
1

norges teknisk-naturvitenskapelige

universitet

Synthesis of global convergence and adaptivity for
a hyperbolic coefficient inverse problem in 3D

by

Larisa Beilina5, Michael V. Klibanov∗

preprint

numerics no. 3/2009

norwegian university of

science and technology

trondheim, norway

This report has URL
http://www.math.ntnu.no/preprint/numerics/2009/N3-2009.pdf

Address: Department of Mathematical Sciences, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway.





Synthesis of global convergence and

adaptivity for a hyperbolic coefficient

inverse problem in 3D

Larisa Beilina5, Michael V. Klibanov∗

March 18, 2009

A globally convergent numerical method for a multidimensional Coefficient
Inverse Problem for a hyperbolic equation is presented. The global convergence
is analytically established. It is shown that this technique provides a good
first guess for the adaptivity method, which entails to a synthesis of both
approaches. Numerical results for the 3-D case are presented.

keywords: two-stage numerical procedure, globally convergent numerical method, adap-
tive finite element method

1 Introduction

A conventional way to numerically solve a Coefficient Inverse Problem (CIP) for a PDE is
via the minimization of a least squares objective functional. This functional characterizes
the misfit between the data and the solution of that PDE with a “guess” for the unknown
coefficient. However, it is well known that the phenomenon of multiple local minima and
ravines of these functionals represents the major obstacle in this approach. Because of this
phenomenon, any gradient-like method of the minimization of such a functional would likely
converge to a local minimum, which is located far from the correct solution. Furthermore,
due to the ill-posed nature of CIPs, a global minimum, even a well pronounced one, is not
necessarily close to the correct solution. Hence, there is no guarantee that the calculated
coefficient is indeed close to the correct one, unless a good first guess about this coefficient
is known. At the same time, in many important applications a good approximation for the
unknown coefficient is unavailable.

We call a numerical method for a CIP globally convergent if: (1) a theorem is proven,
which ensures that this method leads to a good approximation of the correct solution of
that CIP, regardless on the availability of a priori given good approximation for that so-
lution, and (2) this theorem is confirmed by numerical experiments. On the other hand,
convergence of a locally convergent numerical method to the correct solution can be guar-
anteed only if the starting point is located in a small neighborhood of this solution.
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This paper is a continuation of our previous publication [5], where a new globally conver-
gent numerical method for the same CIP was presented. In this method local minima are
avoided because a least squares objective functional is not constructed. A fine structure
of the PDE operator is used instead. There are five main new ingredients here compared
with [5]: (1) We complement our globally convergent method by a locally convergent fi-
nite element adaptive technique (below “adaptivity” for brevity), see [8, 9, 10, 11] for this
technique. We choose the starting point for the adaptivity the solution obtained by our
globally convergent method. (2) The globally convergent algorithm of this publication is
different from one in [5] in the sense that, unlike [5], when solving certain nonlinear ellip-
tic equations, we now use “inner” iterations with respect to k for functions qk

n,1 until they
converge. Consequently, the formulation of the global convergence Theorem 6.1 is different
from one of [5]. In particular, the convergence estimate for the unknown coefficient here
is obtained under less stringent conditions than one in [5]. Specifically, conditions (49)
and (50) are less restrictive ones than corresponding conditions in [5]. Most importantly,
while the convergence estimate in [5] is independent on the iteration number, it is shown
here how this estimate actually depends on this number. An advantage of this dependence
is that it provides a qualitative explanation of one of observations of numerical studies.
All these require a major change in the proof of Theorem 6.1 compared with [5]. (4) The
stopping rule differs from one of [5] in the sense that we now evaluate certain L2 norms at
the boundary rather than inside of the domain of interest. (5) Numerical experiments are
conducted in the 3-D rather than in the 2-D case of [5].

One of the main ideas of this paper is to synthesize our globally convergent method with a
locally convergent adaptivity method. In this synthesis the solution obtained by the former
serves as a good first guess for the latter. Indeed, the convergence estimate for the “global
part” (Theorem 6.1) depends on a small positive parameter η. This parameter incorporates
both the error in the boundary data and the error generated by some approximations of
our method. While the error in the boundary data models the error in measurements and
is, therefore inevitable, approximation errors of our concrete numerical method are not
parts of previously developed locally convergent algorithms. On the other hand, the key
to this synthesis is that since η is small, then Theorem 6.1 guarantees that the globally
convergent part provides a good approximation for the correct solution. Therefore, it is
reasonable to enhance the computed solution via a subsequent application of a locally
convergent numerical method, which is the adaptivity in our case.

As a result, a natural two-stage numerical procedure is developed here. On the first
stage, the globally convergent method of [5] provides a good approximation for the correct
solution. And on the second stage, this approximation is taken as the starting point for
the adaptivity technique, which provides an enhancement, i.e., a better approximation for
the correct solution.

In fact, a combination of the globally convergent method of [5] with the adaptivity was
recently proposed in the work [6] of the authors. There are two main differences between
the current publication and [6]. First, the convergence theorem now is stronger and requires
a different proof, since the corresponding theorem of [6] is an extension of the result of
[5] on the case of above mentioned inner iterations for functions qk

n,1. Second, numerical
experiments here are in 3-D, unlike the 2-D case of [6].

