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Citti-Sarti model of perceptual
completion in roto-translational space.

Numerical algorithm development.

Elena Celledoni, Kateřina Marková, Brynjulf Owren

The preceptual completion model by Citti and Sarti is presented, imple-
mented and extesnively testes.
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1 Basic Idea of Citti-Sarti model of perceptual comple-
tion

The perceptual completion phenomenon refers to seeing a figure as complete,
when there is one or more parts of it missing. Practical example of missing infor-
mation in the figure is e.g. occluding and occluded objects in one picture or case
when part of image falls in the blind area of the visual field.

The main idea of Citti-Sarti model can be sketched as follows:

• Information is extracted from the image. This report assumes working with
grayscale digital image and thus the information is already discretized by
grayscale level in each pixel of the figure. Let’s denote the matrix representing
the image I and number of pixels in x- and y-direction N and M , respectively.
Then I ∈ RM,N , where RM,N is the space of all matrices with M rows and N
columns.

• Image is lifted to the roto-translational space R2 × S1 where S1 denotes the
unit circle. It is the same set as {(x, y, θ)|x, y ∈ R, θ ∈ 〈0, 2π )}. The value of
θ is defined by

∇I(x, y)
|∇I(x, y)|

= (− sin θ, cos θ) (1)

By denoting ∇I = (Ix, Iy), and using (1), the angle θ can be obtained as

θ = arctan
(
−Ix
Iy

)
(2)

• The tangent vectors to the level lines of the image lie in the plane spanned by
vectors

~X1 = (cos θ, sin θ, 0)
~X2 = (0, 0, 1)

(3)

Asociated directional derivatives are denoted as

X1 = cos θ∂x + sin θ∂y
X2 = ∂θ

(4)

• Define function u : R2 × S1 → R as

u(x, y, θ) = |∇I(x, y)| (5)

By using relation (1), the function u can be expressed as

u(x, y, θ) = − sin θ
∂I

∂x
+ cos θ

∂I

∂y
(6)
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Formerly the angle θ was derived from (1), but the expression for u in (6) can
be generalized for all angles θ. This is how u is defined in the whole R2 × S1.

u(x, y, θ) =
∣∣∣∣− sin θ

∂I

∂x
+ cos θ

∂I

∂y

∣∣∣∣ (7)

The absolute value is necessary because u should correspond to |∇I|, and (6)
is positive only for θ ∈ (−π

2 + 2kπ, π2 + 2kπ) ∀k ∈ Z. Since the function u is
evaluated using the absolute value, there is no need of using the whole interval
〈0, 2π ), instead 〈0, π ) can be used with the same effect.

• The image is now represented in 3-dimensional space, the information needs
to be propagated in orientation-specific way. This is accomplished by sub-
Laplacian operator. Let’s define R-gradient as ∇R = (X1, X2), then the sub-
Laplacian can be defined as 4R = ∇R.∇TR. Denote Xiju := Xi(Xju), then
the sub-Laplacian can be written as 4R = X11 +X22.
The diffusion equation then becomes

∂u

∂t
= 4Ru = X11u+X22u (8)

• After the diffusion, the surface has expanded in the θ-direction. A concen-
tration process is needed to recover the surface, so that function u attains
maximum on this new surface. New surface can be therefore defined as{

(x, y, θ)
∣∣∣∣∂u∂θ (x, y, θ) = 0,

∂2u

∂θ2
(x, y, θ) < 0

}
(9)

The process of creating new surface is called the non-maximal suppression.
Citti and Sarti, however, suggest not to directly create this new surface, but
to construct the tangent planes and perform diffusion constrained on these
surfaces instead. Detailed derivation and reasoning is omitted in this report,
it can be found in [1] or [2]. The final form of the non-maximal suppresion
operator is given by the Laplace-Beltrami flow operator.

v = X2u

∂u

∂t
=

(X2v)2X11u+ (X1v)2X22u

(X1v)2 + (X2v)2
− (X12u+X21u)X1vX2v

(X1v)2 + (X2v)2

(10)

This expression is taken from [2]. It can be expressed simplier by neglecting
the substitution for v:

∂u

∂t
= X22u

X11uX22u−X12uX21u

(X12u)2 + (X22u)2
(11)

• The idea of the model is to alternate between performing diffusion and non-
maximal suppression.

