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Asymptotic analysis of numerical steepest

descent with path approximations

Andreas Asheim‡, Daan Huybrechs§

March 12, 2009

We propose a variant of the numerical method of steepest descent for oscilla-
tory integrals by using a low-cost explicit polynomial approximation of the paths
of steepest descent. A loss of asymptotic order is observed, but overall asymp-
totic order remains higher than a truncated asymptotic expansion at similar com-
putational effort. Theoretical results based on number theory underpinning the
mechanisms behind this effect are presented.

1 Introduction

Consider a highly oscillatory integral of the form

I[f ] =

∫ 1

−1
f(x)eiωg(x) dx, (1.1)

where ω is a large parameter and f and g are smooth functions called the amplitude function

and oscillator of the integral respectively. Such integrals, often referred to as Fourier-type
integrals, appear in a wide area of applications, e.g., highly oscillatory scattering problems
in acoustics, electromagnetics or optics [5, 3, 13, 2]. Numerical evaluation of Fourier-type
integrals with classical techniques becomes expensive as ω becomes large, which corresponds
to a highly oscillatory integral. Typically, a fixed number of evaluation points per wavelength
is required to obtain a fixed accuracy, which makes the computational effort at least linear in
ω [6].

Asymptotic techniques on the other hand yield approximations that become more accurate
as ω increases, making them superior for ω sufficiently large. One of these techniques, the
principle of stationary phase [20, 25], states that I[f ] asymptotically depends only on f and g
in a set of special points as ω → ∞. These points are the endpoints, here x = −1 and x = 1,
and stationary points - points where the derivative of g vanishes. At stationary points the
integral is locally non-oscillatory. The integral has an asymptotic expansion in inverse powers
of ω, with coefficients that depend on the derivatives of f and g at these critical points [15].

A set of particularly effective ways of obtaining the contribution from a special point are the
saddle point methods[25, 19, 8]. Based on Cauchy’s integral theorem, the path of integration
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x=−1 x=1

Figure 1: The contours of the imaginary part of the oscillator g(x) = x2 in the complex
plane and the corresponding paths of steepest descent. Two paths emerge from the endpoints
x = −1 and x = 1. They are connected by a path passing through the stationary point at
x = 0.

can be deformed into the complex plane without changing the value of the integral, provided
that f and g are analytic [9]. The method of steepest descent is obtained by following a
path where g has a constant real part and increasing imaginary part, which renders the
integral (1.1) non-oscillatory and exponentially decreasing. This procedure yields separate
paths originating from each special point that typically connect at infinity (see Figure 1 for an
illustration). The result is separate contributions corresponding to each special point. Every
one of these contributions is a non-oscillatory integral that can be written as

∫ ∞

0
ψ(q)e−ωqr

dq, (1.2)

where ψ is a smooth function, r = 1 for endpoint contributions, and r > 1 for stationary
points. These integrals are usually treated with standard asymptotic techniques like Watson’s
Lemma. The larger class of saddle point methods also contains methods that follow other
paths with similar characteristics as the steepest descent paths, e.g., Perron’s method[25].

The asymptotic expansion of I[f ] in general diverges, but it can yield very accurate approx-
imations if ω is very large. Still, divergence implies that the error is uncontrollable, which is
problematic in the context of numerical computations. Recent research has however produced
several numerical methods that exhibit convergence. The Filon-type methods [15, 14, 16] are
based on polynomial interpolation of the amplitude f and can deliver errors that are O(ω−p)
for any p, much like truncated asymptotic expansions, but with controllable error for fixed
ω. Filon-type methods require that moments wk = I[xk] are available, a serious drawback
in some cases. Combining asymptotic expansions and Filon-type methods[1] can economise



on, but not eliminate the need for moments. Methods that do not rely on moments are the
Levin-type methods, due to Levin[18] and extended by Olver[22, 23]. Levin-type methods do
not work in the presence of stationary points, but a work-around is provided in [21]. We refer
the reader to [11] for a detailed overview of these and other numerical methods.

One of the alternatives is the numerical method of steepest descent [12], which is a numerical
adaptation of the above described method of steepest descent. Relying on classical numerical
integration methods applied to an exact decomposition of the integral, the numerical method
of steepest descent has controllable error wherever the exact decomposition is available, and
asymptotic error decay O(ω−p) for any p. The paths of steepest descent can however be
difficult to compute, as their computation corresponds to solving a non-linear problem that
can in practice only be solved iteratively.

