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High order interpolation of curves in the
plane

Tormod Bjøntegaard, Einar M. Rønquist and Øystein Tråsdahl

December 18, 2009

We consider high order representations of curves in the plane. Through a se-
ries of complementary numerical examples, we show that classical interpolation
is sometimes far from optimal in the sense of minimizing the interpolation error
using a fixed number of degrees-of-freedom (the Kolmogorov n-width problem).
We propose a new way of constructing a high order interpolant of a curve in
the plane. The main ingredients are: a parametric representation of the curve,
an implicit reparametrization of the curve, and choosing the internal interpo-
lation points in such a way that the tangent vectors of the exact curve and the
tangent vectors of the interpolant coincide at these points. Numerical results
indicate that the proposed interpolant is close to optimal in the sense of mini-
mizing the L2-error between the exact curve and its interpolant. We also show
that the error may decrease exponentially fast even for curves which are not
analytic when regarded as a function in the classical setting. Finally, we use
the proposed method to construct an improved representation of the bound-
ary of a deformed quadrilateral domain. We show that the discretization error
associated with solving the Poisson problem in the deformed domain may be
significantly smaller than the error resulting from a standard approach.

Keywords Polynomial interpolation, reparametrization, high order methods, approxi-
mation of curves

1 Introduction

The motivation behind the work presented in this paper has been to solve partial differential
equations in complex domains using high order methods. As a simple example, consider
the numerical solution of the Poisson problem in a deformed quadrilateral domain Ω. A
numerical solution based on high order polynomials necessitates an accurate representation
of the geometry. This is typically achieved by first constructing an accurate representation
of the boundary of the domain, ∂Ω, and then constructing a mapping between the reference
domain Ω̂ = (−1, 1)2 and Ω. Assuming that the physical domain is not too distorted, the
latter can readily be achieved via a Gordon-Hall transfinite interpolation procedure [7].
Despite the fact that spectral (element) methods have been used to solve PDEs in

complex geometries for a long time [4, 5, 8, 9], few results exist in the literature for how
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to best construct a high order representation of a single curve in the plane. In the case of
a deformed quadrilateral, we need to approximate four curves in the plane (the four edges
of Ω) before we are able to construct the mapping between Ω̂ and Ω.
In this paper we focus on different ways of approximating a curve using high order poly-

nomials. We compare previously used methods with a new method. The numerical results
indicate that there is a potential to do better than currently used methods, sometimes
much better. In addition, the insight provided by the numerical results also suggests new
ways of constructing high order interpolants of a general function y(x).

The outline of the paper is a follows. In Section 2 we discuss high order representations
of one-dimensional functions. In Section 3 we apply the results and insight from Section
2 to approximate the edges of a deformed quadrilateral domain. We then solve a Laplace
problem in this domain and discuss the impact of the geometry representation on the
discretization error. Finally, in Section 4 we summarize our main findings.

2 High-order representation of a one-dimensional function
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Figure 1: A function y(x), x ∈ [a, b]; here a = −2.5 and b = 1.

Consider a one-dimensional function y(x), x ∈ [a, b], as depicted in Figure 1. High
order approximation of such a function is a classical topic, and there is a vast literature
covering both theoretical and numerical aspects, e.g., see [1, 2, 3]. For example, a high
order interpolant can be constructed by choosing points xj , j = 0, . . . , N , and evaluating
the function at these points, yielding yj = y(xj), j = 0, . . . , N . Based on these values,
an interpolating polynomial yN (x) of degree N can be constructed. For example, the
points xj can be chosen as xj = a + b−a

2 (ξj + 1), where ξj , j = 0, . . . , N , are the Gauss-
Lobatto Legendre (GLL) points. We have here tacitly assumed an affine mapping x(ξ)
given explicitly as x(ξ) = a + b−a

2 (ξ + 1) for ξ ∈ [−1, 1], with y(ξ) = y(x(ξ)). Note that,
in order to keep the notation as simple as possible, we will use the same symbol for the
function y both when expressed in terms of the physical coordinate x and in terms of the
reference coordinate ξ. It should be clear from the context what is meant. If not, we will
provide explicit reference to the independent variable.
If the function y(x) is regular, the interpolation error ‖y − yN‖ will decay rapidly as N
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increases. In addition, the interpolation error will be close to the best approximation error
(or projection error).
Since the mapping x(ξ) is affine, both the function yN (x) and yN (ξ) = yN (x(ξ)) are

polynomials of degree N . Specifically, the function yN (ξ) is given as

yN (ξ) =
N∑
j=0

yj`j(ξ), (1)

where `j(ξ) is the Nth order Lagrangian interpolant through the GLL points, i.e., `j(ξ) ∈
PN (−1, 1) and `j(ξi) = δij , 0 ≤ i, j ≤ N , and where yj = y(x(ξj)).
In the case of approximating a curve in the plane, a common approach is to view the

curve as a given function y(x). However, the specific function y(x) will depend on the
orientation of our coordinate system and the representation of the curve is therefore not
unique. Hence, a high order polynomial approximation of the curve will also depend on
our choice of coordinate system.
We may also describe a curve through a parametric representation. For example, a curve

in the plane can be given by two functions g1(ξ) and g2(ξ),

x(ξ) = g1(ξ),
y(ξ) = g2(ξ).