• Detailed derivation and analysis of the method is shown in [1], [2] and [3].
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2 Numerical Algorithm Development

The code written for purpose of this report in Matlab is using the same concept
that was used by Per Martin Viddal in [2]. The part that differs the most is the actual
implemetnation of the diffusion operator performing (8) and (11). The program
offers to choose between applying the ’typical’ homogeneous Neumann boundary
conditions on boundary i.e.

∂u(x, y, θ)
∂~n

∣∣∣∣
∂Ω

= 0 (12)

where ∂Ω denotes the domain boudary and ~n is the unit outside normal vector
to the boundary. When processing image with contour lines not orthogonal to
the boundary of image, use of this boundary conditions distorts the image near
the boundary. That’s why, as default, the roto-translational version of neumann
boundary conditions (13) is used instead.(

∂u(x, y, θ)
∂x

cos θ +
∂u(x, y, θ)

∂y
sin θ

)∣∣∣∣
∂Ω

= 0 (13)

To solve the differential equations, finite difference method is used - the forward
difference for partial derivative in time and central differences for spatial derivatives.
(14) shows the form of finite differences used. The notation is simplified so that
un(x, y, θ) = u(tn, x, y, θ), ∆x, ∆y, ∆θ are the sizes in step in each axial direction
and ∆t is the time step, xi = x0 + i∆x, yj = y0 + j∆y, θk = k∆θ, tn = n∆t, where
(x0, y0) is the left bottom corner of image. (In the algorithm (x0, y0) is set to be the
origin (0, 0).) ui,j,k denotes u(xi, yj , θk).

∂u

∂t
(xi, yj , θk) ∼=

un+1
i,j,k − u

n
i,j,k

∆t
∂u

∂x
(xi, yj , θk) ∼=

ui+1,j,k − ui−1,j,k

2∆x
∂u

∂y
(xi, yj , θk) ∼=

ui,j+1,k − ui,j−1,k

2∆y
∂u

∂θ
(xi, yj , θk) ∼=

ui,j,k+1 − ui,j,k−1

2∆θ
∂2u

∂x2
(xi, yj , θk) ∼=

ui+1,j,k − 2ui,j,k + ui−1,j,k

∆x2

∂2u

∂x∂y
(xi, yj , θk) ∼=

ui+1,j+1,k − ui−1,j+1,k − ui+1,j−1,k + ui−1,j−1,k

4∆x∆y
. . .

(14)
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2.1 Discretization

The model is constructed to perform the perceptual completion algorithm on
grayscale digital images. The digital image is represented in a discrete way already.
There is no need to change its representation. The number of pixels in the x-direction
can be denoted as N and in y-direction M . Since the distance between pixels
corresponds to the pixel size, the spatial steps ∆x and ∆y can be without loss of
generality assumed to be the same. Let’s denote K the number of partial angle
intervals for θ in interval 〈0, π ). Then ∆θ = π

K .
The article [1] suggests using time step and spatial steps so that ∆x = ∆y,

∆θ = ∆x2, ∆t = ∆x2. The proposed program, however, chooses ∆θ independe-
dently on the spatial step. Most experiments were actually done with ∆θ > ∆x.
Reason why the suggestion by Citti and Sarti was neglected is that the number
of subintervals for θ in 〈0, π ) has big influence on the computational cost of the
program. The program stores function u in a 3-dimensional array (a tensor of 2nd
order), and to represent each ”θ level” matrix with MN elements is required. The
default time step used in this method is ∆t = 1

4 min{∆x2,∆θ2}. It is the maximal
time step within the stability region of the diffusion operator as is shown in [2].

2.2 Diffusion operator

The diffusion equation shown in (8) can be rewritten in terms of partial deriva-
tives in x-, y-, θ-directions by using relation for X1 and X2 in (4).