The method of this paper is similar in spirit but based on the practical observation that
the exact choice of path is not essential. This observation resonates with the theory behind
saddle point methods. A Taylor expansion of the path of steepest descent, which can explicitly
be derived from a Taylor expansion of the oscillator function g, is in many cases sufficient.
Iterative methods to solve a non-linear problem can therefore be entirely avoided. We obtain a
numerical scheme which is relatively simple to implement and cheap to evaluate. The method
exhibits high asymptotic order, and the order is in fact higher than one would get from a
truncated asymptotic expansion using exactly the same number of derivatives of g.

It is the purpose of this paper to analyse the asymptotic order of the proposed explicit
numerical saddle-point method. Unlike the numerical adaptation of the steepest descent
method and the other methods for highly oscillatory integrals mentioned above, the asymptotic
order does not follow from standard results in asymptotic analysis. A seemingly irregular
relation between the number of derivatives of g that are used and the number of quadrature
points along the approximate paths of steepest descent can only be explained in terms of
elementary number theory. The main result of this paper is formulated and proved in §4 in
Theorem 4.3.

2 The numerical method of steepest descent

In this section we give a brief overview of the numerical method of steepest descent. For a
more thorough treatment, see [25] for the classical method of steepest descent, and [12] for
particularities on the numerical version. In the following, we will for simplicity assume that
all paths may extend to infinity, which implies among other things that f and g should be
analytic in a sufficiently large portion of the complex plane. We note that this requirement
can be significantly relaxed if so desired[10].

2.1 Paths of steepest descent

For the oscillatory integral (1.1) the path of steepest descent hx(p) originating from the point
x can be found by solving the equation

g(hx(p)) = g(x) + ip. (2.1)

Subject to the boundary condition hx(0) = x, equation (2.1) is uniquely solvable for small p if
g′(x) 6= 0. Along the path of steepest descent we have eiωg(hx(p)) = eiωg(x)e−ωp, which means
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that the line integral

I[f ;hx, P ] = eiωg(x)

∫ P

0
f(hx(p))h′x(p)e−ωpdp,

is non-oscillatory and exponentially decreasing.
Along paths of steepest descent originating from different points, gx(h(p)) may have differ-

ent, constant real parts, hence the paths may never meet. A connecting path must therefore
be introduced. If there are no stationary points, the paths may connect at infinity by letting
P → ∞. In that case, the connecting path has no contribution to the value of the integral.
In the presence of stationary points in [−1, 1] however, the total path must pass through all
of these points and their contributions are not negligible.

Any value ξ ∈ [−1, 1] such that g′(ξ) = 0 is called a stationary point. We call ξ a stationary
point of order r − 1 if g(i)(ξ) = 0 for i = 1, 2, . . . , r − 1, and g(r)(ξ) 6= 0.1 The canonical
example is g(x) = xr. At a stationary point, equation (2.1) may have several solutions. In
particular, if ξ is a stationary point of order r − 1 > 0, then there are r different paths, hξ,j,
j = 1, . . . , r, emerging from ξ. Since the total path passes trough ξ only once, exactly two of
these paths are relevant. We denote these two paths by hξ,j1 and hξ,j2 . Each of these paths
corresponds to an integral of the form

I[f ;hξ,j , P ] = eiωg(ξ)

∫ P

0
f(hξ,j(p))h

′
ξ,j(p)e

−ωp dp.

Again, letting P → ∞ eliminates contributions from connecting paths, with certain assump-
tions. Writing

I[f ;hx] = lim
P→∞

I[f ;hx, P ],

the integral (1.1) is represented as a sum of contributions

I[f ] = I[f ;h−1] − I[f ;hξ1,j1 ] + I[f ;hξ1,j2 ] + . . .− I[f ;hξn,j1 ] + I[f ;hξn,j2 ] − I[f ;h1],

where ξ1, . . . , ξn are stationary points. We will concentrate on integrals of the type I[f ;h],
hereafter referred to as steepest descent integrals.

2.2 Numerical evaluation of steepest descent integrals

Steepest descent integrals can be approximated efficiently with Gaussian quadrature. This
is the observation behind the numerical method of steepest descent, which we shall briefly
explain here.

For convenience, we introduce the notation

fx(p) = f(hx(p))h′x(p).

The contribution from an endpoint becomes

I[f ;hx] = eiωg(x)

∫ ∞

0
fx(p)e−ωpdp =

eiωg(x)

ω

∫ ∞

0
fx

( t

ω

)

e−tdt. (2.2)

1Note that with this definition an endpoint is a stationary point of order 0.



Since fx(t/ω) is smooth, this integral can be computed efficiently with classical Gauss-Laguerre
quadrature for the weight function e−t [6]. Applying an n-point quadrature yields an approx-
imation with error O(ω−2n−1) [12]. Truncating the asymptotic expansion after n terms yields
only O(ω−n−1) asymptotic error, but requires the same number of evaluations of f .