(2)

For any value value ξ ∈ [−1, 1], there exists a unique point (x(ξ), y(ξ)) on the curve.
For example, if g1(ξ) = a + b−a

2 (ξ + 1), i.e., the affine mapping we discussed above, we
may eliminate ξ by first expressing ξ as a function of x, and then recover the original
function y(x) from y(x) = g2(ξ(x)). However, the parametric representation (2) allows for
additional flexibility, also when it comes to numerical approximation.
In the following we consider high order polynomial approximations xN (ξ) and yN (ξ) of

x(ξ) and y(ξ). Both xN (ξ) and yN (ξ) are elements of PN (−1, 1). These approximations
can be expressed explicitly as

xN (ξ) =
N∑
j=0

xj`j(ξ),

yN (ξ) =
N∑
j=0

yj`j(ξ),

(3)

where xj and yj are the nodal values for each approximation. We will here only consider
interpolants to the exact curve (x(ξ), y(ξ)), ξ ∈ [−1, 1], i.e., we require that the nodal
points (xj , yj), j = 0, . . . , N , are located on the exact curve. We also assume that the end
points of the exact curve and the numerical curve always coincide. Hence, our problem is
to determine the “best” set of (internal) values ξ∗j , j = 1, . . . , N − 1, −1 < ξ∗j < 1, where
xj = g1(ξ∗j ) and yj = g2(ξ∗j ), i.e., this is a problem with N − 1 degrees-of-freedom.
Let us now briefly consider a few choices which can be used to represent a curve in the

plane, e.g., an edge of a deformed quadrilateral domain.

2.1 The standard method

The first method is precisely the very first approach we discussed, where x(ξ) = g1(ξ) is
a simple affine mapping. The numerical approximation is given by (3), with nodal values
xj = a+ b−a

2 (ξj + 1) and yj = y(xj); see Figure 2. By construction, yN (ξ) is a polynomial
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of degree N . However, we also note that yN (x) will also be a polynomial of degree N ,
i.e., we consider classical interpolation. In the following, we refer to this method as the
“standard” method.
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Figure 2: The function y(x) evaluated at the (affinely mapped) GLL-nodes.

2.2 The chord method

Even if the original curve is represented in a coordinate system as depicted in Figure 1,
we can always transform this representation to a coordinate system where the x-axis is
aligned with the chord connecting the two end points of the curve; see Figure 3. This
can be achieved through a simple rotation and translation. After the transformation to
this new coordinate system (with coordinates x′ and y′), we can again apply the standard
method as described above.
Note that the transformed function y′(x′) is different from the original function y(x)

even though both functions describe the same curve. This will, of course, also be true for
the associated numerical approximations (x′N , y

′
N ) and (xN , yN ).

Also note that the parametric representation of the exact curve (x′(η), y′(η)), η ∈
[−1, 1], can be viewed as a reparametrization [11] of the original parametric represen-
tation (x(ξ), y(ξ)), ξ ∈ [−1, 1]. To this end, there exists a mapping ξ(η) from [−1, 1] to
[−1, 1] such that x′(η) = x(ξ(η)) and y′(η) = y(ξ(η)). In essence, the two parametric
representations differ in the sense that we are moving along the same curve at different
“speeds”.
Using the standard method in the transformed coordinate system, we end up with a set

of nodal values (x′j , y
′
j), j = 0, . . . , N . These coordinates are then transformed back to the

corresponding coordinates (xj , yj), j = 0, . . . , N , in the original coordinate system. The
reason for transforming back to the original coordinate system is motivated by the fact that
we ultimately want to use these representations in the context of solving partial differential
equations. In this case, all the curve segments associated with the boundary of the com-
putational domain are part of a common description. For example, these representations
may be the input to a Gordon-Hall algorithm as discussed in the Introduction.
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Figure 3: The original function y(x) can be considered in a transformed coordinate system in
which the transformed x-axis is aligned with the chord between the two end points of the curve.
The function is then evaluated at the (affinely mapped) GLL-nodes relative to this coordinate
system.

The numerical representation of the curve will therefore be exactly the same as before
and given by (3). However, the numerical values of (xj , yj), j = 0, . . . , N , will be different
than the standard method applied in the original coordinate system. In the following, we
will refer to this method as the “chord” method.
Note that, even though xN (ξ) and yN (ξ) both belong to PN (−1, 1), the implicitly given

function yN (xN ) is not, in general, a polynomial. In the particular case when the chord is
parallel to the x-axis, the chord method coincides with the standard method.

2.3 The arc length method

Let s be the arc length as we move along the curve y(x), with s = 0 at x = a and s = L
at x = b, i.e., the length of the curve is L. Construct the affine mapping s(ξ) = L

2 (ξ + 1),
ξ ∈ [−1, 1], and define the values sj = s(ξj), j = 0, . . . , N . Each value sj corresponds
to a unique point along the curve with coordinates (xj , yj); see Figure 4. The arc length
method uses these points as the nodal values in the numerical representation (3). In other
words, the nodal points are distributed along the curve as a GLL-distribution according
to arc length. As for the chord method we note that, even though xN (ξ) and yN (ξ) both
belong to PN (−1, 1), the implicitly given function yN (xN ) is not, in general, a polynomial.