∂u

∂t
= (cos θ)2∂

2u

∂x2
+ 2 cos θ sin θ

∂2u

∂x∂y
+ (sin θ)2∂

2u

∂y2
+
∂2u

∂θ2
(15)

Denote ũ ∈ RM,N,K the discrete representation of the function u so that

ũi,j,k = u(xi, yj , θk) (16)

and Dij the discrete form of operator Xij

Xiju ∼= Dij ũ (17)

Then define ũθk
to be the matrix representing values of ũ for fixed θ = θk. Then the

discrete form of X11u can be computed using matrix multiplications as:

D11ũθk
=

1
∆x2

[
(sin θk)2Aũθk

+ (cos θk)2ũθk
B +

1
2

sin θk cos θkDũθk
E
]

(18)

where A,D ∈ RM,M and B,E ∈ RN,N .
Similarly define ũxi to be the matrix representing values of ũ for fixed x = xi.

Then D22ũ can be expressed as

D22ũxi =
1

∆θ2
ũxiC (19)

where C ∈ RK,K .
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A =


−2 1 . . . 0

1
. . . . . .

...
...

. . . . . . 1
0 . . . 1 −2

 B =


−2 1 . . . 0

1
. . . . . .

...
...

. . . . . . 1
0 . . . 1 −2



C =


−2 1 . . . 0

1
. . . . . .

...
...

. . . . . . 1
0 . . . 1 −2



D =


0 1 . . . 0

−1
. . . . . .

...
...

. . . . . . 1
0 . . . −1 0

 E =


0 −1 . . . 0

1
. . . . . .

...
...

. . . . . . −1
0 . . . 1 0



(20)

2.3 Non-maximal Suppression

The differential equation (11) describing the Laplace-Beltrami flow is nonlinear,
and combines operators X11u, X12u, X22u and X33u.

X11u = (cos θ)2∂
2u

∂x2
+ (sin θ)2∂

2u

∂y2
+ 2 sin θ cos θ

∂2u

∂x∂y

X12u = cos θ
∂2u

∂x∂θ
+ sin θ

∂2u

∂y∂θ

X21u = − sin θ
∂u

∂x
+ cos θ

∂u

∂y
+X12u

X22u =
∂2u

∂θ2

(21)

2.4 Boundary conditions

The main difference between program described in [2] and program described
in this report is the application of boundary conditions. Per Martin Viddal’s code
creates special form of difference schemes for spatial derivatives on the boundary,
that satisfy the boudnary conditions. This approach is convenient if more differential
equations were tested. The disadvantage is that allocating the values of differences
is highly computationally expensive. For each of the difference substitute for spatial
derivative, there has to be allocated new array of the same size as the one used to
store values of ũ, which is a 3-dimensional array in RM,N,K .

The program described in this report applies boundary conditions when defining
the difference scheme for the differential equation. Imaginary boundary cells are used
to implement the boundary conditions. The roto-translational boundary conditions
are described in (13), the boundary conditions in θ are set to be periodic. That is

7



why acutally instead of using an array of M ×N ×K elements to describe function
ũ, the array of (M + 2)× (N + 2)× (K + 2) elements is used.

3 Parameters of the perceptual completion method

3.1 Number of iterations within diffusion operator and non-maximal
suppression operator

The model derived in [1] suggests varying between applying the diffusion operator
and non-maximal suppression. There is, however, no suggestion on how to vary
between these processes.

That is why several ratios between number of iterations of each process were
tested to find the optimal one. Similar comparison was done in [2] with the conclu-
sion that the optimal choice is to use 3 iterations of diffusion process and 3 iterations
of non-maximal suppression process in each ”global” iteration of the program.

Two different pictures were used for the comparison of results gained when using
different ratios of number of individual iterations. First image is in Fig. 1, its
projection to roto-translational space is in Fig. 2, ideally completed image is sketched
in Fig. 3. Corresponding presentations of the second image are shown in Fig. 4, Fig. 5
and Fig.6. The second example is artificially made. The picture is lifted into the
roto-translational space and then part of data is deleted in the middle of the image.
Reason why this image was used is that it illustrates very well the process of filling
in the missing information.