For the contribution from a stationary point things are a little different. When ξ is a
stationary point of order r−1 > 0, hξ(p) behaves as p1/r near p = 0 and h′ξ(p) has a p−(r−1)/r

singularity [9]. This singularity can be canceled by the substitution p = qr. The contribution
is now written

I[f ;hξ ] = reiωg(ξ)
∫ ∞
0 fξ(q

r)qr−1e−ωqr
dq (2.3)

= reiωg(ξ)

ω

∫ ∞
0 fξ(

tr

ω )tr−1e−trdt.

This is an integral of the form (1.2). Since fξ(
tr

ω )tr−1 is a smooth function, the integral can be
efficiently approximated by Gaussian quadrature with weight function e−tr . We note that it
may be beneficial to merge the two contributions from a stationary point into a single integral
over the whole real line. For example, in the case of a first order stationary point (r = 2),
classical Gauss-Hermite quadrature can be applied[7]. In this exposition, however, we will
only work with integrals on the half-space.

The result of applying an n-point Gaussian quadrature leads to an approximation with an
error which is O(ω−(2n+1)/r) as ω → ∞ [7]. In contrast, truncating the asymptotic expansion
after n terms yields only O(ω−(n+1)/r) asymptotic error, but requires the same number of
evaluations of f .

3 A numerical saddle point method

Finding the path of steepest descent means solving equation (2.1). This is a non-linear equa-
tion and solving it amounts to computing the inverse function g−1, which in practical appli-
cations may be difficult to achieve. The rationale in this section is that in many cases it is
sufficient to have only a rough approximation of the exact steepest descent path. If not, then
the rough approximation is still useful as a starting value for, e.g., Newton iterations to solve
the non-linear equation numerically.

Here, we obtain a local approximation of the path by means of its Taylor series around x.
Only derivatives of g at x are used to construct this approximation. This approximate path
may diverge away from the actual steepest descent path deep into the complex plane. However,
this is not a problem in practice provided ω is large: because the quadrature points cluster
towards x as ω grows, as can be seen from equations (2.2) and (2.3), a good approximation
close to the real axis is generally sufficient.

3.1 Local paths at endpoints

In the case of the steepest descent path emerging from an endpoint, we assume that the path
is of the form

hx(p) = x+
∞
∑

j=1

ajp
j. (3.1)
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Note that we already incorporated the boundary condition hx(0) = x. Substitution into
equation (2.1) gives

g
(

x+

∞
∑

j=1

ajp
j
)

= g(x) + ip.

Taking the Taylor expansion of g around x yields the equation

∞
∑

k=1

(
∑∞

j=1 ajp
j)k

k!
g(k)(x) = ip. (3.2)

The coefficients can now be obtained by series inversion. The first few coefficients are given
explicitly by, with evaluation in x implied,

a1 =
i

g′
, a2 =

1

2

g′′

(g′)3
,

a3 =
i

12

1

(g′)5

(

2g′g(3) − (g′′)2
)

, (3.3)

a4 = −
1

24

1

(g′)7

(

g(4)(g′)2 + 10g′g′′g(3) − 15(g′′)3
)

.

In general, ak is given in terms of derivatives of g up to order k.
We define the local path h̃x by truncating the series of hx after m terms,

h̃x(p) = x+

m−1
∑

j=1

ajp
j . (3.4)

This means that the left and right hand side of (2.1) match up to order m,

g(h̃x(p)) = g(x) + ip+ O(pm), p→ 0. (3.5)

From this path we can define the steepest descent integral with an approximated path, using
the notation f̃x(p) = f(h̃x(p))h̃′x(p) and g̃x(p) = g(h̃x(p)),

I[f ; h̃x, P ] =

∫ P

0
f̃x(p)eiωg̃x(p)dp. (3.6)

We shall later evaluate this integral numerically. The numerical approximation will serve as
an approximation to the infinite integral I[f ;hx], we shall see that this is indeed justified in
§4.1.

3.2 Local paths at stationary points

We now turn our attention to paths passing through stationary points. Let x be a stationary
point of order r − 1, meaning that g′(x) = . . . = g(r−1)(x) = 0, but g(r)(x) 6= 0. Expanding
the path starting at x in integer powers of p is not possible, since hx(p) is singular at p = 0.
This can also be seen from equation (3.2): the first r − 1 terms in the expansion of g in the
left hand side would be zero, which makes it impossible to match the right hand side of the



equation. However, proceeding as in §2.2, the substitution p = qr eliminates this problem.
Thus, we assume a path of the form

hx(p) = x+

∞
∑

j=1

ajp
j/r. (3.7)

Note that the function hx(qr) is analytic in q. Plugging this ansatz into equation (2.1) for the
path of steepest descent yields

∞
∑

k=r

(
∑∞

j=1 ajp
j/r)k

k!
g(k)(x) = ip.

