈ X, (2.13)

a(u(µ2), v;µ2) = f(v;µ2), ∀v ∈ X. (2.14)

By bilinearity of a, we thus have for all v ∈ X,

a(u(µ1)− u(µ2), v;µ1) = f(v;µ1)− f(v;µ2)

+ a(u(µ2), v;µ2)− a(u(µ2), v;µ1). (2.15)

We first examine the right-hand side of (2.15).
By the triangle inequality and the affine expansions (2.1) for a and f , we have

for all w, v ∈ X and any µ1,µ2 ∈ D,

|a(w, v;µ1)− a(w, v;µ2)| ≤

Qa
∑

q=1

|aq(w, v)
(

Θq
a(µ1)−Θq

a(µ2)
)

|, (2.16)

and

|f(v;µ1)− f(v;µ2)| ≤

Qf
∑

q=1

|fq(v)
(

Θq
f (µ1)−Θq

f (µ2)
)

|, (2.17)

respectively. By our hypothesis (2.10) and (2.11) on Θq
a, 1 ≤ q ≤ Qa and Θq

f ,
1 ≤ q ≤ Qf , respectively, and continuity of aq, 1 ≤ q ≤ Qa, and fq, 1 ≤ q ≤ Qf ,
there exist constants c̃1 and c̃2 (independent of µ1 and µ2) such that

|a(w, v;µ1)− a(w, v;µ2)| ≤ c̃1‖v‖X‖w‖X |µ1 − µ2|, (2.18)

and

|f(v;µ1)− f(v;µ2)| ≤ c̃2‖v‖X |µ1 − µ2|. (2.19)

Recall that Qa and Qf are fixed and finite.
We now let v = u(µ1)− u(µ2) in (2.15) and deduce from the triangle inequality,

(2.18), and (2.19) that

a(u(µ1)− u(µ2), u(µ1)− u(µ2);µ1)

≤
(

c̃1‖u(µ2)‖X + c̃2

)

‖u(µ1)− u(µ2)‖X |µ2 − µ1|. (2.20)
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By coercivity and the bound (2.8), we get

‖u(µ1)− u(µ2)‖X ≤
1

α

(

c̃1‖u(µ2)‖X + c̃2

)

|µ2 − µ1|. (2.21)

Finally, by the Lax-Milgram Lemma,

‖u(µ2)‖X ≤
‖f‖X′

α
, (2.22)

(here X ′ denotes the dual space of X) and we thus obtain the desired result with

C̃ =
c̃1‖f‖X′ + c̃2α

α2
. (2.23)

(We can develop a constant C̃ that is furthermore independent of N by replacing the
truth entities α and ‖f‖X′ in (2.23) by the corresponding exact entities.)

3. The “p”-type Reduced Basis Method. In the standard RB approach, a
single approximation space is enriched with new basis functions until the space is con-
sidered sufficiently rich; we shall refer to this approach as the “p”-type RB method.
The new “h”-type and “hp”-type methods will borrow and adapt several of the ingre-
dients from the standard approach: a posteriori error estimation; greedy parameter
sampling; and offline–online computational decoupling of the RB approximation and
the truth FE discretization through a construction–evaluation decomposition. Below,
we summarize the standard RB approximation with particular emphasis on these key
ingredients.

3.1. Approximation. The RB approximation space XN ≡ XN (Ω) ⊂ XN (Ω)
is defined in terms of a set of parameter vectors µ1, . . . ,µN ∈ D as

XN = span{u(µ1), . . . , u(µ1)}. (3.1)

(Note that in practice, the (·, ·)X–orthonormal basis for XN is constructed by a Gram-
Schmidt procedure.) The RB approximation reads: Given any µ ∈ D, find uN (µ) ∈
XN such that

a(uN (µ), v;µ) = f(v;µ), ∀v ∈ XN . (3.2)

Under the assumption that u(µ) depends smoothly on the parameters, we expect
that N—the dimension of the RB space—can be chosen much smaller than N—the
dimension of the truth space X—for comparable numerical accuracy.

We finally define the “order” p of the RB approximation as p ≡ N1/P − 1.

3.2. A Posteriori Error Estimation. We develop here an a posteriori X-norm
bound for the error in the RB field approximation relative to the corresponding truth
approximation.

Given any µ ∈ D, we obtain the RB approximation, uN (µ), from (3.2); we then
define for all v ∈ X the RB residual as

rN (v;µ) ≡ f(v;µ)− a(uN (µ), v;µ); (3.3)

the Riesz representation of the residual, RN (µ) ∈ X, satisfies

(RN (µ), v)X = rN (v;µ), ∀v ∈ X. (3.4)
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We can now state
Lemma 3.1 (A Posteriori X-norm Error Bound). For any µ ∈ D, the RB error

bound

∆N (µ) ≡
‖RN (µ)‖X

αLB(µ)
, (3.5)

satisfies

‖u(µ)− uN (µ)‖X ≤ ∆N (µ), (3.6)

∆N (µ)

‖u(µ)− uN (µ)‖X
≤

γUB(µ)

αLB(µ)
, (3.7)

for αLB(µ) and γUB(µ) given by (2.6) and (2.7), respectively.
Proof. The RB error, eN (µ) = u(µ)−uN (µ), satisfies the error-residual equation

a(eN (µ), v;µ) = rN (v;µ), ∀v ∈ X. (3.8)

To obtain (3.6), we choose eN (µ) for v in (3.8) and invoke (3.4) and the Cauchy-
Schwarz inequality to get

a(eN (µ), eN (µ);µ) = (RN (µ), eN (µ))X ≤ ‖RN (µ)‖X‖eN (µ)‖X ; (3.9)

we then invoke coercivity and (2.6) to arrive at

αLB‖eN (µ)‖2X ≤ ‖RN (µ)‖X‖eN (µ)‖X . (3.10)

The result (3.6) now directly follows from the definition (3.5).
To obtain (3.7), we choose RN (µ) for v in (3.8) and invoke (3.4), continuity, and

(2.7) to get

‖RN (µ)‖2X = a(eN (µ),RN (µ);µ) ≤ γUB(µ)‖eN (µ)‖X‖RN (µ)‖X ; (3.11)

hence ‖RN (µ)‖X/‖eN (µ)‖X ≤ γUB(µ) and the result (3.7) follows from the definition
(3.5).

3.3. Construction–Evaluation Decomposition. Thanks to the assumption
(2.1) on affine parameter dependence, the computational procedures for the RB so-
lution and error bound admit construction-evaluation decompositions (see also [14,
16]): the construction stage is computationally expensive—the operation count de-
pends on N—but enables the subsequent evaluation stage in which we can rapidly—
independently of N—evaluate the RB approximation and RB error bound for any
µ ∈ D. (In actual practice we would of course also evaluate the RB output and RB
output error bound—at negligible additional cost.) The construction-evaluation de-
composition in turn permits the full offline–online computational decoupling described
in the Introduction; we further discuss this decoupling below.

We first describe the construction-evaluation decomposition for the RB approx-
imation: Let {ζ1 ∈ XN , . . . , ζN ∈ XN} denote an X-orthonormal basis for XN . In
the construction stage, we assemble the matrices Aq

N ∈ R
N×N , 1 ≤ q ≤ Qa, and the

vectors F q
N ∈ R

N , 1 ≤ q ≤ Qf , whose elements are defined by

Aq
N,mn ≡ aq(ζn, ζm), F q

N,m ≡ fq(ζm), 1 ≤ m, n ≤ N, (3.12)
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respectively. In the evaluation stage—given any µ ∈ D—we evaluate the functions
Θq

a(µ), 1 ≤ q ≤ Qa, and Θq
f (µ), 1 ≤ q ≤ Qf , in O(Q) operations; we then construct

the RB stiffness matrix and load vector as

AN (µ) =

Qa
∑

q=1

Θq
a(µ)Aq

N , FN (µ) =

Qf
∑

q=1

Θq
f (µ)F q

N , (3.13)

respectively, in O(QaN2 + QfN) = O(QN2) operations; finally, we solve the associ-
ated system of equations

AN (µ)uN (µ) = FN (µ) (3.14)

for the RB basis coefficients uN (µ) ≡ [uN,1(µ), . . . , uN,N (µ)]T in O(N3) operations
(we must anticipate that AN (µ) is dense).