2.4 The L2-method

The three previous representations all rely in one way or another on a point distribution
which corresponds to an affinely mapped GLL-distribution: for the standard method, the
points along the x-axis correspond to a GLL-distribution; for the chord method, the points
along the chord correspond to a GLL-distribution; for the arc length method, the points
along the arc of the curve correspond to a GLL-distribution.
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Figure 4: The original function y(x) is here evaluated at points corresponding to a GLL-
distribution according to arc length.

We can, of course, also propose a method where there are no such restrictions on the
nodal points. Instead, we search for N−1 internal points along the curve which will ensure
a good numerical approximation to the exact curve.
As a way to measure how good the approximation is, we consider the L2-error

J = ||y − yN ||L2 =
(∫ b

a
(y(x)− yN (x))2dx

)1/2

. (4)

Another way of measuring the error is by comparing the arc length of the exact curve with
the arc length of the numerical approximation. The arc length of a curve parametrized as
(x(ξ), y(ξ)) is given as

L =
∫ 1

−1

√
x′(ξ)2 + y′(ξ)2 dξ, (5)

and the arc length LN of the numerical approximation is given analogously.
The exact curve is given by the parametric representation (x(ξ), y(ξ)), ξ ∈ [−1, 1], while

the numerical approximation is given by (3). Again, we assume that the end points of the
exact curve coincide with the end points of the numerical curve, and the internal points
(xj , yj), j = 1, . . . , N − 1, in (3) are all unique and located somewhere along the exact
curve. As stated earlier, our problem is to determine the “best” set of (internal) values ξ∗j ,
j = 1, . . . , N − 1, −1 < ξ∗j < 1, where xj = g1(ξ∗j ) and yj = g2(ξ∗j ), i.e., this is a problem
with N − 1 degrees-of-freedom. As before, the resulting numerical approximation will be
an interpolant, however, the implicitly defined interpolating function yN (xN ) will not, in
general, be a polynomial even though xN (ξ) and yN (ξ) are both in PN (−1, 1).
In principle, the N − 1 values ξ∗j , j = 1, . . . , N − 1, −1 < ξ∗j < 1, can be determined

by defining N − 1 independent conditions. A natural idea is to derive these conditions by
minimizing the functional J , i.e., by requiring that the L2-error be minimized. We will
refer to such a method as the “L2-method”. The resulting minimizer can be viewed as the
solution to the Kolmogorov n-width problem applied to the interpolation of curves [12].
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In principle, a Newton method can be used to solve the system of nonlinear equations.
Unfortunately, we will later see that it is often very difficult to find the global minimum
of J and we therefore propose an alternative method.

2.5 The equal-tangent method

As mentioned in the previous section, the N − 1 values ξ∗j , j = 1, . . . , N − 1, −1 < ξ∗j < 1,
can be determined by defining N − 1 independent conditions. As an alternative to the
L2-method we propose the following conditions:

dxN
dξ

(ξj)
dy
dξ

(ξ∗j )− dyN
dξ

(ξj)
dx
dξ

(ξ∗j ) = 0, j = 1, . . . , N − 1. (6)

One way to better understand these equations is by considering the exact curve subject to
a reparametrization ξ(η), η ∈ [−1, 1], ξ ∈ [−1, 1]. That is, we consider the representation
(x̃(η), ỹ(η)) = (x(ξ(η)), y(ξ(η))) which, of course, represents the same curve. The only
difference between the representation (x̃(η), ỹ(η)), −1 ≤ η ≤ 1, and (x(ξ), y(ξ)), −1 ≤ ξ ≤
1, is that we move along the exact curve at different “speeds”. With this approach, it is
possible to find a reparametrization such that the conditions (6) can be expressed as

dxN
dξ

(ξj)
dỹ
dη

(ξj)− dyN
dξ

(ξj)
dx̃
dη

(ξj) = 0, j = 1, . . . , N − 1. (7)

Hence, by solving the system (6), we are implicitly finding a reparametrization of the exact
curve such that the exact curve (x̃(η), ỹ(η)) and the numerical approximation (xN (ξ), yN (ξ))
have equal tangent vectors at the internal GLL points ξj , j = 1, . . . , N − 1; see Figure 5.
We will refer to this method as the equal-tangent method. A Newton method will be used
to solve the system of nonlinear equations (6).

n = (−dy
dξ

, dx
dξ

)

tN = (dxN

dη
, dyN

dη
)

Figure 5: The solid (blue) analytical curve and the dashed (black) numerical curve with associated
normal and tangent vectors. Here, N = 2. At the internal interpolation points (only one in this
example), we require that the analytical normal vector, n, and the numerically computed tangent
vector, tN , are orthogonal.