The first coefficient is easily obtained,

a1 = r

√

ir!

g(r)(x)
. (3.8)

The square root in this expression has r branches in the complex plane, corresponding to the
r different paths near the stationary point. More coefficients can be computed recursively. In
the case of an order one stationary point, the first four coefficients are, with evaluation in x
implied,

a1 = ±

√

2i

g′′
, a2 = −

i

3

g(3)

(g′′)2
,

a3 = ±

√

2i

g′′
i

36(g′′)3

(

3g′′g(4) − 5(g(3))2
)

, (3.9)

a4 =
1

270

1

(g′′)5

(

40(g(3))3 − 45g(3)g(4)g′′ + 9g(5)(g′′)2
)

.

Explicit expressions for the coefficients can be found for general r. We refer the reader to [24]
for a general description of such explicit expressions.

As in the endpoint case, we form an approximated path by truncating (3.7) after m terms,

h̃x(p) = x+

m−1
∑

j=1

aj p
j/r. (3.10)

This means that the both sides of (2.1) match up to order r+m−1
r ,

g(h̃x(p)) = g(x) + ip+ O(p
r+m−1

r ), p→ 0. (3.11)

This expression agrees with (3.11) for r = 1. Next, we form the integral

I[f ; h̃x, P ] =

∫ P

0
f̃x(p)eiωg̃x(p)dp.

=

∫ Q

0
rqr−1f̃x(q

r)eiωg̃x(qr)dq. (3.12)

with Q = P 1/r.
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3.3 Numerical evaluation

As noted in section §2.2, it is advantageous to evaluate the half-space integral I[f, hx] with
Gaussian quadrature. Though the integral I[f, h̃x, P ] is finite, we intend to apply Gaussian
half-space quadrature here as well.

For the numerical evaluation of steepest descent integrals with approximated paths, we
rewrite (3.12) as

I[f ; h̃x, P ] =

∫ Q

0
rqr−1f̃x(qr)eiωg̃x(qr)+ωqr

e−ωqr
dq. (3.13)

Note that (3.6) is a special case of (3.13) with r = 1, so that we can treat the cases of endpoints
and stationary points simultaneously. A change of variables q = ω−1/rt gives the form

I[f ; h̃x, P ] =
r

ω

∫ Qω1/r

0
tr−1f̃x(tr/ω)eiωg̃x(tr/ω)+tre−trdt.

This integral can be evaluated with the same Gaussian half-space quadrature rules with weight
function e−tr that were used on the exact steepest descent integrals. To be precise, if that
quadrature rule is given by points xi and weights wi, then we propose the approximation

I[f ; h̃x, P ] ≈ Q[f ; h̃x] :=
r

ω

n
∑

i=1

wix
r−1
i f̃x

(

xr
i

ω

)

e
iωg̃x

„

xr
i

ω

«

+xr
i
. (3.14)

We expect that this quadrature rule provides a good approximation to I[f ; h̃x, P ]. This is
what we examine next in §4.

4 Asymptotic error analysis

Thus far, we have presented a way of obtaining a numerical approximation of I[f ; h̃x, P ]. We
will show first in §4.1 that this finite saddle-point integral is a good (asymptotic) approximation
to the infinite steepest descent integral I[f ;hx]. Next, we shall investigate in §4.2 the numerical
approximation of I[f ; h̃x, P ] by Gaussian quadrature. Theorem 4.3 gives the asymptotic order
of this approximation. Its proof follows in §4.3 and §4.4.

4.1 The error of using truncated approximate paths

In the method outlined in section §3, we replaced the exact path of steepest descent hx

originating at x with an approximation h̃x that is valid only near x. By our assumptions
of analyticity, the path taken does not change the value of the integral. However, since the
approximate path may diverge away from the exact path for large P , the limit P → ∞
may result in both paths leading into different sectors of the complex plane. It is clear that
the integral along the approximate path should be truncated at finite P to avoid this. In
the following theorem and corollary, we prove that the difference between the exact steepest
descent integral I[f ;hx] and the truncated integral I[f ; h̃x, P ] is exponentially small as ω → ∞.
This implies that using a numerical approximation of I[f ; h̃x, P ] is justified.

Theorem 4.1. Let x ∈ [−1, 1] be a point of order r − 1. Assume f and g are analytic, and

let h̃x(p) be an m-term approximation to the exact path hx(p) as in (3.10) with m > 1. Then

a constant P0 > 0 exists, such that

I[f ;hx, P ] − I[f ; h̃x, P ] = O(ω−n), ∀n > 0, ∀P < P0.