We next describe the construction-evaluation decomposition for the dual norm of
the residual. By linearity, we can write (3.4) as

(RN (µ), v)X =

Qf
∑

q=1

Θq
f (µ)fq(v)−

Qa
∑

q=1

N
∑

n=1

Θq
a(µ)uN,n(µ)aq(ζn, v) (3.15)

≡
Ñ

∑

n=1

Γn(µ)Ln(v), (3.16)

where Ñ = Qf + NQa. By linear superposition, we can thus write

RN (µ) =

Ñ
∑

n=1

Γn(µ)Gn, (3.17)

where, for 1 ≤ n ≤ Ñ ,

(Gn, v)X = Ln(v), ∀v ∈ X. (3.18)

We thus have

‖RN (µ)‖2X = (RN (µ),RN (µ))X (3.19)

=

Ñ
∑

m=1

Ñ
∑

n=1

Γm(µ)Γn(µ)Gmn, (3.20)

where the Gmn are defined as

Gmn ≡ (Gm,Gn)X , 1 ≤ m, n ≤ Ñ . (3.21)

In the construction stage we first perform the truth solves (3.18) for Gn, 1 ≤ n ≤ Ñ ;
we then compute and store the inner products Gmn, 1 ≤ m, n ≤ Ñ . In the evaluation
stage, we evaluate the functions Γn(µ), 1 ≤ n ≤ Ñ , in O(Qf + NQa) = O(NQ)
operations and then perform the summation (3.19) in O(Q2

f + N2Q2
a) = O(N2Q2)

operations.
In general, the coercivity lower bound αLB(µ) will not be known analytically and

must be computed. An efficient construction-evaluation decomposition for the coer-
vivity lower bound—the successive constraint method—can be found in [12, 20]; the
evaluation complexity is independent of N . We do not discuss this component further
here in particular because for our particular numerical example of §6 an analytical
lower bound αLB(µ) is in fact available.
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Algorithm 1: Greedy(Ξ, µ1, ǫtol, Nmax)

initialize: N ← 0, ǫ0 ←∞, X0 ← {0}
while ǫN > ǫtol and N < Nmax do

N ← N + 1
XN ← XN−1 ⊕ span{u(µN )}
ǫN ← max

µ∈Ξ
∆N (µ)

µN+1 ← arg max
µ∈Ξ

∆N (µ)

end

Nmax ← N

3.4. Greedy Parameter Sampling. We now discuss the construction of the
hierarchical RB approximation spaces XN = span{u(µn)}Nn=1, 1 ≤ N ≤ Nmax (see
also [20, 22]). We first introduce a finite train sample Ξ ⊂ D; a (random, say) initial
parameter vector µ1 ∈ D; an error tolerance ǫtol; and a maximum RB dimension
Nmax. We then perform Algorithm 1. The outputs of the algorithm are nested RB
spaces X1 ⊂ X2 ⊂ . . . ⊂ XNmax

(

⊂ X
)

. Note that the construction-evaluation
decomposition allows us to use a dense train sample: each evaluation of the error
bound in the arg max is very inexpensive; the truth is invoked only for the “winning”
candidates, µN , 1 ≤ N ≤ Nmax.

3.5. Offline-Online Computational Decoupling. We now describe the full
offline-online decoupling procedure for the “p”-type RB approximation: the offline
stage—performed only once as pre-processing—may be very expensive (N -dependent)
but enables the subsequent very fast (N -independent) online stage—performed many
times for the computation of the RB solution (and output) and RB error bound (and
output error bound).

The offline stage is essentially the Greedy algorithm (Algorithm 1). The param-
eter independent entities Aq

N ∈ R
N×N , 1 ≤ q ≤ Qa, F q

N ∈ R
N , 1 ≤ q ≤ Qf and

(Gm,Gn)X , 1 ≤ m, n ≤ Ñ are retained from the construction stage of the last itera-
tion. The permanent online storage requirement is thus O(QaN2 +QfN) = O(QN2)
for the Aq

N and F q
N , and O(Q2

aN2 + Q2
f ) = O(Q2N2) for the (Gm,Gn)X . We note

that since the RB spaces are nested, we can extract subarrays from the stored en-
tities in order to construct RB approximations of any order 1 ≤ N ≤ Nmax (online
adaptivity).

The online stage is for the “p”-type method equivalent to the evaluation stage:
given any µ ∈ D, we assemble the RB system in O(QfN + QaN2) = O(QN2)
operations, compute the RB solution in O(N3) operations, and finally evaluate the
RB error bound in O((Qf + NQa)2) = O(N2Q2) operations.

4. The “h”-type Reduced Basis Method. In this section we formulate the
“h”-type reduced basis method. We first provide preliminaries required throughout
this section; we next present the “h”-type approximation algorithm; we then consider a
posteriori error estimation; we subsequently describe the offline-online computational
decomposition; finally, we develop a new a priori convergence theory for the “zeroth
order” approximation in the case of one parameter.

4.1. Preliminaries. We first introduce a set of Boolean vectors of length L,

BL ≡ {1} × {0, 1}L−1; (4.1)
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(1)

(1,0)

(1,0,0) (1,0,1)

(1,1)

(1,1,0) (1,1,1)

Figure 4.1. A binary tree and associated Boolean vectors corresponding to the parameter
domain partition in Figure 4.2.

we denote a particular member of BL as

BL = (1, i2 . . . , iL) ∈ BL. (4.2)

We can associate to BL a perfect binary tree with L levels and at most K = 2L−1

leaf nodes—as shown in Figure 4.1 for the particular case L = 3; we can identify to
each BL a node in the tree. Appending a ‘0’ to a vector BL corresponds to a left
bend and appending a ‘1’ to a vector BL corresponds to a right bend. We define the
concatenation

(BL, i) ≡ (1, i2 . . . , iL, i), i ∈ {0, 1}; (4.3)

we say that BL is the parent of the children (BL, i), i ∈ {0, 1}.
Given an initial parameter domain D, we shall perform the “h”-refinement by

recursive splitting of D into smaller parameter subdomains. The subdomains are
defined hierarchically; thus for some L ≥ 1, we can organize K = 2L−1 subdomains
in a perfect binary tree. We denote the subdomains as

VBl
⊂ D, Bl ∈ Bl, 1 ≤ l ≤ L, (4.4)

and we require the parent-child hierarchy

V(Bl,0) ⊂VBl
. (4.5)

V(Bl,1) ⊂VBl
. (4.6)

We associate to each subdomain VBl
a set of N̄ parameter values denoted by

MN̄,Bl
= {µ1,Bl

, . . . ,µN̄,Bl
}, 1 ≤ l ≤ L, (4.7)

in which µ1,Bl
, . . . ,µN̄,Bl

∈ VBl
; we may then define the RB approximation spaces

(of dimension N̄) associated with the subdomains as

XN̄,Bl
= span{u(µ1,Bl

), . . . , u(µN̄,Bl
)}, 1 ≤ l ≤ L. (4.8)

(The actual bases are, as always, orthonormalized.)
To each “model” MN̄,Bl

and corresponding subdomain we associate a parameter
anchor point, µ̂Bl

, defined as

µ̂Bl
≡ µ1,Bl

. (4.9)
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We shall further require (by construction) that, for 2 ≤ l ≤ L− 1,

µ̂(Bl,0)
= µ̂Bl

, (4.10)

µ̂(Bl,1)
6= µ̂Bl

; (4.11)

the anchor point is thus inherited only by the “left” child. The partition of D into
subdomains is inferred from proximity to the anchor points.

To this end, we introduce for any Boolean vector Bl ∈ Bl, 1 ≤ l ≤ L, a “proximity
function” dBl

: D → R
+. For example, we can choose the Euclidian distance between

two points,

dBl
(µ) = ‖µ− µ̂Bl

‖2. (4.12)

To determine for any new µ ∈ D which subdomain V(1,i∗
2
,...,i∗L) ⊂ D contains µ, we

successively evaluate the proximity function,

i∗2 = arg min
i∈{0,1}

d(1,i)(µ),

i∗3 = arg min
i∈{0,1}

d(1,i∗
2
,i)(µ),

...

i∗L = arg min
i∈{0,1}

d(1,i∗
2
,...,i∗L−1

,i)(µ).