2.6 Numerical results: curves in the plane

We now present several examples illustrating the different alternative high order represen-
tations of curves in the plane. The exact curves have been selected in order to illustrate the
behavior of the various methods in different situations. Some additional remarks regarding
the implementation are given at the end of Section 2.
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2.6.1 Case 1

The first example is 2π/3 radians of a circle with radius r = 1 as described by the function
y(x) =

√
1− x2, x ∈ [− sin(π3 ), sin(π3 )]; see Figure 6. The two most common parametriza-

tions of this function are

x(ξ) = −
√

3
2

+
√

3
2

(ξ + 1),

y(ξ) =
√

1− (x(ξ))2,

and
x(ξ) = sin(θ(ξ)),
y(ξ) = cos(θ(ξ)),

with θ(ξ) = −π
3 + π

3 (ξ + 1). For both parametrizations, −1 ≤ ξ ≤ 1.
If we define the interpolation points to be (x(ξj), y(ξj)), j = 0, . . . , N , using the parametriza-

tions above, then the first parametrization yields the standard method and the second
parametrization yields the arc length method. As the trigonometric functions are very
smooth and can be very well approximated by polynomials (over short intervals), the arc
length method is the better of the two alternatives.
We compute the interpolants for all the methods for polynomial degrees from N = 2 to

N = 30 and compare the interpolation error (4) in Figure 7. All the interpolation methods
yield spectral convergence, as expected. However, it is surprising to observe how much
potential accuracy is lost by choosing the standard method. Approximately three times
the polynomial degree is needed to achieve the same level of accuracy as the arc length
method. In the context of solving partial differential equations in deformed domains, this
can have a tremendous impact on the computational cost to reach a desired accuracy,
particularly in higher space dimensions.
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Figure 6: Interpolation points for four different methods (N = 7): GLL distribution along the
x-axis, GLL distribution according to arc length, and distributions found iteratively by minimizing
the L2-error and by requiring equal tangent vectors.

Another interesting observation is that we are actually able to do better than the arc
length method. The equal-tangent method performs visibly better than the arc length
method when considering the L2-norm of the error, as does the L2-optimal method for
small N . When measuring the error in arc length, all the methods except the standard
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method converge so fast that the difference between them is hardly noticeable. Note that,
even though the difference between the point distribution at N = 7 was hardly visible
in Figure 6, the L2-error of the equal-tangent interpolant is smaller by several orders of
magnitude than the interpolant based on the arc length method.
It is important to realize that we are not assuming any particular parametrization when

we use the equal-tangent method, e.g., we can use either one of the two parametrizations
indicated in the beginning of this section. The equal-tangent method will automatically
and implicitly construct a reparametrization of the given curve, from which a very good
interpolant can be constructed.
The L2-optimal interpolant does not live up to its name as it is not the solution with

the smallest L2-error for all N . For N ≤ 5 it is the best method, but then it seems to
“lose track” of the optimal solution. This is a reflection of the inherent problem with the
L2-optimization strategy: the functional J that we minimize becomes increasingly more
complex as N increases, with several local minima. At a certain point, a sophisticated
global minimization algorithm is needed to find the minimum, and the cost of the process
may render it unfeasible. Our implementation uses a local search, and is not guaranteed to
find the global minimum, at least not for large N . The use of repeated Newton iterations
with different initial values ensures that the error does not evolve worse than the other
distributions, and this helps the method converge.
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(a) L2-error
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(b) Arc length error

Figure 7: Interpolation error for Case 1 for the four different strategies, measured both in the
L2-norm (left plot) and in arc length (right plot). We see a huge difference between the standard
method and the arc length method. Also note that we are actually able to do slightly better
than the arc length method using the new strategy with equal tangents at the (reparametrized)
interpolation points. The L2-optimal method finds the best solution for N ≤ 5, but for higher
values of N the global minimizer of the L2-error becomes too difficult to find in practice.

2.6.2 Case 2

The second example is the function famous for illustrating the Runge phenomenon [6].
The function we consider can easily be parametrized by

x(ξ) = ξ,

y(ξ) =
1

1 + 16ξ2
.
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The standard method yields a polynomial yN (x), x ∈ [−1, 1], and a slight (and expected)
oscillatory behavior can be observed in Figure 8. No oscillations are observed for the
equal-tangent method.
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(d) N = 10

Figure 8: The exact curve (dashed) and the interpolant in Case 2 for N = 4 and N = 10, using
the standard method (top) and equal-tangent method (bottom). We see that the standard method
results in oscillations which decrease as N increases, while no oscillations are observed with the
new method.

Figure 9 shows the error, both in the L2-norm and in the arc length. The standard
method gives exponential convergence, but with very low convergence rate. The arc length
method converges even slower. There is a huge difference in performance between the var-
ious methods. The equal-tangent method converges fast from the very beginning, reaching
machine precision already at N ≈ 15. The L2-method converges at exactly the same
rate up to a certain N and then again experiences problems with finding the global min-
imum. The fact that the two converge with the same speed serves as an indication that
the equal-tangent method yields close to the optimal solution for this case.

2.6.3 Case 3

The third example is designed to highlight the importance of viewing the exact solution
as a parametrized curve instead of a function y(x). The curve is parametrized by

x(ξ) = ξ +
1
10
,

y(ξ) =
√

(ξ + 21/10)1/3 − 1,
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0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

N

|L
 −

 L
N

|

 

 

std/chord

arc length

L2−method

equal tang.