The comparison is made with spatial step ∆x = ∆y = 0.01, angular step
∆θ ∼= 0.1 and time step set to ∆t = 0.25∆x2. The results are shown after 50 global
iterations of the algorithm.

The pictures illustrating the results are Fig. 7 Fig. 8 Fig. 9 Fig. 10. The number
of iterations within diffusion process is denoted as N1 and number of iterations of
non-maximal suppression is N2.
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Figure 1: 1st image

Figure 2: Roto-translational projection of the 1st image

Figure 3: Ideal completion of the 1st image in roto-translational space
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Figure 4: 2nd image

Figure 5: Roto-translational projection of the 2nd image with the hole

Figure 6: Ideal completion of the 2nd image in roto-translational space
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Figure 7: Comparison of results for 1st image for different ratios of diffusion steps
N1 and non-maximal supression steps N2

N1

N2
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Figure 8: Comparison of results for 1st image for different ratios of diffusion steps
N1 and non-maximal supression steps N2
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Figure 9: Comparison of results for 2nd image for different ratios of diffusion steps
N1 and non-maximal supression steps N2
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Figure 10: Comparison of results for 2nd image for different ratios of diffusion steps
N1 and non-maximal supression steps N2
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The effect of increasing number of diffusion iterations is well illustrated by the
images. The higher number of diffusion steps is taken in each global iteration of
the algorithm, the more effectively is filled in the missing information. The cost
of higher efficiency is the loss of accuracy. The more diffusion steps, the more are
the contours of the image blurred. In conclusion, the choice suggested in [2] of 3
diffusion steps per iterations seems to be a good compromise between efficiency and
accuracy.

Deciding how many steps should be taken within non-maximal suppression is
much more difficult. The effect of varying step number is not so obvious. With close
study of the images, the effect of increasing number of non-maximal suppression
steps is the increase in the speed in which are the contours filled in, but the drawback
is that contour lines are getting less recognizable.

It seems that the choice of 3 steps in both the parts of the algorithm is a rea-
sonable choice for keeping the performance and accuracy at high level at the same
time. In following discussion all the experiments will be therefore done using this
setting.

3.2 Convergence depending on the time step

Another area of interest is the influence of time step on the efficiency of the
perceptual completion model.

There are several approaches to running the perceptial completion model. Either
it can be run with constant time step for the whole program-execution period, or
the time step can be changed during the evaluation process. Also the ratio of time
step for diffusive and non-maximal suppresion part of the algorithm can be changed.

All results demonstarted earlier in this report have been obtained using the
stability estimate made in [2], which sets maximal time step to be

∆tmax = 0.25 min{∆x2,∆θ2} (22)

The used time step is set to be ∆tmax, the time step for non-maximal suppresion
is the same as for the diffusion. Following text compares using smaller time step or
varying time step during the computation.

3.2.1 Constant time steps

Let’s first compare using different constant time steps during the whole evalua-
tion period. The images Fig.11, Fig.12 and Fig.13 represent the perceptual comple-
tion applied to the first picture as shown in Fig.1 with time steps ∆tmax, 0.1∆tmax
and 0.05∆tmax, respectively. Figures Fig.14, Fig.15 and Fig.16 are results for the
second image Fig.4 with the same time steps. The results are shown after overall
time period T1 = 50∆tmax.

To better illustrate the difference in results, which is very difficult to be seen
for time period T1, tests for another time period T2 = 100∆tmax were run. Due to
high computational cost of this computations, only results for the first image for
time steps ∆tmax and 0.1∆tmax are presented. First image was chosen because the
effects of perceptual completion are better remarkable. The resulting pictures are
Fig.17 and Fig.18.
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Figure 11: Completion of the 1st image in time T1 with time step ∆tmax

Figure 12: Completion of the 1st image in time T1 with time step 0.1∆tmax

Figure 13: Completion of the 1st image in time T1 with time step 0.05∆tmax
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Figure 14: Completion of the 2nd image in time T1 with time step ∆tmax

Figure 15: Completion of the 2nd image in time T1 with time step 0.1∆tmax

Figure 16: Completion of the 2nd image in time T1 with time step 0.05∆tmax
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Figure 17: Completion of the 1st image in time T2 with time step ∆tmax

Figure 18: Completion of the 1st image in time T2 with time step 0.1∆tmax

Only minor differences can be observed in the resulting images. The refinement
in time step leads to improvement of the method (the contours are projected little
faster), but the computational cost increase does not seem to be compensated. When
the time step is scaled by factor s < 1, then the number of iterations needed to
acquire desired final time T is multiplied by 1

s . The improvement in the method is
almost neglectable compared to increased time needed to perform the computation.