(4.13)

We discuss the computational complexity shortly.
In general, the partition will not have the same number of refinement levels along

every branch of the associated binary tree; hence the tree is not necessarily perfect. In
this case, L shall denote the maximum number of levels in the tree—the tree depth;
we will then have “empty models”: MBl

= ∅ for some Bl ∈ Bl, 1 ≤ l ≤ L. For
any such Bl associated with an empty model we adopt the convention dBl

≡ ∞;
we then terminate the search (4.13) whenever d(1,i∗

2
,...,i)(µ) = ∞ (for i = 0, 1). In

order to measure the uniformity of the tree associated with the partition of D into K
subdomains, we introduce a relative tree depth

ηdepth =
tree depth

log2 K + 1
; (4.14)

note in particular that ηdepth ≥ 1.
In what follows we shall need Algorithm 2, which is simply a restatement of the

Greedy (Algorithm 1) restricted to a particular subdomain and with one additional
output: the evaluation of the a posteriori error bound ∆hRB

N (defined shortly) is
performed over ΞBL

⊂ VBL
; the outputs of the algorithm are nested RB spaces XN,BL

and associated models MN,BL
, 1 ≤ N ≤ Nmax,BL

. Note that even for Nmax,BL
= 1

we perform one pass of the whole loop and hence identify (and retain) µ2,BL
; however,

in general, we only compute at most Nmax,BL
snapshots. For the pure “h”-type RB

approximation we shall require Nmax,BL
≡ N̄ for all BL.

4.2. Approximation. We now introduce the “h”-type RB approximation algo-
rithm. We start from the original parameter domain V(1) = D (L = 1, BL = (1));
we introduce a finite train sample Ξ(1) ⊂ V(1); we choose an initial parameter anchor
point µ̂(1) ∈ D; we choose the error tolerance ǫ1tol; we set the desired maximum RB

space dimension N̄ ≥ 1. The partition is then determined as follows.
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Algorithm 2: Greedy2(ΞBL
, µ1,BL

, ǫtol, Nmax,BL
)

initialize: N ← 0, ǫ0,BL
←∞, X0,BL

← {0},M0,BL
← ∅

while ǫN > ǫtol and N < Nmax do
N ← N + 1
XN,BL

← XN−1,BL
⊕ span{u(µN,BL

)}
MN,BL

←MN−1,BL
∪ {µN,BL

}

ǫN,BL
← max

µ∈ΞBL

∆hRB
N (µ)

µN+1,BL
← arg max

µ∈ΞBL

∆hRB
N (µ)

end

Nmax,BL
← N

1. Construct a model with N̄ parameter values for the current subdomain VBL

with the standard Greedy algorithm (Algorithm 2). The RB space XN̄,BL
and the

model MN̄,BL
are outputs from Greedy2(ΞBL

, µ̂(1), 0, N̄). (Note that we set the

argument ǫtol = 0 to enforce a RB space of dimension N̄ .)
2. Compute the maximum a posteriori error bound (defined shortly) over the

train sample over the current subdomain

ǫN̄,BL
= max

µ∈ΞBL

∆hRB
N̄ (µ). (4.15)

3. If ǫN̄,BL
< ǫtol1 : The refinement is sufficiently good; for all N̄ set

MN̄,(1,i2,...,iL,0) = ∅, (4.16)

MN̄,(1,i2,...,iL,1) = ∅; (4.17)

we thus terminate the branch of the associated binary tree.
4. If ǫN̄,BL

≥ ǫtol1 :
(i) Define anchor points for two new modelsM(BL,0) andM(BL,1), µ̂(BL,0) (=

µ̂BL
) and µ̂(BL,1), respectively; the model M(BL,0) inherits the anchor point from

its “parent,” while the modelM(BL,1) takes as anchor point the first parameter value
chosen by the Greedy algorithm—in the sense of the a posteriori error estimator,
these two points are maximally different and hence good places to “anchor” the new
models. (Note the remaining N̄ − 1 snapshots of MBL

are discarded.)
(ii) Define a new and denser train sample Ξ̃BL

⊂ VBL
of size |Ξ̃BL

| = 2|Ξ(1)|.

(The temporary sample Ξ̃BL
is thus twice as large as the initial train sample.)

(iii) Construct Ξ(BL,0) ⊂ V(BL,0) and Ξ(BL,1) ⊂ V(BL,1) from Ξ̃BL
based on

proximity to µ̂(BL,0) and µ̂(BL,1), respectively: a point µ ∈ Ξ̃BL
belongs to Ξ(BL,0) if

and only if d(BL,0)(µ) ≤ d(BL,1)(µ); otherwise µ belongs to Ξ(BL,1).

5. Split the current branch in two new branches: set Bleft
L = (BL, 0) and Bright

L =

(BL, 1); proceed to step 1 first for BL = Bleft
L and then for BL = Bright

L .
The procedure may be more precisely defined by hRB(Ξ(1), µ̂(1), N̄ , ǫ1tol), where hRB
is the recursive function defined in Algorithm 3.

Remark 1 (Train Sample Refinement). In step 4(ii) in the algorithm above ad-
ditional points are added to the train sample such that the number of points in the
two new train samples will be roughly the same as in the old train sample, and in
particular always much larger than N̄ . As a result, the “global” train sample over
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Algorithm 3: hRB(ΞBL
, µ̂BL

, N̄ , ǫ1tol)

Get XN̄,BL
and MN̄,BL

from Greedy2(µ̂BL
, BL,∞, N̄)

ǫN̄,BL
← max

µ∈ΞBL

∆hRB
N̄ (µ);

if ǫN̄,BL
< ǫ1tol then

Terminate branch: M(BL,0) = ∅ and M(BL,1) = ∅.
else

Define µ̂(BL,0) = µ1,BL
and µ̂(BL,1) = µ2,BL

Construct Ξ(BL,0) ⊂ V(BL,0) and Ξ(BL,1) ⊂ V(BL,1)

hRB(Ξ(BL,0),µ̂(BL,0), N̄ , ǫ1tol)

hRB(Ξ(BL,1),µ̂(BL,1), N̄ , ǫ1tol)

end

D—the union of all the points in the train samples over all parameter subdomains—
is adaptively refined as the “h”-type RB approximation becomes more accurate: the
train sample is denser in regions of D with smaller subdomains; hence we add more
train points where the solution varies rapidly with the parameters.

In our current implementation, the train sample refinement is performed by sam-
pling of uniformly distributed random points from D; we then use the search (4.13) to
determine whether a point belongs to the current subdomain and thus can be included
as a new point in the current train sample. In the case that the proximity function
is Euclidian distance (as in (4.12)), we need in fact not sample from the entire pa-
rameter domain D: we first compute the bounding box of the old train sample; we
then sample the new points from a box that contains the bounding box with some
specified margin—the assumption is that the box from which we sample contains the
entire subdomain. In the case in which the proximity function is the error bound (as
we describe shortly), we sample from the entire domain D since we have no a priori
knowledge of the shape of the subdomains, and in particular the subdomains might
not be connected. ♦

Remark 2 (Offline Speedup). The greedy algorithm—in particular in the case
of a low order (small N̄) approximation—is likely to choose parameter values close
to the boundaries of the parameter subdomains. As a result, two or more models
may comprise some identical (or nearly identical) parameter values, and thus some
of the offline truth solves are in some sense redundant. One way to reduce this
snapshot redundancy is to share basis functions between approximation spaces if the
associated greedily selected parameter values are sufficiently close. The development
of an efficient algorithm for automatic sharing of basis functions is the subject of
future work. ♦

In Figure 4.2 we illustrate the first two levels of “h”-refinement together with the
associated binary tree for a “h”-type approximation with N̄ = 1. The first anchor point
µ̂(1) is chosen as the upper right corner of the parameter domain, and by definition
V(1) = D. The method greedily chooses the point µ̂(1,1) near the lower left corner of
V(1); the initial anchor point is then re-labelled as µ̂(1,0) = µ̂(1). We now have two
new modelsM1,(1,0) = {µ̂(1,0)} andM1,(1,1) = {µ̂(1,1)}, whose associated subdomains
V(1,0) and V(1,1) are determined from proximity—here Euclidian distance—to the two
anchor points. Next, V(1,1) and V(1,0) are partitioned in the same fashion (we have
here assumed that the tolerance is satisfied within V(1,0,0) and V(1,0,1)).
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V(1) = D

V(1,0)

V(1,1) V(1,1)

V(1,0,0)

V(1,0,1)

V(1,0,0)

V(1,1,0)

V(1,1,1)

V(1,0,1)

Figure 4.2. Two levels of “h”-refinement and associated binary tree.