(b) Arc length error

Figure 9: Interpolation error for Case 2 measured in the discrete L2-norm (left) and in arc length
(right). The standard method performs a bit better than the arc length method for this example;
however, both methods converge quite slowly. In contrast, the equal-tangent method converges
very fast, and the error is at machine precision level for all N ≥ 15.

i.e., the exact solution is given by y =
√

(x+ 2)1/3 − 1, where x ∈ (− 9
10 ,

11
10). We have

chosen the domain carefully to avoid the singularity at x = −1, and hence the standard
method can be expected to yield spectral convergence. The chord and arc length methods
should also work well for this example. This is verified in Figure 10, where we see the
interpolants at N = 6; the differences between the exact and the numerical curves are not
visible at all.
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Figure 10: The function in Case 3 given by y(x) =
√

(x+ 2)1/3 − 1. The interpolants based on
the standard method, the chord method and the arc length method are also plotted here for N = 6
with no visible difference.

However, none of the methods mentioned above are optimal. The inverse function x(y)
is actually a polynomial: x(y) = (y2 + 1)3− 2. Hence, applying classical interpolation (the
standard method) to the function x(y) instead of to the function y(x) should enable us
to represent the curve with no interpolation errors for N ≥ 6. This fact is automatically
detected by our new strategy of equal tangents at the interpolation points. The new
method is superior to the traditional ones right from the beginning. The equal-tangent
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method also maintains the optimal point distribution for N > 6, although this relies on a
good initial guess in the Newton iteration; see the comments in Section 2.7.2. Hence, the
interpolation error is at machine precision level for all N ≥ 6, as can be seen in Figure
11. Although the three other methods result in relatively good performance, they are far
from optimal. The L2-method again finds almost the same solution as the equal tangent
method up to a certain N , where it suffers a slight deterioration in convergence rate, due
to difficulties finding a global minimum.
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Figure 11: Interpolation error for Case 3 for five different strategies of choosing the point dis-
tribution. The standard method, the chord method and the arc length method yield roughly the
same performance for this example. The strategy with equal tangents, however, is able to represent
the curve exactly from N = 6, and the error is at machine precision level for N ≥ 6.

2.6.4 Case 4

Let us now consider a function of finite (and low) regularity. In contrast to classical
interpolation results [1, 3], we will demonstrate that it is possible to construct a high order
interpolant with an associated interpolation error which decays exponentially fast as the
order of the interpolant is increased.
The exact curve is represented by the function y(x) = 1 − |x|3, x ∈ [−1, 1], and can

readily be parametrized as x(ξ) = ξ and y(ξ) = y(x(ξ)), ξ ∈ [−1, 1]; see Figure 12. The
curve looks smooth, however, the function is not analytic. The standard method (which
coincides with the chord method in this case) will yield algebraic convergence.
Figure 13 depicts the distribution of the interpolation points for the standard method

and the equal-tangent method when N = 15. The difference between the two point dis-
tributions is clearly visible: the equal-tangent method seems to cluster the interpolation
points around x = 0, the region of low regularity of the exact function. In contrast, the
standard method implies the usual clustering of the Gauss points near the two end points.
In order to better understand the implication of the different point distributions, we

show in Figure 14 the functions xN (ξ) and yN (ξ). The standard method yields the affine
mapping (in fact, linear mapping) xN (ξ) = ξ, while yN (ξ) is the standard high order
(GLL) interpolant of y(x). Hence, yN (ξ) is a polynomial approximation of a function of
low regularity, and we obtain the expected algebraic convergence. However, if we allow the
mapping x(ξ) to be nonlinear, the function y(ξ) = y(x(ξ)) also changes, and it may have
higher regularity than the corresponding function for the standard method.
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Figure 12: The curve in Case 4, given by y(x) = 1− |x|3.

−1 1−1 1

Figure 13: Interpolation points on the curve y(x) = 1 − |x|3 for N = 15, projected down to
the x-axis. Top: the point distribution for the standard method, which coincides with the GLL
distribution. Bottom: point distribution for the equal-tangent method, which results in a clustering
of points around x = 0, the region of low regularity for the exact function y(x).

In Figure 15 we plot the interpolation error, measured in the L2-norm. The equal-tangent
method gives a dramatic improvement compared to the chord and arc length methods. Not
only do we achieve exponential convergence; the convergence is also rapid, with machine
precision level achieved at N = 18. The L2-method again coincides with the equal-tangent
method when N is small, but convergence now seriously degrades as N increases, resulting
in a convergence rate only slightly better than the traditional methods.

−1 0 1
−1

0

1

ξ

x

 

 

std/chord

equal tang.

(a) xN (ξ)

−1 0 1
0

1

ξ

y

 

 

std/chord
equal tang.