Γ
hx(P )

h̃x(P )

Figure 2: Illustration of the exact (continuous) and approximate (dashed) steepest descent
paths. The curve Γ connects a truncation of these two paths.

Proof. By Cauchy’s integral theorem we have

I[f ; h̃x, P ] − I[f ;hx, P ] =

∫

Γ
f(s)eiωg(s)ds,

where Γ is any simple path connecting hx(P ) and h̃x(P ). In the following, we choose Γ to be
the straight line. We intend to show that the integrand is exponentially small along all of Γ.

Let us expand g in a Taylor series around hx(P ). We have g(x+δ) = O(δr) and g(j)(x+δ) =
O(δr−j). Since hx(p) = O(p1/r), we find that

g(j)(hx(p)) = O(p(r−j)/r).

We have by construction that hx(p) − h̃x(p) = O(pm/r) and therefore,

γ − hx(P ) = O(Pm/r), γ ∈ Γ, P → 0.

To conclude, we note that

g(γ) = g(hx(P ) + γ − hx(P )) =
∑∞

j=0 g
(j)(hx(P )) (γ − hx(P ))j

= g(x) + iP + O(P (r−1+m)/r) + O(P (r−2+2m)/r) + . . .

If m > 1 and if P is sufficiently small, then the term iP dominates the other terms and g has
positive imaginary part along Γ. It follows that the integrand is exponentially small along all
of Γ.

Corollary 4.2. Under the assumptions of Theorem 4.1

I[f ;hx] − I[f ; h̃x, P ] = O(ω−n), ∀n > 0, ω → ∞.

Proof. We have

I[f ;hx] = I[f ;hx, P ] +

∫ ∞

P
ψ(q)e−ωqr

dq,

where ψ(q) is analytic in q. It follows from repeated integration by parts that

I[f ;hx] − I[f ;hx, P ] = O(ω−n), ∀n > 0 ω → ∞.

The result follows from this and Theorem 4.1.
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4.2 Asymptotic error of the numerical approximation

Since replacing the paths does not lead to a loss in asymptotic order, the order of the overall
method relies on the order of the numerical approximation of I[f ; h̃x, P ]. We evaluate the
latter by a quadrature rule. A quadrature rule with n points and with order d with respect
to the weight function e−xr

satisfies the conditions

∫ ∞

0
xje−xr

dx =
n

∑

k=1

wk x
j
k, j = 0, . . . , d− 1. (4.1)

Using such a rule for the steepest descent integral leads to an asymptotic error of size
O(ω−(d+1)/r) [7, Th.2]. When using an approximate path, we have the following result. Note
that by integer division d\β, we mean that the real quantity d/β is rounded towards the
nearest smaller integer.

Theorem 4.3. Assume x is either a regular point, r = 1, or a stationary point of order

r− 1 > 0. An approximation I[f ; h̃x, P ] to the steepest descent integral I[f ;hx] is constructed

by replacing the path hx with its m-term Taylor expansion h̃x, with m > 1. Let Q[f ; h̃x], given

by (3.14), denote the approximation to I[f ; h̃x, P ], obtained through an n-point quadrature rule

of order d that satisfies the conditions (4.1).
Define β = r +m− 1, k = d\β and l = d mod β. Then

I[f ;hx] −Q[f ; h̃x] =

{

O(ω− d+1
r

+k), if l ≤ m− 1,

O(ω− d+1
r

+k+ l−(m−1)
r ), if l > m− 1,

(4.2)

for ω → ∞. In particular, for r = 1 we have

I[f ;hx] −Q[f ; h̃x] = O(ω−d−1+d\m).

We can also formulate an upper bound for the exponents in (4.2) that avoids integer arith-
metic.

Corollary 4.4. Under the same conditions as in Theorem 4.3, we have

I[f ;hx] −Q[f ; h̃x] = O(ω
− d+1

r
+ d

β ). (4.3)

Proof. For the first case of (4.2), note that k = d\β ≤ d/β. For the second case, assume that

l = K +m− 1 with 0 < K < r. Then k + l−(m−1)
r = k + K

r < k + K+m−1
r+m−1 = d

β .

Let us first compare the result of Theorem 4.3 to the result based on using the exact path.
One incurs a loss of minimum k = d\β = d\(r + m − 1). In order to achieve the full order
(d+ 1)/r, one should at least have k = 0, meaning d < β,

m < d− r + 1.

Full order is then achieved if l ≤ m− 1, which is always true whenever r = 1, and more likely
to be violated for larger r. In the converse case, we have a maximum order loss of one.

Next, we compare to the result based on using a truncated asymptotic expansion. This
is more involved. An s-term expansion has asymptotic error O(ω−(s+1)/r) and requires the
values g(j)(x), j = 0, . . . , r + s − 1 [15]. Using these same values, we can afford m = s.