Finally, we may now define the “h”-type RB approximation: given any µ ∈ D we
first determine the subdomain VB∗

L
containing µ from the search (4.13); we then find

uhRB
N̄

(µ) ∈ XN̄,B∗

L
such that

a(uhRB
N̄ (µ), v;µ) = f(v;µ), ∀v ∈ XN̄,B∗

L
. (4.18)

(Note that B∗
L depend on µ.) We discuss computational complexity shortly. We

define the “order” of the “h”-type approximation as p ≡ N̄1/P − 1.

4.3. A Posteriori Error Estimation. We can apply the same a posteriori bound
developed for the “p”-type RB approximation in §3.2 to the “h”-type (and below “hp”-
type) RB approximations. However, we shall require some new notation for the “h”-
type error bound.

Given any µ ∈ D and a partition of D into subdomains, we determine B∗
L from

the binary search (4.13) and compute the RB solution uhRB
N̄

(µ) from (4.18). The RB
residual is

rhRB
N̄ (v;µ) = f(v;µ)− a(uhRB

N̄ (µ), v;µ), ∀v ∈ X. (4.19)

We denote the Riesz representation of the residual by RhRB
N̄

; as an upper bound for

the X-norm error ‖u(µ)− uhRB
N̄

(µ)‖X , we define

∆hRB
N̄ (µ) ≡

‖RhRB
N̄

(µ)‖X

αLB(µ)
. (4.20)

Lemma 3.1 now directly applies with an appropriate change of notation.
Remark 3 (The Error Bound as Proximity Function). For any Bl ∈ Bl, 1 ≤ l ≤ L,

(associated with a non-empty model) and any µ ∈ D, we can derive the RB error
bound associated with the RB approximation to u(µ) in the space XN̄,Bl

; we denote
this error bound by ∆N̄,Bl

(µ). As an alternative to the proximity function introduced
in (4.12), we can use

dBl
(µ) = ∆Bl

(µ), (4.21)

to measure the “distance” between the points µ̂Bl
and µ. In §6, we provide results

with the proximity function defined both as in (4.12) and as in (4.21). ♦

Remark 4 (Multiple Inner-Products). The “h”-type RB approximation offers a
natural way of introducing multiple inner-products—multiple reference parameters—
in the computation of the dual norm of the residual for the a posteriori error bounds.
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For example, we could choose the anchor point in any subdomain to be the reference
parameter associated with that subdomain. With this approach, we would expect
sharper error bounds and thus a better parameter domain partition (as well as, ulti-
mately, greater online efficiency).

To compute the dual norm of the residual we must (in the construction stage)
solve a number of problems on the form (3.4) with different right-hand sides. If
we solve the discrete system directly, we must invert one operator for each inner-
product; hence there is a computational advantage associated with only a single inner-
product. If we use an iterative solver, however, the solves are in any event performed
independently and we can introduce individual inner-products within each subdomain
at no computational penalty. In this paper, however, we have not pursued a multiple
inner-product approach for our numerical examples. ♦

4.4. Offline-Online Decomposition. In the offline stage, we determine the
partition of the parameter domain and construct the corresponding RB models and
spaces: we perform hRB(Ξ(1), µ̂(1), N̄ , ǫ1tol). For our purposes here, we assume a
perfect binary tree; note that a perfect binary tree with K leaf nodes has K − 1
additional nodes associated with intermediate models (at earlier levels in the tree).
We also assume that the cardinality of the train sample over each of the subdomains
is equal to ntrain.

The offline stage computational cost derives from several components:

1. Snapshot Truth Solves. During the partition procedure, we must compute
N̄K snapshots associated with the final approximation spaces. In addition, we must
compute (N̄ − 1)(K − 1) snapshots associated with intermediate models required to
form the partition. (Since the anchor point—and thus the first basis function—at the
next level is inherited from the “parent”, only N̄ − 1 new basis functions are required
for each model.)

2. Reduced Basis Preprocessing. We must compute K(QaN̄2 + Qf N̄) truth
inner products to form the parameter-independent “stiffness” matrices and loads (e.g.,
as in (3.12)) for the final models, and an additional (K−1)(QaN̄2 +Qf N̄ −Qa−Qf )
truth inner products to form the corresponding quantities for the intermediate models.

3. Error Bound Preprocessing. We must compute KN̄Qa + Qf truth Poisson
solves of the form (3.18) for the final models and an additional (K−1)(N̄−1)Qa truth
Poisson solves for the intermediate models. We must also compute the K(N̄Qa+Qf )2

truth inner-products of the form (3.21) in order to evaluate the dual norm of the
residual associated with the final models, and an additional (K − 1)((N̄Qa + Qf )2 −
(Qa + Qf )2) truth inner-products in order to evaluate the dual norm of the residual
associated with the intermediate models.

4. Error Bound Evaluations. We must solve ntrain(N̄(K−1)+N̄K) RB systems
to obtain the residual coefficients and evaluate ntrain(N̄(K−1)+N̄K) RB error bounds
during the Greedy sampling including both the final and intermediate models. This
results in ntrainN̄(2K − 1)(N̄3 + N̄2Q2) operations in total (to leading order).

The combined offline cost is thus approximately 2N̄K + 2N̄K + Qf truth solves,
2K(N̄Qa + Qf )2 + 2K(QaN̄2 + Qf N̄) truth inner-products, and ntrain2N̄K(N3 +
N2Q2) operations to evaluate the error bounds. Note that the additional cost associ-
ated with the intermediate models is not onerous—a factor of two.

The link between the offline and online stages is the parameter-independent data
constructed in the offline stage and stored (permanently) for evaluation in the online
stage. If we retain only the data associated with the final models the online storage
for the “h”-type RB approximation is QaK matrices of size N̄×N̄ and QfK vectors of
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size N̄ ; the online storage associated with the RB error bounds is K(N̄Qa + Qf )2/2.
If we retain intermediate models for purposes of online adaptivity clearly the online
storage will increase; we do not consider this case further since in actual practice
online adaptivity is typically pursued through the “hp”-approach.

In the online stage, given any µ ∈ D, we first determine the subdomain which
contains µ via the binary search (4.13) in O(log2 K) operations. Thanks to the
construction-evaluation decomposition, we can then assemble and solve the corre-
sponding system of algebraic equations in O(QN̄2) and O(N̄3) operations, respec-
tively, and compute the associated a posteriori error bound in O(N̄2Q2) operations.
Note that the search (4.13) is an O(log2 K) operation only under the hypothesis that
the depth of the tree associated with the partition of D is proportional to log2 K;
we provide numerical results to support this hypothesis in §6. We also emphasize
that the efficient O(log2 K) search is a particular property of our hierarchical par-
tition construction; if we were to partition the parameter domain based on (say) a
Voronoi diagram, determination of the subdomain which contains µ ∈ D would be
less efficient.

4.5. A Priori Theory: N̄ = 1, P = 1. In this section we develop a priori
convergence theory for a “h”–type RB approximation of “zeroth order” (N̄ = 1) in
the one-parameter case (P = 1) when the Euclidian distance is used as the proximity
function. We focus on N̄ = 1 since in fact N̄ = 1 is crucial to the “hp”-approach of §5;
the theory developed here demonstrates that an N̄ = 1 greedy approach can indeed
generate a reasonably efficient partition. We consider P = 1 for simplicity; at the
conclusion of this section we provide a remark addressing the N̄ > 1 (higher “order”)
and P > 1 cases.

For our purposes here, we do not need the Boolean indexing of the anchor points
and subdomains: we assume that we have partitioned D into K subdomains; we re-
label the K anchor points as µ̂

′
1, µ̂

′
2, . . . , µ̂

′
K (numbered in the order in which they are

chosen by Algorithm 3). When Algorithm 3 adds a new anchor point, the parameter
domain partition changes; we introduce mappings IK̃ : D → {1, . . . , K̃}, 1 ≤ K̃ ≤ K

such that with K̃ anchor points, for any µ ∈ D,

µ̂
′
IK̃(µ) = µ̂B∗(µ), (4.22)

where B∗(µ) is the Boolean index of the particular subdomain containing µ. Below,
we omit the ′ for brevity.