(b) yN (ξ)

Figure 14: A plot of xN and yN as functions of the reference coordinate ξ for the two different
interpolation methods. The equal-tangent method results in a nonlinear mapping xN (ξ), something
which will improve the regularity of yN (ξ) compared to the standard method.
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The numerical results for this test problem suggest that there must exist a parametriza-
tion (x(ξ), y(ξ)) of the original function y(x) such that x(ξ) and y(ξ) are analytic and can
be (individually) well interpolated by high order polynomials xN (ξ) and yN (ξ). We do not
know the analytic expressions of the optimal parametrization, however, the polynomial
approximations xN (ξ) and yN (ξ) in Figure 14 for the equal-tangent method give a good
indication of the optimal parametrization.
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Figure 15: Interpolation error for Case 4 measured in the discrete L2 norm. The standard
method and the arc length method yield similar performance, and the interpolation error decays
algebraically with N since the exact y(x) function is not analytic. However, we are able to achieve
exponential convergence with the equal-tangent method, since we are no longer trying to approxi-
mate a non-analytic function y(ξ).

2.6.5 Case 5

The last example features a smooth, non-symmetric function y(x) = 1
2e
−x cos(2πx) defined

on [0, 2]; see Figure 16. The natural parametrization is

x(ξ) = ξ + 1,

y(ξ) =
1
2
e−(ξ+1) cos(2π(ξ + 1)).

Since this functional description of the curve involves two very regular functions, we expect
the standard method to work well. Figure 17 confirms this, showing that the standard
method converges to machine precision at N ≈ 25.
A striking feature of Figure 17 is the poor performance of the chord method. The y-

values at the end points of the curve do not differ very much, and hence the standard
method and the chord method should not give very large differences in point distribution.
Still, the chord method converges extremely slowly compared to the standard method. The
reason for this is the inability of the chord distribution to resolve the change in curvature
around the minimum at x ≈ 0.5.

The equal-tangent method gives a very good convergence rate. The method converges to
machine precision for a polynomial degree which is only half the polynomial degree needed
for the standard method.
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Figure 16: The curve in Case 5 given by y(x) = 1
2e
−x cos(2πx).
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Figure 17: Interpolation error for Case 5 measured in the discrete L2 norm. Both the chord
method and the arc length method converge very slowly, while the standard method converges
rapidly as expected. Still, there is a significant potential for improvement in performance when we
go from the standard method to the equal-tangent method.

2.7 Remarks to the numerical results

We close this section with a few remarks related to the numerical results. These are
included in order to better understand the details of the implementation, and in order to
be successful in reproducing these results.

2.7.1 Error computation

We first comment on how the interpolation error (4) is computed numerically in these tests.
First, the integrand needs to be transformed to an integral over the reference domain so
that we can use Gauss quadrature. To this end, we use the standard affine mapping

xSTD(ξ) = a+
b− a

2
(ξ + 1).
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This mapping is convenient to use here since the Jacobian of the mapping is trivial and
known explicitly. We then use GLL quadrature with M points, i.e.,

‖y − yN‖2L2 =
∫ b

a
(y(x)− yN (x))2 dx

=
b− a

2

∫ 1

−1

(
y(xSTD(ξ))− yN (xSTD(ξ))

)2

dξ

≈ b− a
2

M∑
α=0

ρα

(
y(xSTD(ξα))− yN (xSTD(ξα))

)2

,

where ρα and ξα, α = 0, . . . ,M , are the GLL quadrature weights and quadrature points,
respectively. We have used M = 3N in order to ensure that the quadrature error is always
completely subdominant the interpolation error.
In the last expression for the L2-error we only have access to yN (xSTD(ξα)) for the

standard method. For the other interpolation methods, the mapping xN (ξ) is generally
non-affine. Hence, we need to use an iterative procedure to find the reference coordinate
ηα such that

xSTD(ξα) = xN (ηα), α = 0, . . . ,M.

Once we have found ηα, we can evaluate yN (xSTD(ξα)) using the high order polynomial
interpolant (3) as

yN (xSTD(ξα)) =
N∑
j=0

yj`j(ηα), α = 0, . . . ,M.

2.7.2 Solving the nonlinear system of equations

The implementation of the L2-method and the equal-tangent method necessitates the so-
lution of nonlinear systems of equations. For both methods, solving these systems is
challenging. In the present work, we have been using a standard Newton iteration. The
main difficulty has been to construct a sufficiently good initial guess for the Newton iter-
ation. In order to improve the robustness, we have also limited the change in the solution
per iteration by introducing a relaxation parameter.
The system of nonlinear equations resulting from minimizing the L2-error is particularly

hard to solve. The Newton iteration can easily get trapped into finding a local minimum,
for which the corresponding point distribution is non-optimal. The sensitivity to the initial
guess seems to be very high and seems to increase as the polynomial degree N increases.
The equal-tangent method does not correspond to solving a minimization problem. In-

stead the method finds a point distribution which (i) interpolates the exact curve and (ii)
results in equal tangent vectors at the interpolation points. However, this method is also
sensitive to the initial guess. In particular, the system (6) may have multiple solutions.
The way we have implemented both the L2-method and the equal-tangent method is

by first trying to solve the problem for a low polynomial degree, and then successively
increase the value of N using the solution achieved for N − 1 to produce an initial guess.
Hence, this corresponds to a bootstrapping approach. This may not always be sufficient
and we have therefore also used the point distribution corresponding to the chord method
as an initial guess. Each of these initial guesses will result in a set of interpolation points
corresponding to a polynomial degree N . In order to proceed to the next value N + 1, we
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start from whichever point distribution produces the smallest L2-error for the polynomial
degree N .