The asymptotic expansion also requires the s values f (j)(x), j = 0, . . . , s − 1. The proposed
method requires f(xk) and g(xk) for k = 1, . . . , n. We choose n = s and continue by counting
evaluations of f or any of its derivatives. For the asymptotic expansion, s values of f lead
to order s+1

r . A Gaussian quadrature rule with respect to the weight function e−xr
yields

d = 2s. By Corollary 4.4, the numerical saddle-point method then yields an order greater
than or equal to

d+ 1

r
−
d

β
=

2s+ 1

r
−

2s

r + s− 1
=
s+ 1

r
+
s

r

[

s− (r + 1)

r + s− 1

]

Thus we are guaranteed to do at least as good as the asymptotic expansion whenever s ≥ r+1.
Note that in the above, we ignored the evaluations of g in the complex plane. This is

justified in a setting where many integrals of the form I[f ] need to be evaluated for the same
oscillator g, for example when computing moments for later use in Filon-type quadrature [15].

Both these calculations show that the proposed method compares well to both the method
with exact paths and asymptotic expansions when r is relatively small. In real-life applications
we do however not expect to encounter cases with r being large, we will typically have r = 1
or r = 2.

4.3 Supporting lemmas

We once again rewrite the integral I[f ; h̃x, P ] in the following form:

I[f, h̃x, P ] = eiωg(x)

∫ Q

0
ψ̃(q)eiωRr+m−1(q)e−ωqr

dq, (4.4)

where r − 1 is the order of the point x, Rβ(q) is a function of the form

Rβ(q) = qβ
∞
∑

j=0

rjq
j, (4.5)

and
ψ̃(q) = r f̃x(qr) qr−1,

is a smooth function independent of ω. This formulation follows from the construction of the
approximate paths. In particular, the form of Rr+m−1 follows from (3.11) with p = qr.

The following lemma is a generalization of Lemma 2.1 in [7]. That lemma characterized
the asymptotic order of a scaled quadrature rule applied to a steepest descent integral of the
form (1.2). Assume an n-point quadrature rule is given that satisfies the conditions (4.1). It
was proved in [7] that, for a function u(x) analytic in x = 0, the quadrature approximation
behaves as

∫ ∞

0
u(x)e−ωxr

dx− ω−1/r
n

∑

k=1

wku(xkω
−1/r) = O(ω−(d+1)/r).

Here, we will allow the integrand to depend on ω in a benign manner and show that the
asymptotic order changes in a way that reflects the possible growth or decay of the integrand
as a function of ω.
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Lemma 4.5. Assume an n-point quadrature rule is given such that conditions (4.1) hold. Let

u(x;ω) be analytic in x = 0 with a positive radius of convergence R for each ω ≥ ω0,

u(x;ω) =

∞
∑

j=0

aj(ω)xj , |x| < R, (4.6)

and such that aj = O(ωγj ) with γj ∈ R. If 0 < P < R, then

∫ P

0
u(x;ω)e−ωxr

dx− ω−1/r
n

∑

k=1

wku(xkω
−1/r;ω) = O(ωmaxj≥d γj−

j+1
r ).

Proof. We have
∫ P

0
u(x;ω)e−ωxr

dx =

∞
∑

j=0

aj(ω)

∫ P

0
xje−ωxr

dx.

Using integration by parts, as in the proof of Corollary 4.2, we find that
∫ ∞

0
xje−ωxr

dx−

∫ P

0
xje−ωxr

dx = O(ω−m), ∀m ∈ N.

Next, it is straightforward to verify that
∫ ∞

0
xje−ωxr

dx− ω−1/r
n

∑

k=1

wk (xkω
−1/r)j =

{

0, j < d,

O(ω−(j+1)/r), j ≥ d

The first case follows from exactness of the quadrature rule for polynomials up to degree d−1.
The second case follows because both terms in the left hand side have the given size: the
integral can be computed explicitly, the summation contains the factor ω−(j+1)/r.

Combining all of the above proves the result. Note that u(x;ω) is evaluated in the points
xkω

−1/r which, for sufficiently large ω, lie in the radius of convergence of u.

Finally, we will examine the asymptotic size of functions of the form eωη(x) and their deriva-
tives. In order to obtain the result, we use a version of Faà di Bruno’s formula expressed with
integer partitions. A partition of an natural number n ≥ 0 is a way of writing it as a sum
of natural numbers. The number of different ways to do this is the partition number of n,
denoted a(n). We write a partition p of the integer n as an array p = (p1, p2, . . . , pn), where
pj is the number of times the integer j occurs in the sum, i.e.,

n
∑

j=1

j pj = n. (4.7)

See, e.g., [4] for a detailed treatment of partitions and [17] for Faà di Bruno’s formula, which
we recall in the following Lemma.