For the purpose of this section, given K̃ anchor points and corresponding subdo-
mains, we denote by uK̃(µ) the “zeroth order” (N̄ = 1) “h”-type RB approximation
for any µ ∈ D. With the implicit mapping above, we have

uK̃(µ) = ωK̃(µ)u(µ̂IK̃(µ)), (4.23)

where the coefficient ωK̃(µ) is given by the Galerkin projection as

ωK̃(µ) =
f
(

u(µ̂IK̃(µ));µ
)

a
(

u(µ̂IK̃(µ)), u(µ̂IK̃(µ));µ
) . (4.24)

We denote by rK̃(v;µ) = f(v;µ)−a(uK̃(µ), v;µ) the RB residual, and letRK̃(µ) ∈ X
satisfy (RK̃(µ), v)X = rK̃(v;µ) for all v ∈ X. Our X-norm error upper bound is then
written

∆K̃(µ) =
‖RK̃(µ)‖X

αLB(µ)
, (4.25)
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which is simply a specialization of (4.20).
We need two further preliminary results. First, it is clear from Cea’s Lemma

(with respect to the X-norm), (2.9), and (2.8) that for any K̃, 1 ≤ K̃ ≤ K, and any
µ ∈ D,

‖u(µ)− uK̃(µ)‖X ≤
γ

α
‖u(µ)− u(µ̂IK̃(µ))‖X , (4.26)

since u(µ̂IK̃(µ)) is a particular member of the (one-dimensional) reduced basis space.

Second, from (3.7) of Lemma 3.1, we get for any K̃, 1 ≤ K̃ ≤ K, and any µ ∈ D,

∆K̃(µ) ≤
γ

α
‖u(µ)− uK̃(µ)‖X , 1 ≤ K̃ ≤ K. (4.27)

We can now state
Proposition 4.1 (Convergence in the case N̄ = 1, P = 1). The “h”-type RB

approximation is convergent for finite K(ǫ1tol) ≤ Kmax(ǫ
1
tol) subdomains. Further, the

convergence is first order in the sense that

Kmax(ǫ
1
tol) = max

{

1,
C

ǫ1tol

}

(4.28)

where the constant C is given by

C =
2γ̄2C̃|D|

α2
, (4.29)

where C̃ = (c̃1‖f‖X′ +αc̃2)/α2 is the constant developed in Lemma 2.1 and |D| is the
length of D ⊂ R.

Proof. Algorithm 3 provides a sequence of anchor points µ̂1, . . . , µ̂K for K ≥ 1.
We have by construction of our algorithm either K = 1 or K > 1 and

ǫ1tol < ∆K̃(µ̂K̃+1), 1 ≤ K̃ ≤ K − 1. (4.30)

In the former case the proof is complete; we henceforth consider the latter case.
We deduce from (4.27), (4.26), and Lemma 2.1,

∆K̃(µ̂K̃+1) ≤
γ

α
‖u(µ̂K̃+1)− uK̃(µ̂K̃+1)‖X (4.31)

≤
γ2

α2
‖u(µ̂K̃+1)− u(µ̂IK̃(µ̂K̃+1

))‖X (4.32)

≤
γ2

α2
C̃|µ̂K̃+1 − µ̂IK̃(µ̂K̃+1

)|, (4.33)

respectively, for 1 ≤ K̃ ≤ K − 1; hence from (4.30)

|µ̂K̃+1 − µ̂IK̃(µ̂K̃+1
)| >

α2ǫ1tol
γ2C̃

, (4.34)

for 1 ≤ K̃ ≤ K − 1.
Let δK

k denote the length of the subdomain associated with anchor point µ̂k, 1 ≤

k ≤ K. Given K̃, 1 ≤ K̃ ≤ K − 1, the algorithm selects the next anchor point µ̂K̃+1
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and the intermediate subdomain associated with anchor point number IK̃(µ̂K̃+1) is
divided into two new subdomains. It is clear that the length of each of the two new
subdomains is at least as large as half the distance between the new anchor point
µ̂K̃+1 and anchor point µ̂IK̃(µ̂K̃+1

), namely |µ̂K̃+1− µ̂IK̃(µ̂K̃+1
)|/2. Furthermore, each

of the K final subdomains results from the splitting of the intermediate subdomain
associated with anchor point µ̂IK̃(µ̂K̃+1

) for some K̃ ∈ {1, . . . ,K − 1}; hence for

1 ≤ k ≤ K, there exists a K̃ ∈ {1, . . . ,K − 1} such that

δK
k ≥ |µ̂K̃+1 − µ̂IK̃(µ̂K̃+1

)|/2, (4.35)

and thus by (4.34)

δK ≡ min
1≤k≤K

δK
k >

α2ǫ1tol
2γ2C̃

. (4.36)

Note that δK is not the smallest distance between two anchor points: rather, it is the
smallest length of any of the K subdomains.

Let |D| denote the length of D. With K subdomains, it is clear that KδK ≤ |D|.
We now assume K > Kmax. From (4.28) and (4.36) it then follows that

KδK >
C

ǫ1tol
δK ≥

(

2γ̄2C̃|D|

α2ǫ1tol

)(

α2ǫ1tol
2γ2C̃

)

= |D|. (4.37)

We have thus reached a contradiction: the “h”-type RB approximation can not gen-
erate a sequence of anchor points µ̂1, . . . , µ̂K for K > Kmax; thus the algorithm must
be convergent for 1 ≤ K ≤ Kmax subdomains.

Remark 5 (Convergence in the case N̄ ≥ 1, P ≥ 1). We first recall a polynomial
approximation result. Consider piecewise polynomial interpolation of order p of a suf-
ficiently smooth function on a bounded domain in R

P . We expect the convergence to
be of order p+1: with K subdomains we expect the error to decrease as (1/K)(p+1)/P .
Further, with each subdomain we can associate N̄ = (p + 1)P degrees of freedom; we

can thus expect the error to decrease as (1/K)(N̄
1/P )/P .

In the “zeroth order” multi-parameter case (N̄ = 1, P > 1) we anticipate that our
method converges for

K < max

{

1,
C

(ǫ1tol)
P

}

(4.38)

subdomains for some positive constant C. This poor convergence for P ≫ 1 suggests
the advantage of “p”–convergence [21] or “hp”–convergence rather than solely “h”-
convergence. Next, in the higher order, one-parameter case (N̄ > 1, P = 1), we might
expect convergence of N̄th-order in the sense that

K < max

{

1,
C

(ǫ1tol)
1

N̄

}

(4.39)

for some positive constant C. Finally, in the general case N̄ ≥ 1, P ≥ 1, we might
expect convergence of order p + 1, or

K < max

{

1,
C

(ǫ1tol)
P

N̄1/P

}

. (4.40)
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We shall consider these heuristic arguments again in the context of numerical results.
Note that our bound (4.28) and estimators (4.39) and (4.40) should capture the

correct order but of course the constant will be very pessimistic: by design, the Greedy
should adapt the sample to best accomodate local variations. ♦

5. The “hp”-type Reduced Basis Method. With the “hp”-type RB method,
we combine the “h”- and “p”-type methods: we first construct a partition of the
parameter domain with “h”-refinement; we then compute independent approximation
spaces restricted to each parameter subdomain with “p”-refinement—in general, the
approximation spaces will have different dimensions.

5.1. Approximation. The parameter domain partition is first constructed by
an N̄ = 1 “h”-type approximation until the error bound tolerance ǫ1tol is satisfied. We
first construct the initial train sample Ξ(1) ⊂ D, choose an initial parameter anchor
µ̂(1) ∈ D, and specify ǫ1tol; we then execute Algorithm 3, hRB(Ξ(1), µ̂(1), 1, ǫ1tol).

The output from hRB(Ξ(1), µ̂(1), 1, ǫ1tol) is K subdomains with associated one-

parameter models and one-dimensional approximation spaces; we denote by B1, . . . , BK

the K associated Boolean indices. We also store the train sample over each of the
final subdomains. As an additional step we now append additional basis functions to
each approximation space with a standard “p”-type procedure over each train sample:
we specify the maximum RB space dimension Nmax,Bk = Nmax > N̄ , 1 ≤ k ≤ K;
we specify a new error bound tolerance ǫ2tol < ǫ1tol; for 1 ≤ k ≤ K, we then execute
Algorithm 2: Greedy2(ΞBk ,µ1,Bk , ǫ2tol, Nmax,Bk). The final output is thus K sets of
nested RB approximation spaces and associated models, X1,Bk ⊂, . . . ,⊂ XNmax,Bk

and M1,Bk ⊂ MNmax,Bk , 1 ≤ k ≤ K, respectively. Note that the dimension of the
spaces is in general different since the error bound tolerance ǫ2tol might be satisfied
by the different approximation spaces over the different train samples with a different
number of basis functions.