The perceptal completion model described in this report is based on separate
application of diffusion operator and Laplace-Beltrami flow operator. For small
time step the overall error of numerical solution should be dominated by the splitting
error. That is why for following experiments the time interval for diffusion operator
and the time interval for non-maximal suppression were kept constant, both set
to 3∆tmax, and different number of steps was used to perform diffusion and non-
maximal suppression in this time period. The resulting sets of images are shown
in Fig.19 and Fig.20. The total of 50 global iterations was computed. All the
experiments used the same number of steps for the diffusion operator and for the
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Laplace-Beltrami flow operator N1 = N2 = n.
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Figure 19: Comparison of completion of the 1st image with changing N1 = N2 = n
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Figure 20: Comparison of completion of the 2nd image with changing N1 = N2 = n
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3.2.2 Time step varying during the computation process

One aproach to refining the time step during the computation is to lower the
time step after each global iteration is done (i.e. diffusion process and non-maximal
suppression are computed with given number of steps). Following figures illus-
trate the effect of scaling time step during computation. Time was scaled so that
∆tn+1 = s∆tn, where s = 0.999 and 0.99 respectively. Starting time step is set to be
∆tmax. For better comparison, also images with constant time steps are presented.
The computation time period is set to be T1 = 50∆tmax. Results for the first image
with time scaling factors 1, 0.999, 0.99, are shown in figures Fig.21, Fig.22, Fig.23,
respectively. The completion of second image is illustrated by figures Fig.24, Fig.25
and Fig.26, respectively.

Scaling time step while running the program increases the efficiency of the com-
pletion, but at the same time the time period necessar to evaluate the result is
increasing. The choice whether to scale or not depends on the final user and used
equipment. Probably better than scaling time step while running the model is to
choose smaller but constant time step.
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Figure 21: Completion of the 1st image in time T1 with scaling factor 1

Figure 22: Completion of the 1st image in time T1 with scaling factor 0.999

Figure 23: Completion of the 1st image in time T1 with scaling factor 0.99
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Figure 24: Completion of the 2nd image in time T1 with scaling factor 1

Figure 25: Completion of the 2nd image in time T1 with scaling factor 0.999

Figure 26: Completion of the 2nd image in time T1 with scaling factor 0.99
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The other approach to refining time step during computation is to set the size
of time intervals in which the diffusion part and non-maximal suppression part of
algorithm should be computed and then change number of steps within each of these
intervals (so that the period for which the diffusion or non-maximal supression is the
same in each iteration, but the time step used for computation is getting smaller).
The number of global iterations is not going to change, but in each step, the number
of steps in diffusion and non-maximal suppresion operator will increase. This method
of refining time step is demonstrated in following figures. If the number of steps
within diffusion and non-maximal suppression was to be increased after each global
iteration, the computation would be very time consuming and that is why a step
was added in every tenth or fifth iteration. The results are shown after 50 global
iterations. The results showed to be dependent on initial number of steps and thus
two sets of images were produced. Again also picture with constant number of steps
in all the iterations is shown for comparison.