Occasionally, the preset maximum number of Newton iterations is reached without reach-
ing the preset tolerance for the Newton iteration. In such cases, we have used the solution
corresponding to the smallest L2-error over all the iterations.

3 Application to the numerical solution of PDEs

In this section we consider the numerical solution of the two-dimensional Poisson problem in
a deformed quadrilateral domain Ω. In order to avoid any errors due to the representation
of the right hand side, we limit our attention to the following simple Laplace problem:

∇2u = 0 in Ω,
u = ex sin y on ∂Ω.

(8)

This problem has the exact solution u(x, y) = ex sin y which is analytic.
We discretize the Laplace problem (8) based on the equivalent weak form. To this end,

we use a pure spectral discretization based on high order polynomials [10, 1, 5, 4]. The
difference between the exact solution u and the numerical solution uN is measured in the
energy norm,

|||u− uN |||2 =
∫

Ω
∇(u− uN ) · ∇(u− uN ) dA. (9)

As usual, the integral on the right hand side is transformed to an integral over the asso-
ciated reference domain Ω̂ = (−1, 1)2, and exact integration is replaced by Gauss-Lobatto
Legendre (GLL) quadrature.
The mapping between Ω̂ and Ω is constructed based on transfinite interpolation [7],

also referred to as the Gordon-Hall algorithm; this is a very common way to construct this
mapping. In the following, we consider an isoparametric mapping, i.e., the geometry is also
approximated using high order polynomials of degree N . In order to use the Gordon-Hall
algorithm for this case, we need to have available a high order approximation of all the
four sides of Ω.
In the numerical tests below, we will approximate the boundary of Ω using the various

high order interpolation methods discussed in Section 2. In particular, we will compare
the methods based on two different error measures: (i) the error |A−AN | where A is the
exact area of Ω and AN is the area based on an isoparametric representation of Ω; and
(ii) the discretization error (9). The former measures only the quality of the geometry
approximation, whereas the latter also takes into account the suitability of the numerical
grid for a spectral discretization of (8). In order to eliminate quadrature errors in the error
computations, we will use overintegration based on a polynomial degree 3N .

3.1 Case 1

The first domain consists of three straight edges and one deformed edge; see Figure 18.
The top edge is the same curve as in Case 5 in the previous section, shifted upwards and
given by y(x) = 1 + 1

2e
−x cos (2πx). This curve was very well approximated using the

equal-tangent method; see Figure 17. We apply the same methods as in Section 2 for
distributing the points along each edge of the boundary, and then use the Gordon-Hall
algorithm for interpolating to the interior.
Figure 19 shows the difference between the exact area and the area of the computational
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Figure 18: Computational grid for Case 1 using a polynomial degree N = 10. The left grid is
generated using the standard method for distribution of interpolation points along the four edges.
The right grid is constructed using the equal-tangent method along the top edge. Transfinite
interpolation (the Gordon-Hall algorithm) is used to compute the internal grid points in both
grids.
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Figure 19: The difference between the area of the exact domain and the computational domain
in Case 1 as a function of the polynomial degree N . Note that the area is computed with negligible
numerical errors.

domain for the different interpolation methods, or equivalently, for the different point
distributions. All methods result in the standard GLL point distribution along the straight
edges; only the point distribution along the top edge differs between the different strategies.
The chord method and the arc length method show the same poor performance as they did
in the one-dimensional case; these results can be attributed to the problem approximating
the top edge for these methods. The standard method, the equal-tangent method and the
L2-method are all orders of magnitude better starting from N = 6. However, there is no
longer a significant difference between these three methods.
In Figure 20 we also show the corresponding discretization error (9). We observe that the

relative performance of the various interpolation methods is similar to the results obtained
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Figure 20: The discretization error (9) when solving the Laplace problem (8) over the domain
in Case 1, measured in the energy norm. Even though the magnitude of the error is larger than
for the computed area of the domain, the different interpolation methods show the same relative
performance.

for the error in the area of the domain. The standard method seems to give close to optimal
results for this problem.

3.2 Case 2

Again, we consider a quadrilateral domain with three straight edges and a single deformed
edge. In this case, the top edge is the Runge function considered in the previous section.
The numerical results for Case 2 in Section 2 showed that this function is poorly approx-
imated using the standard method and the arc length method. However, the numerical
results also showed that the equal-tangent method does an excellent job, converging fast
and reaching machine precision level at N = 15.
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Figure 21: Computational grid for Case 2 using a polynomial degree N = 10.

Figure 21 shows the computational grids using the standard method and the equal-
tangent method. For N = 10 we can still see the ripples along the top edge when using
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the standard method; these ripples represent a typical feature of a standard polynomial
approximation of the Runge function. In contrast, the top edge of the domain looks very
smooth using the equal-tangent method.
Figure 22 shows the error in area of the domain, indicating the same convergence behavior

as we observed for the interpolation error of the pure Runge function.
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Figure 22: The difference between exact area and the area of the computational domain in Case
2. The quality of the representation of the top edge seems to determine the convergence rate.