Finally, we may now define the “hp”-type RB approximation: given any µ ∈ D,
we first determine the subdomain VB∗

L
containing µ from the search (4.13); given any

1 ≤ N ≤ Nmax, we then find uhpRB
N (µ) ∈ XN̂,B∗

L
such that

a(uhpRB
N (µ), v;µ) = f(v;µ), ∀v ∈ XN̂,B∗

L
, (5.1)

where N̂ ≡ min{N, Nmax,B∗

L
}. (Note that B∗

L and thus N̂ depend on µ.)

5.2. A Posteriori Error Estimation. We shall require some new notation for
the “hp”-type a posteriori error bound.

Given any µ ∈ D and a partition of D into subdomains, we determine B∗
L from

the binary search (4.13) and compute the RB solution uhpRB
N (µ) from (5.1). The RB

residual is

rhpRB
N (v;µ) = f(v;µ)− a(uhpRB

N (µ), v;µ), ∀v ∈ X. (5.2)

We denote the Riesz representation of the residual by RhpRB
N ; as an upper bound for

the X-norm error ‖u(µ)− uhpRB
N (µ)‖X , we define

∆hpRB
N (µ) ≡

‖RhpRB
N (µ)‖X
αLB(µ)

. (5.3)

Lemma 3.1 now directly applies with an appropriate change of notation.
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5.3. Offline-Online Decomposition. In the offline stage, we determine the
partition of the parameter domain and construct the corresponding RB models and
spaces as discussed above. For our purposes here, we assume a perfect binary tree.
We also assume that the cardinality of the train sample over each of the subdomains
is equal to ntrain.

The offline cost derives from several components; it is crucial to note that since
the initial “h”-refinement is performed for N̄ = 1, there is no additional cost associated
with the intermediate models:

1. Snapshot Truth Solves. During the partition procedure, we must compute
(at most) NmaxK snapshots associated with the final and intermediate approximation
spaces.

2. Reduced Basis Preprocessing. We must compute (at most) K(QaN2
max +

QfNmax) truth inner products to form the parameter-independent “stiffness” matrices
and loads (e.g., as in (3.12)) for the final and intermediate models.

3. Error Bound Preprocessing. We must compute (at most) KNmaxQa + Qf

truth Poisson solves of the form (3.18) for the final and intermediate models. We
must also compute (at most) K(NmaxQa + Qf )2 truth inner-products of the form
(3.21) in order to evaluate the dual norm of the residual associated with the final and
intermediate models.

4. Error Bound Evaulations. We must solve (at most) ntrain((K − 1) + Nmax)
RB systems to obtain the residual coefficients and evaluate (at most) ntrain((K −
1) + NmaxK) RB error bounds during the Greedy sampling for both the final and
intermediate models. This results in (at most) ntrain((K − 1) + NmaxK)(N3

max +
N2

maxQ
2) operations in total (to leading order).

The combined offline cost is thus NmaxK(1 + Qa) + Qf truth solves, K(NmaxQa +
Qf )2+K(QaN2

max+QfNmax) truth inner-products and ntrain((K−1)+NmaxK)(N3
max+

N2
maxQ

2) operations to evaluate the error bounds.
For each model, we must construct and retain the parameter-independent data

necessary to accomodate the efficient evaluation stage for the RB approximation and
the associated a posteriori error bound, as discussed in §3.3 for the standard RB
method. The online (permanent) storage requirement is QaK matrices of maximum
size Nmax×Nmax and Qf vectors of maximum size Nmax; the storage associated with
the RB error bounds is K(NmaxQa + Qf )2/2.

In the online stage, given any µ ∈ D, we first determine the subdomain containing
µ via the binary search (4.13) in O(log2 K) operations. Thanks to the construction-
evaluation decomposition, we can then, given 1 ≤ N ≤ Nmax, assemble and solve
the corresponding system of algebraic equations in O(QN2) and O(N3) operations,
respectively, and compute the associated RB error bound in O(N2Q2) operations.

6. A Convection-Diffusion Model Problem.

6.1. Formulation and Truth Discretization. We now apply the “p”-, “h”- and
“hp”-type RB methods to a steady convection-diffusion model problem parametrized
by the angle and magnitute of the prescribed velocity field: Let µ = (µ1, µ2) and
define V(µ) = [µ2 cos µ1, µ2 sinµ1]

T. The governing equations for the exact field
variable ue(µ) are

−∇2ue(µ) + V(µ) · ∇ue(µ) = 10 in Ω, (6.1)

ue(µ) = 0 on ∂Ω. (6.2)

The physical domain is the circle Ω = {(x, y) ∈ R
2 : x2 + y2 ≤ 2}.
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Ω5

Ω3

Ω1

Ω2Ω4

Figure 6.1. The circular physical domain partitioned into five spectral elements.

Figure 6.2. Solutions to (6.7) for different parameter values µ = (π, 10) (left), µ = (0, 0)
(middle), and µ = (0, 10) (right).

We next define for all w, v ∈ Xe ≡ Xe(Ω) ≡ H1
0 (Ω) the parametrized bilinear

form

a(w, v;µ) ≡

∫

Ω

∇w · ∇v dΩ +

∫

Ω

(

V(µ) · ∇w
)

v dΩ

≡

∫

Ω

∇w · ∇v dΩ + µ2 cos µ1

∫

Ω

∂w

∂x
v dΩ + µ2 sinµ1

∫

Ω

∂w

∂y
v dΩ, (6.3)

and the linear functional

f(v) ≡ f(v;µ) ≡ 10

∫

Ω

v dΩ; (6.4)

thus (2.1) obtains for Qa = 3 and Qf = 1. We can then state the exact problem in
the standard variational form: Given any µ ∈ D, find ue ∈ Xe such that

a(ue(µ), v;µ) = f(v), ∀v ∈ Xe. (6.5)

Note that for this particular problem, as(w, v;µ) =
∫

Ω
∇w · ∇v dΩ is parameter-

independent; thus a(v, v;µ) = ‖v‖2X for all v ∈ Xe and we may choose αLB ≡ 1 as
the coercivity lower bound.

Next, we introduce a truth spectral element space X ≡ XN (Ω) ⊂ Xe(Ω) of
dimension N = 481 based on five spectral elements of order ten: we introduce a
computational domain Ω̂ = (−1, 1)2 and standard transfinite mappings Fi : Ω̂→ Ωi,
1 ≤ i ≤ 5, [9]; we then define

X ≡ XN (Ω) = {v ∈ H1
0 (Ω) : v|Ωi

◦ Fi ∈ P
10(Ω̂), 1 ≤ i ≤ 5}, (6.6)
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Figure 6.3. Standard RB (“p”-type) convergence results: ǫN as a function of N for the one-
parameter cases D = DI (left) and D = DII (right).
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Figure 6.4. Greedy parameter choices (left) and associated standard RB (“p”-type) convergence
results (right) for the two-parameter case D = DIII.

where P
10(Ω̂) denotes the space of polynomials of degree 10 (in each spatial direction)

over Ω̂. The truth discretization of (6.5) reads: Given any µ ∈ D, find u(µ) ∈ X such
that

a(u(µ), v;µ) = f(v), ∀v ∈ X. (6.7)

In Figure 6.2, we plot the solution of (6.7) for three different parameter values. Clearly,
the three solutions have a very different structure—this particular problem is thus a
good candidate for “hp” treatment.

We define three parameter domains:

DI ≡ {0} × [0, 10], DII ≡ [0, π]× {10}, DIII ≡ [0, π]× [0, 10]; (6.8)

we shall thus consider P = 1 (DI or DII) or P = 2 (DIII) parameters.

6.2. “p”-type RB Approximation Results. In this section, we present the
standard (“p”-type) RB convergence results for our model problem.