Lemma 4.6 (Faà di Bruno’s Formula). If g and f are functions that are sufficiently differ-

entiable, then

dn

dxn
g(f(x)) =

∑ n!

p1!p2! . . . pn!
g(k)(f(x))

(f ′(x)

1!

)p1
(f ′′(x)

2!

)p2

. . .
(f (n)(x)

n!

)pn

where the sum is over all partitions p of n with entries p1, p2, . . . , pm, and k = p1+p2+. . .+pn.



Lemma 4.7. Let Rβ(q) be defined by (4.5) for an integer β > 0. The derivatives of eωRβ(q),

evaluated at q = 0, have an expansion of the form

dn

dqn
eωRβ(q)

∣

∣

∣

q=0
=

n\β
∑

j=0

bj ω
j , ω → ∞,

where \ denotes integer division.

Proof. It is clear that

R
(j)
β (0) = 0, 0 ≤ j < β. (4.8)

Using Faà di Bruno’s Formula (Lemma 4.6), we have

dn

dqn
eωRβ(q)

∣

∣

∣

q=0
=

eωRβ(0)
∑ n!

p1!p2! . . . pn!

(ωR′
β(q)

1!

)p1
(ωR′′

β(q)

2!

)p2

. . .
(ωR

(n)
β (q)

n!

)pn

=

∑ n!

p1!p2! . . . pn!

(ωR
(β)
β (q)

β!

)pβ
(ωR

(β+1)
β (q)

(β + 1)!

)pβ+1

. . .
(ωR

(n)
β (q)

n!

)pn

,

where the sum is over all partitions p of n. The last line follows from equation (4.8). Clearly,

each of the terms in this sum is proportional to ω
Pn

j=β pj . It is also clear that the expansion
consists of positive integer powers of ω. To find the dominating term, we maximise the
expression

∑n
j=β pj over the set of all partitions of n. It remains only to prove that

n
∑

j=β

pj ≤ n\β, ∀ p partitions of n

Assume a partition q of n exists such that

n
∑

j=β

qj = n\β +M,

with M > 0. From q we can construct another partition q̃ as follows. We let q̃β = n\β +M
and q̃j = 0, j > β. It follows from our construction that

n
∑

j=β

j qj ≥

n
∑

j=β

j q̃j = β(n\β +M) > n.

No matter how we choose q̃j for j < β, q̃ can never satisfy the summation property (4.7) and
neither can q. This proves the result reductio ad absurdum.

The final lemma concerns the maximal exponent of ω that may arise in the result of Lemma
4.5.
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Lemma 4.8. Assume that r and β are integers such that β > r and define the sequence

sj = j\β −
j

r
.

For any positive integer d, let k = d\β and l = d mod β. The maximum of {sj}
∞
j=d is

max
j≥d

sj =

{

k − d
r , if l ≤ β − r,

k + 1 − (k+1)β
r , if l > β − r.

Proof. For the integer division we have the identity

j\β =
j

β
−

1

β
(j mod β). (4.9)

This means that

sj = j(
1

β
−

1

r
) −

1

β
(j mod β).

The first of these terms is decreasing monotonically. The second term is non-increasing, except
when the integer part of j/β changes. This implies that the largest element in the sequence
for j ≥ d is either the first element, sd, or snβ for some integer n. In the latter case, we have

snβ = n(1 − β/r),

which again is decreasing. This means that a maximum must occur at the smallest admissible
n. This is n = k, when d is a multiple of β, and n = k + 1 otherwise. This leads to skβ = sd

as above or s(k+1)β.
From the identity (4.9), we find that the corresponding element is either

sd = d\β −
d

r
= k −

d

r

or

s(k+1)β = (k + 1)β\β −
(k + 1)β

r
= k + 1 −

(k + 1)β

r
.

One easily verifies that the former is larger than the latter if l < β − r. They are equal if
l = β − r.

4.4 Proof of Theorem 4.3

We assembled enough results in §4.3 to state a short proof of Theorem 4.3. In the following,
let β = r +m− 1.

Proof. Leibniz’ formula gives the derivatives of the integrand of (4.4) as the sum

dn

dqn

[

ψ̃(q)eiωRβ(q)
]

=

n
∑

j=0

(

n
j

)

[ dj

dqj
eiωRβ(q) dn−j

dqn−j
ψ̃(q)

]

.

Lemma 4.7 applied to each of the these terms gives something of the form,

dn

dqn

[

ψ̃(q)eiωRβ(q)
]

q=0
=

n\β
∑

j=0

cj ω
j.