Figure 23 shows the discretization error (9) when solving the Laplace problem in this
domain. Even though the grid points using the equal-tangent method are slanted towards
the middle of the domain, the representation of the field variables does not degrade. The
discretization error converges similarly as the error in the area, with the equal-tangent
method and the L2-method outperforming the other methods.
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Figure 23: The discretization error in the solution of the Laplace problem (8) over the domain
in Case 2, measured in the energy norm. The standard method and the arc length method do
not represent the top edge well, and the convergence rate is correspondingly slow. The difference
between the L2-method and the equal-tangent method is not as large as it was when we were only
interpolating the Runge function (see Figure 9); however, notice the big difference in the absolute
error level here compared to Figure 9 for the same value of N .

20



3.3 Case 3

We now consider a domain where all the four edges are deformed; see Figure 24. The top
edge is part of a circle of radius one, the left edge and the right edge are trigonometric
functions of y, and the bottom edge is a scaled version of the non-analytic curve from Case
4 in the previous section. The finite regularity of the bottom edge will prevent the chord
method and the arc length method from representing the computational domain in the
best possible way.
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Figure 24: Computational grids in Case 3, using a polynomial degree N = 20.

The numerical results for Case 4 in Section 2 showed that the equal-tangent method was
able to represent the bottom curve surprisingly well. Figure 24 shows the computational
grid using two different methods for interpolating the boundary of the domain. The left
grid is usually considered as an “optimal” grid, with the bottom edge and the left and the
right edges approximated using the chord method, and the top edge approximated using
the arc length method. The right grid is fully based on using the equal-tangent method
for the approximation of the domain boundary. The most notable feature is the clustering
of grid points towards the center of the bottom curve.
Figure 25 shows the same behavior as we observed for Case 4 in the one-dimensional

case. Using the equal-tangent method, we are able to represent the bottom edge so well
that the error in the area of the computational domain converges exponentially fast.
In Figure 26 we compare the discretization error as a function of N for the various

methods. We see that the convergence behavior is a bit different from the convergence
behavior in Figure 25; the equal-tangent method is not optimal for small N . This is
because the clustering of grid points along the bottom edge strongly affects the mapping
from the two-dimensional reference domain to the physical domain. This means that even if
the exact solution is very regular on the physical domain, we may be facing steep gradients
and boundary layers on the reference domain. Hence, there is a trade-off between a good
representation of the geometry and a smooth mapping from the reference domain to the
physical domain.
In this particular case, the good geometry representation starts to pay off for larger N ;

in fact, it is the only geometry representation that results in spectral convergence for this
problem.

21



0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

N

|A
 −

 A
N

|

 

 

standard

chord

arc length

L2−method

equal tang.

Figure 25: Difference between exact area and the area of the numerical domain in Case 3. The
non-analytic bottom edge causes algebraic convergence for both the standard method, the chord
method and the arc length method. The equal-tangent method, however, manages to represent this
curve properly, and consequently achieves exponential convergence. This example also highlights
the difference in robustness between the equal-tangent method and the L2 method, as the latter
only achieves algebraic convergence.
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Figure 26: The error in the solution of the Laplace problem (8) in the geometry of Case 3,
measured in the energy norm. The algebraic convergence of the standard method, the chord
method and the arc length method is due to their inability to represent the bottom edge (a
function of low regularity) accurately. The equal-tangent method is able to represent the geometry
to spectral convergence, at the cost of a heavily distorted tensor-product GLL grid. This is not
ideal for representing the field variables in this case, and the method is clearly not optimal for
small N . However, for large N the error in the geometry representation becomes dominant, and
at a certain point the equal-tangent becomes the best, being the only one to achieve exponential
convergence.
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4 Conclusions

In this paper we have compared different ways of constructing high order interpolants of
a curve in the plane. We have compared standard methods with a new method which
can also be regarded as a new way of constructing high order polynomial interpolants of
a general function y(x). The new method is proposed as an alternative to computing an
L2-optimal interpolant since the latter is very hard to find in practice.

The numerical results show that the new method can give significantly faster convergence
compared to more standard methods. The most extreme case is exponential convergence
obtained for a function y(x) with a finite regularity when the polynomial degree N is
increased.
The numerical results also show that the new method give consistently good results.

This is in contrast to commonly used methods which seem to give small interpolation
errors for some curves, but not for others.
In this study we have also investigated the impact of the geometry representation in

the context of solving partial differential equations. We have shown that the overall dis-
cretization error for the Poisson problem can sometimes be significantly reduced by a more
accurate representation of the boundary of the domain (in our case, the four edges of a
deformed quadrilateral domain).
The new method involves solving a nonlinear system of equations. This is a nontrivial

issue where the availability of a good initial guess plays an important role. However,
assuming that we can solve this problem, the potential payoff may be considerable in the
context of numerical solution of partial differential equations using high order methods.
Future work will focus on constructing high order interpolants of curves in three-dimensions,

the representation of curved surfaces in three dimensions, and solving partial differential
equations defined in three-dimensional domains. However, the approximation of curves in
the plane should be investigated further, both with respect to finding an even more robust
way of computing the optimal interpolant, but also with respect to a theoretical analysis.
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