We introduce uniformly distributed random train samples ΞI ⊂ DI, ΞII ⊂ DII, and
ΞIII ⊂ DIII of size 103, 103 and 104, respectively. We recall that ǫN = maxµ∈Ξ ∆N (µ)
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Figure 6.5. “h”-type RB convergence results: KN̄ (ǫ1tol) for N̄ = 1, N̄ = 2 and N̄ = 3 for the
one-parameter cases D = DI (left) and D = DII (right). Both Euclidian distance (dotted lines) and
the a posteriori error bound (dashed lines) are considered for the proximity function.

is the maximum X-norm error bound over the train sample associated with the space
XN . In Figure 6.3, we plot ǫN as a function of N for the two one-parameter cases
D = DI and D = DII: we note that N can be quite small even for ǫN ≈ 10−6.
In Figure 6.4 (right), we plot ǫN for the two-parameter case D = DIII. The quite
poor convergence of the “p”-type RB is not surprising given the very different solution
structures obtained for different parameter values; variations in µ1 are particularly
difficult to resolve—as indicated in Figure 6.3—due to the effect of the location of the
boundary layer. In Figure 6.4 (left) we present the parameters chosen by the greedy
algorithm: the points are clearly denser for larger velocities—which yield thinner
boundary layers.

6.3. “h”-type RB Approximation Results. We now present convergence re-
sults for a pure “h”-type RB approximation; the dimension of the approximation
spaces is thus fixed. The convergence results are obtained by first specifying the de-
sired tolerance ǫ1tol as well as the RB space dimension N̄ , the initial train sample Ξ(1)

and the initial anchor point µ̂(1); we then perform hRB(Ξ(1), µ̂(1), N̄ , ǫ1tol). Given N̄ ,

we let KN̄ (ǫ1tol) denote the number of subdomains in the partition for specified ǫ1tol.
We start with the one-parameter cases D = DI and D = DII. In both cases, the

initial train samples consist of 100 random points; the initial anchor point is µ̂(1) =

(0, 0). In Figure 6.5 we present KN̄ (ǫ1tol) for N̄ = 1, 2, 3 for each of the two cases. The
proximity function is dBl

(µ) = ‖µ − µ̂Bl
‖2 (dotted) and dBl

(µ) = ∆Bl
(µ) (dashed

lines): we observe the choice of the proximity function has little impact on the results.
We indicate the slopes for first, second and third order convergence: for the N̄ = 1
approximation, the convergence rates are in good agreement with the theoretical result
(4.28); for the N̄ > 1 approximations, the convergence is approximately N̄th order
and hence in agreement with our conjecture (4.38).

We next consider the two-parameter case D = DIII. The initial train sample Ξ(1)

consist of 103 random points; the initial anchor point is µ̂(1) = (0, 0). In Figure 6.6 we

present KN̄ (ǫ1tol) for N̄ = 1 and N̄ = 4. The proximity function is dBl
(µ) = ‖µ−µ̂Bl

‖2
(solid lines) and dBl

(µ) = ∆Bl
(µ) (dashed lines): now the choice of the proximity

function has some, but very slight, impact on the results but only for the first order
approximation. We indicate the slopes for 1/2 and first order convergence; we achieve
roughly K1 ∼ (ǫ1tol)

−2 and K4 ∼ (ǫ1tol)
−1: these results support our conjectures (4.39)

and (4.40).
Finally, we empirically examine the depth of the associated binary trees. Ideally,
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Figure 6.6. “h”-type RB convergence results: KN̄ (ǫ1tol) for N̄ = 1 and N̄ = 4 for the two-
parameter case D = DIII. Both Euclidian distance (dotted lines) and the a posteriori error bound
(dashed lines) are considered for the proximity function.

K1(ǫ1tol)

ηdepth

100 101 102 103

1

1.2

1.4

1.6

1.8

K1(ǫ1tol)

ηdepth

10
0

10
1

10
2

10
3

1

1.2

1.4

1.6

1.8

K1(ǫ1tol)

ηdepth

100 101 102 103 104

1

1.2

1.4

1.6

1.8

Figure 6.7. Relative tree depths ηdepth as functions of the number of subdomains (leaf nodes)
KN̄ (ǫ1tol) for ‘the ‘h”-type approximation with N̄ = 1 for each parametrization D = DI (left),
D = DII (middle), and D = DIII (right). Both Eucledian distance (◦) and the a posteriori error
bound (+) are considered for the proximity function.

we would like the relative tree depth (4.14) to be a constant close to unity; the search
(4.13) in this case is an efficient log2 K operations binary search. In Figure 6.7, we
plot the relative tree depth against the number of subdomains for the approximation
with N̄ = 1 for each of our three parametrizations. (Note the scatter in the plots is
induced by the range of ǫ1tol considered.) Although from these results it is difficult
to reach general conclusions, the relative tree depths are all fairly close to unity and
increase with increasing K only very modestly even for 1 ≤ K ≤ 104.

6.4. “hp”-type Approximation Results. We now present convergence re-
sults for an “hp”-type RB approximation. For a partition with K subdomains, let
Ξ denote the union of the associated K train samples; we then define ǫhpRB

N ≡

max
µ∈Ξ ∆hpRB

N (µ).

We start with the one-parameter cases D = DI and D = DII. For the case D = DI,
we specify ǫ1tol = 5 and ǫ1tol = 0.1, which requires K = 4 and K = 211 subdomains,
respectively; for the case D = DII, we specify ǫ1tol = 5 and ǫ1tol = 0.1, which requires
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Figure 6.8. “hp”-type RB convergence results: ǫ
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as a function of N for the one-parameter
cases D = DI (left) and D = DII (right).
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Figure 6.9. Parameter domain partitions for the case D = DIII. The numbers of subdomains
are K(ǫ1tol) = 72 for ǫ1tol = 5 (left) and K(ǫ1tol) = 417 for ǫ1tol = 2 (right).

K = 8 and K = 260 subdomains, respectively. Here, we use dBl
= ‖µ− µ̂Bl

‖2 as the
proximity function; the initial train sample consist of 100 random points; the initial
anchor point is µ̂(1) = (0, 0). In Figure 6.8 we plot ǫhpRB

N as functions of N for each
of the two parametrizations. Given any error bound tolerance, we note a significant
reduction in the required approximation space dimension (in any subdomain) when
compared to a standard RB (K = 1) approximation. Of course, the total number of
snapshots NK (for any given tolerance) will increase with K: the greater suitability of
local snapshots does not compensate for lower order in terms of global approximation
properties.

We next consider the two-parameter case D = DIII. We use dBl
(µ) = ‖µ− µ̂Bl

‖2
as the proximity function; the initial train sample consist of 103 random points; the
initial anchor point is µ̂(1) = (0, 0). In Figure 6.9 we show partitions of the parameter

domain for specified ǫ1tol = 5 and ǫ1tol = 2: we obtain K = 72 and K = 417 subdomains,
respectively. We note—similarly to the “p”-type greedy parameter choices in Figure
6.3 (left)—that the subdomains are smaller for larger velocities. In Figure 6.10, we
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Figure 6.10. Convergence of “hp”-type RB for the two-parameter case D = DIII.

Table 6.1

Operation count and storage requirement for the “hp”-type RB with K = 72 relative to that of
the standard RB (K = 1) for the two-parameter case D = DIII.

ǫ2tol = 10−2 ǫ2tol = 10−3 ǫ2tol = 10−4

Offline Rel. Cost 16.6 15.7 15.9
Online Rel. Cost 0.069 0.053 0.047
Online Rel. Storage 3.96 3.51 3.58

plot for each of the two partitions in Figure 6.9 the maximum error bound ǫhpRB
N as

a function of N ; we include the results for the standard RB approximation (“p”-type
or “hp”-type with K = 1) as well. Again, the order reduction is significant.

In Table 6.1 and Table 6.2 we summarize for K = 72 and K = 417 subdomains,
respectively, the offline and online performance of the “hp” approach relative to that
of the standard RB method. For given tolerances ǫ2tol, we report in the three rows of
the tables the relative number of truth solves, the relative number of operations for
online evaluation of the RB approximation and RB error bound, and relative online
storage, respectively. The reported values are based on the theoretical operation count
and storage, which we recall here. For N basis functions and K ≥ 1 subdomains the
offline number of truth solves is KN(1 + Qa) + Qf .1 The online operation count is
roughly 2N3/3 for the RB solution and 2(QaN + Qf )2 operations for the RB error
bound; we neglect the O(QN2) cost of forming the RB system and the O(log2 K)
cost of finding the correct subdomain via the binary search. The online (permanent)
storage requirement is dominated by O(KQ2N2).