Hence, a Taylor series around q = 0 has coefficients that are O(ωn\β).
All conditions of Lemma 4.5 are satisfied and we can conclude that the error of the quadra-

ture approximation is

I[f ; h̃x, P ] −Q[f ; h̃x] = O(ωmaxj≥d j\β−(j+1)/r).

The maximum in the exponent follows from Lemma 4.8, since

j\β − (j + 1)/r = −1/r + [j\β − j/r] = −1/r + sj,

where sj is defined as in Lemma 4.8. This leads to the stated order (4.2) of the quadrature
approximation. The case l ≤ β− r = m− 1 follows immediately. For the second case, one can
verify that

k + 1 −
(k + 1)β

r
−

1

r
= −

d+ 1

r
+ k +

l − (m− 1)

r
.

For r = 1, the second case does not arise because then β = r +m− 1 = m and the condition
l ≤ m− 1 always holds, so the result simplifies.

Thus far we proved the asymptotic error in approximating I[f ;hx, P ]. The final result now
follows from Corollary 4.2.

5 Numerical experiments

In this section we will illustrate the use of the method outlined in section §3 as well as the
results regarding the asymptotic error behaviour predicted in Theorem 4.3.

5.1 Test of case with no stationary points

Consider the highly oscillatory integral

I[f ] =

∫ 1

−1
sin(x)eiω/(x+2)dx

The oscillator g(x) = 1/(x+2) has no stationary points, meaning there are only contributions
from the endpoints. The exact paths can be computed in this case.

In Figure 3 we have plotted the error of the two-point Gauss-Laguerre quadrature applied
to the resulting line integrals with the given exact paths as well as approximate paths with
different number of terms. Note that the approximate paths are constructed only with the
knowledge of some derivatives of g.

The loss of order when using approximate paths, which can clearly be observed in Figure 3, is
predicted in Theorem 4.3. We shall test the conclusion of the theorem by using approximate
paths with different number of terms and different number of quadrature points, and then
measuring the asymptotic order by regression for each combination. The result of this test
can be seen in Table 1 along with the predicted order, 2n+ 1 − 2n\m.

5.2 Case of stationary points

Now consider the integral

I =

∫ 1

0
cos(x)eiω(x3+2x2)dx,
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Figure 3: Log-plot of error for different path approximations. Case of regular endpoint.

n ↓,m→ exact 2 3 4 5

1 3.0(3) 2.0(2) 3.0(3) 3.0(3) 3.0(3)
2 5.0(5) 3.1(3) 4.0(4) 4.1(4) 5.0(5)
3 7.0(7) 4.2(4) 5.1(5) 6.9(6) 6.2(6)
4 9.0(9) 5.3(5) 7.1(7) 7.3(7) 8.0(8)

Table 1: Measured order for different numbers n of Gauss-Laguerre points with m terms in the
Taylor expansion of the steepest descent path. First column is with the exact path. Numbers
in parentheses are orders predicted in Theorem 4.3.

which has an order one stationary point at the origin. Even in this simple polynomial case
the exact path originating from the stationary point is cumbersome to compute. Instead we
construct the paths with the coefficients (3.9).

The steepest descent integral corresponding to the path from the stationary point at x = 0
is computed with a scaled Gaussian quadrature. By using the exact path and a large number
of quadrature points, we can nearly eliminate the error contribution from the right endpoint.
Thus the error will be dominated by the error from the x = 0-contribution. Running over a
range of different ω we estimate the order by regression, and the results fit with the predictions
from Theorem 4.3 (see Table 2a).

No attempt to use exact paths at the origin was done, and the reference solution was
obtained with Matlab’s standard quadrature package close to machine precision.

For completion, we include the results from parallel tests done on the integral

I =

∫ 1

0
eiω(x4+4x3)dx,

which has an order 2 stationary point at the origin(Table 2b).



(a)

n ↓,m→ 2 3 4

1 1.0(1) 1.5(3/2) 1.5(3/2)
2 1.5(3/2) 1.5(3/2) 2.0(2)
3 1.6(3/2) 2.4(5/2) 2.5(5/2)
4 1.9(2) 2.4(5/2) 3.5(7/2)

(b)

n ↓,m→ 2 3 4

1 0.6(2/3) 1.0(1) 1.0(1)
2 0.6(2/3) 1.0(1) 1.3(4/3)
3 0.9(1) 1.7(4/3) 1.3(4/3)
4 1.4(1) 1.6(5/3) 2.4(2)

Table 2: Measured order for different numbers n of Gauss points withm terms in the expansion
of the steepest descent path. Numbers in parentheses are orders predicted in Theorem 4.3.
a)-Case of order one stationary point, b)-Case of order two stationary point.
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