The resulting images are quite strongly affected by the initial setting. The com-
pletion starting at 1 step per diffusion and non-maximal suppression do not reach
the same level of completion as the results with constant number of 3 steps per
iteration, even though the computation is more time consuming. Figures completed
starting with 3 steps per diffusion and non-maximal suppression seem to acquire
approximately the same level of completion. Detailed observation of the images
shows that the results obtained by increasing the number of steps does not lead to
increased quality of completion. The images are not completed as efficiently as when
using number of steps fixed to be 3 during the whole computation. That is why the
extra computation cost required by this time step refinement does not seem to be
justified.
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Figure 27: Completion of the 1st image with 3 steps within each algorithm module

Figure 28: Completion of the 1st image with a step added in every 10th iteration
starting from 1

Figure 29: Completion of the 1st image with a step added in every 5th iteration
starting from 1
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Figure 30: Completion of the 1st image with a step added in every 10th iteration
starting from 3

Figure 31: Completion of the 1st image with a step added in every 5th iteration
starting from 1
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Figure 32: Completion of the 2nd image with 3 steps within each algorithm module

Figure 33: Completion of the 2nd image with a step added in every 10th iteration
starting from 1

Figure 34: Completion of the 2nd image with a step added in every 5th iteration
starting from 1
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Figure 35: Completion of the 2nd image with a step added in every 10th iteration
starting from 3

Figure 36: Completion of the 2nd image with a step added in every 5th iteration
starting from 3
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3.2.3 Ratio between time step used for diffusion operator and time step
for non-maximal suppression

The diffusion operator is a linear differential operator, a stability analysis was
made in [2] that suggested optimal time step for diffusion part - let’s denote this
time step ∆tD - in dependance on size of spatial and angular step.

The differential equaiton expressing the non-maximal suppression (using the
Laplace-Beltrami flow operator) is, however, nonlinear. It is thus very difficult
to create any stability estimates for this part of perceptual completion algorithm.
As default choice, the time step for the Laplace-Beltrami flow ∆tLB was chosen
to be the same as ∆tD. This proved itself to be a reasonable choice, because the
stability is preserved for both parts of the algorithm. But it may not be the op-
timal choice for the Laplace-Beltrami flow operator. Different ratios between ∆tD
and ∆tLB were therefore tested and results are shown in Fig.37 and Fig.38. The
time step for the diffusion part was in according with previous discussion chosen to
be ∆tD = ∆tmax. In each iteration 3 steps were performed in both diffusion and
non-maximal suppression. The total of 50 global iterations was computed.

In both figures Fig.37 and Fig.38, the stability estimates are similar. For the
time step for Laplace-Beltrami flow operator set to be ∆tLB = 7∆tmax, it is easy to
see that the instability occurs. From Fig.38 it seems that the instability starts for
time step five times as big as ∆tmax. The same conclusion can be made by close
observation of results representred in Fig.37 (even though this observation can not
be made in the magnification of the printed version of this paper). By this rough
method, the stability region of Laplace-Beltrami flow could be estimated so that the
operator is stable for time step satisfying

∆tLB ≤ 4∆tmax (23)

For s = 0.5, the completion progresses in slower rate, by heightening the scale,
the completion rate is increasing, but with improving completion efficiency, the
image gets more ”blurred”. The optimal choice of scaling factor depends on priorities
of the final user.
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Figure 37: Completion of the 1st image with ∆tLB = s∆tmax
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Figure 38: Completion of the 2nd image with ∆tLB = s∆tmax
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4 Conclusion

During work on this report, several settings of the algorithm for perceptual
completion constructed as suggested in article [1] were tried. Concluded from these
experiments, the most effective setting seems to be using 3 steps of diffusion and 3
steps of Laplace-Beltrami flow in each global iteration, time step for diffusion set
to the maximal stable time step given in [2] by ∆tmax = 0.25 min{∆x2,∆θ2}, time
step for Laplace-Beltrami should be less or equal to 4∆tmax = min{∆x2,∆θ2} to
preserve the stability of non-maximal suppression procedure. These settings seem to
be the best compromise between computational costs and computational accuracy.

It is difficult to find a way how to express the accuracy of the numerical solution
of perceptual completion model in a mathematical way and thus the results are
represented in the form of the ”completed” images projected in the roto-translational
space.

The results are presented mostly after 50 global iterations of the algorithm. Part
of the reason is the time cost of the computation, another reason is that due to the
diffusion process, if the algorithm was run for too long time, the original data would
be diffused until all the information would be lost.
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