Admittedly, the “hp” approach requires more truth solves—a larger offline cost—
than the standard method. However, the online computational savings are significant:
the online cost is about 6-8 percent of that of the standard RB method in our example
with K = 72, and only about 2-4 percent in our example with K = 417. The online
storage requirement is somewhat larger with the “hp” approach, though in general the
storage requirements are quite modest—the N2 scaling moderates the growth due to
K.

1We assume that the truth solves constitute the most expensive part of the total offline cost. In
fact, this assumption favors the standard “p”-type RB; the error bound sampling is superlinear in N

and thus scales more advantageously for the “hp”-approach. We thus expect in particular for ntrain

large that the Offline Rel. Cost. will be lower than reported in the tables.
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Table 6.2

Operation count and storage requirement for the “hp”-type RB with K = 417 relative to that of
the standard RB (K = 1) for the two-parameter case D = DIII.

ǫ2tol = 10−2 ǫ2tol = 10−3 ǫ2tol = 10−4

Offline Rel. Cost 65.8 61.9 63.3
Online Rel. Cost 0.032 0.025 0.019
Online Rel. Storage 10.8 9.39 9.81

7. Concluding Remarks. The “hp”-type RB method has been shown to signif-
icantly reduce the online computational cost. On the other hand, the new approach
is more expensive than the standard (“p”-type) RB method in the offline stage; hence
we must trade offline cost for online performance. However, the online effort is often
our main concern in the real-time or many-query contexts.

We expect the new approach to be particularly beneficial for problems for which
the solution structure is very different in different parts of the parameter domain.
While our model problem was specifically constructed to exhibit this property, there
are many realistic problems which exhibit similar behavior. As an example, we men-
tion an application of RB to the solution of the Fokker-Planck equation [14]; here,
the solution is required for many different parameters, but the required (“p”-type)
RB spaces are rather large. Also of interest are problems which exhibit non-smooth
parameter dependence—the “hp”-approach should automatically refine the parameter
domain around singularities and hence work better than the standard approach;

There are several opportunities for future work. First, we can improve the al-
gorithm: at present the parameter domain partition is rather sensitive to the choice
of ǫ1tol; we can also reduce the number of truth solves—the offline effort—if we ex-
ploit the fact that the greedy algorithm often chooses anchor points near subdomain
boundaries—hence some parameter values could be shared between models (c.f. Re-
mark 2). Second, we can generalize our approach to POD-Greedy sampling [11] for
parabolic problems [8]: the critical new ingredient is proper balance between addi-
tional POD modes and additional Greedy parameter values in the initial subdivision
process. Third, we can extend the approach to quadratically nonlinear problems such
as the incompressible Navier-Stokes equations [13]—in this case the “hp”-approach is
particularly advantageous since the (online) computation of the error bound requires
O(N4) operations for N basis functions and hence the “smaller N for larger K trade”
is particularly favorable. Finally, we mention that the offline stage of the “hp” ap-
proach is readily parallellizable—we can subdivide the parameter domain along each
branch of the associated binary tree independently.

Acknowledgements. We acknowledge helpful discussions with D. Knezevic, N.
C. Nguyen, S. Boyaval, and B. Haasdonk during this work.

REFERENCES

[1] B. O. Almroth, P. Stern, and F. A. Brogan, Automatic choice of global shape functions
in structural analysis, AIAA Journal, 16 (1978), pp. 525–528.

[2] D. Amsallem, J. Cortial, and C. Farhat, On-Demand CFD-Based Aeroelastic Predictions
Using a Database of Reduced-Order Bases and Models, in 47th AIAA Aerospace Sciences
Meeting Including The New Horizons Forum and Aerospace Exposition, January 2009.

[3] D. Amsallem and C. Farhat, Interpolation Method for Adapting Reduced-Order Models and
Application to Aeroelasticity, AIAA Journal, 46 (2008), pp. 1803–1813.



AN “hp” CERTIFIED REDUCED BASIS METHOD 27

[4] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ‘empirical interpolation’
method: application to efficient reduced-basis discretization of partial differential equations,
C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 667–672.

[5] S. Boyaval, Reduced-basis approach for homogenization beyond the periodic setting, Multiscale
Model. Simul., 7 (2008), pp. 466–494.

[6] S. Boyaval, C. Le Bris, Y. Maday, N. C. Nguyen, and A. T Patera, A reduced basis ap-
proach for variational problems with stochastic parameters: Application to heat conduction
with variable robin coefficient, Computer Methods in Applied Mechanics and Engineering,
198 (2009), pp. 3187 – 3206.

[7] A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici, A Priori Con-
vergence of the Greedy Algorithm for the Parametrized Reduced Basis. M2AN, submitted
2009.

[8] J. L. Eftang, A. T. Patera, and E. M. Rønquist, An "hp" Certified Reduced Basis Method
for Parametrized Parabolic Partial Differential Equations, in ICOSAHOM Proceedings,
2009.

[9] William J. Gordon and Charles A. Hall, Construction of curvilinear co-ordinate sys-
tems and applications to mesh generation, Internat. J. Numer. Methods Engrg., 7 (1973),
pp. 461–477.

[10] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera, Efficient reduced-basis
treatment of nonaffine and nonlinear partial differential equations, M2AN Math. Model.
Numer. Anal., 41 (2007), pp. 575–605.

[11] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations
of parametrized linear evolution equations, M2AN Math. Model. Numer. Anal., 42 (2008),
pp. 277–302.

[12] D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera, A successive constraint linear opti-
mization method for lower bounds of parametric coercivity and inf-sup stability constants,
C. R. Math. Acad. Sci. Paris, 345 (2007), pp. 473–478.

[13] D. J. Knezevic, N. C. Nguyen, and A. T. Patera, Reduced Basis Approximation and a
posteriori Error Estimation for the Parametrized Unsteady Boussinesq Equations. M3AS,
Submitted 2009.

[14] D. J. Knezevic and A. T. Patera, A Certified Reduced Basis Method for the Fokker-Planck
Equation of Dilute Polymeric Fluids: FENE Dumbbells in Extensional Flow., SIAM Jour-
nal of Scientific Computing, ((submitted 2009)).

[15] N. C. Nguyen, G. Rozza, D. B. P. Huynh, and A. T. Patera, Reduced Basis Approxi-
mation and a posteriori Error Estimation for Parametrized Parabolic PDEs; Application
to Real-Time Bayesian Parameter Estimation, in Computational Methods for Large Scale
Inverse Problems and Uncertainty Quantifications, Biegler, Biro, Ghattas, Heinkenschloss,
Keyes, Mallick, Tenorio, van Bloemen Waanders, and Willcox, eds., John Wiley & and
Sons, UK, Submitted 2009.

[16] N. C. Nguyen, G. Rozza, and A. T. Patera, Reduced Basis Approximation and a posteriori
Error Estimation for the Time-Dependent Viscous Burgers’ Equation, Calcolo, 46 (2009),
pp. 157–185. Calcolo, 2008 (submitted).

[17] A. K. Noor and J. M. Peters, Reduced basis technique for nonlinear analysis of structures,
AIAA Journal, 18 (1980), pp. 455–462.

[18] T. A. Porsching, Estimation of the error in the reduced basis method solution of nonlinear
equations, Math. Comp., 45 (1985), pp. 487–496.

[19] W. C. Rheinboldt, On the theory and error estimation of the reduced basis method for multi-
parameter problems, Nonlinear Anal. Theory Methods Appl., 21 (1993), pp. 849–858.

[20] G. Rozza, D. B. P. Huynh, and A. T. Patera, Reduced Basis Approximation and a
posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential
Equations, Archives of Computational Methods in Engineering, 15 (2008), pp. 229–275.

[21] S. Sen, Reduced-Basis Approximation and a posteriori Error Estimation for Many-Parameter
Heat Conduction Problems, Numerical Heat Transfer, Part B: Fundamentals, 54 (2008),
pp. 369–389.

[22] K. Veroy, C. Prud’homme, D. V. Rovas, and A. T. Patera, A posteriori error bounds
for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial
differential equations, in Proceedings of the 16th AIAA Computational Fluid Dynamics
Conference, 2003.