The adaptivity technique minimizes least squares objective functionals on a sequence of
locally adaptively refined meshes in a series of steps until images are stabilized (usually 3-4
refined meshes are used). The minimization is performed via the quasi-Newton method.
Various convergence results for Newton-like methods for general ill-posed problems can be
found in the book [3]. The main idea of the adaptivity is that on each step a posteriori



analysis shows subdomains where the biggest error in the solution is. These are those
subdomains where the gradient of the Lagrangian attains its maximal values (within a
certain range). An important point here is that those subdomains are found without a
priori knowledge of the solution. It was also shown in [6] that, under certain conditions, the
gradient of the Lagrangian can provide an estimate for the accuracy of the reconstruction
for the unknown coefficient. Thus, additional finite elements are used in such subdomains.
It was shown in previous publications that the adaptivity is capable to significantly improve
reconstruction results. At the same time, it was shown numerically in the recent publication
[12] that the adaptivity cannot provide good quality images unless a good first guess about
the solution is a priori known. This is because the quasi-Newton method is a locally
convergent one. Hence, a synthesis of the adaptivity with the globally convergent method
of [5] can be used.

In our numerical experiments we image a medium with small inclusions in it, although
we do not assume a priori knowledge of such a structure. We refer to [1] and references
cited there for another approach to imaging of small inclusions. There are also some other
numerical methods for multidimensional CIPs, which do not use a good first guess for the
solution [14, 15, 16, 25, 26, 27]. Unlike the current paper, they work for some CIPs with the
data resulting from multiple measurements, i.e., either with many positions of the point
source or many directions of the initializing plane wave. These works are discussed in [5].

An outline of this work is the following: in section 2 we formulate both forward and
inverse problems. In section 3 we transform the inverse problem to the Dirichlet boundary
value problem for a nonlinear integral differential equation in which the unknown coefficient
is not present. In section 4 we formulate the layer stripping procedure with respect to s.
In section 5 we describe the algorithm. In section 6 a global convergence theorem is
proven. In section 7 we describe the computations of the forward problem. In section 8 we
briefly outline the adaptivity technique referring to more details to [9, 10, 11]. In section 9
numerical experiments are presented. We summarize our results in section 10. A preprint
with this publication where more numerical results are discussed is available on-line [7].

2 Statements of Forward and Inverse Problems

As the forward problem, we consider the Cauchy problem for a hyperbolic PDE. The case
of a boundary value problem in a finite domain is not considered here only because an
analogue of the asymptotic behaviour (7) is not proved in this case, since (7) is actually
derived from Theorem 4.1 of [30]. That theorem establishes a certain asymptotic behaviour
of the fundamental solution of a hyperbolic equation near the characteristic cone.

Consider the Cauchy problem for the hyperbolic equation

c (x) utt = ∆u in R3 × (0,∞) , (1)

u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2)

Equation (1) governs a wide range of applications, including e.g., propagation of acoustic
and electromagnetic waves. In the acoustical case 1/

√
c(x) is the sound speed. In the 2-D

case of EM waves propagation in a non-magnetic medium, the dimensionless coefficient is
c(x) = εr(x), where εr(x) is the spatially distributed dielectric constant of the medium,
see [17], where this equation was derived from Maxwell’s equations in the 2-D case. Let
d1 and d2 be two positive constants and Ω ⊂ R3 be a convex bounded domain with the
boundary ∂Ω ∈ C3. We assume that the coefficient c (x) of equation (1) is such that

c (x) ∈ [d1, 2d2] , d1 < d2, c (x) = 2d1 for x ∈ R3�Ω, (3)
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c (x) ∈ C2
(
R3
)
, (4)

We consider the following
Inverse Problem. Suppose that the coefficient c (x) satisfies (3) and (4), where the

positive numbers d1 and d2 are given. Assume that the function c (x) is unknown in the
domain Ω. Determine the function c (x) for x ∈ Ω, assuming that the following function
g (x, t) is known for a single source position x0 /∈ Ω

u (x, t) = g (x, t) ,∀ (x, t) ∈ ∂Ω × (0,∞) . (5)

The reason why we assume here that the source x0 /∈ Ω is that we do not want to deal with
singularities near the source location. A priori knowledge of constants d1, d2 corresponds
well with the Tikhonov concept for ill-posed problems [31]. In applications the assumption
c (x) = 2d1 for x ∈ R3�Ω means that the target coefficient c (x) has a known constant
value outside of the medium of interest Ω. Another argument here is that one should bound
the coefficient c (x) from the below by a positive number to ensure that the operator in (1)
is a hyperbolic one on all iterations of our method. Since we do not impose any “smallness”
conditions on numbers d1 and d2, our numerical method is not a locally convergent one. The
function g (x, t) models time dependent measurements of the wave field at the boundary of
the domain of interest. Practical measurements are calculated at a number of detectors, of
course. In this case the function g (x, t) can be obtained via one of standard interpolation
procedures, a discussion of which is outside the scope of this publication. In the case of
a finite time interval, on which measurements are performed, one should assume that this
interval is large enough and thus, the t-integral of the Laplace transform over this interval
is approximately the same as one over (0,∞) .

Uniqueness theorem for this inverse problem is a long standing and well known open
question. This question is addressed positively via Carleman estimates only in the case
when the δ− function in (2) is replaced with a function which is non vanishing in the entire
domain Ω [21, 22]. It is an opinion of the authors that because of applications, it is worthy
to study numerical methods for this CIP assuming that uniqueness holds.

Consider the Laplace transform of the functions u,

w(x, s) =

∞∫

0

u(x, t)e−stdt, for s > s = const. > 0, (6)

where s is a certain number. It is sufficient to choose s such that the integral (6) would
converge together with corresponding (x, t)-derivatives. We call the parameter s pseudo
frequency.

3 Nonlinear Integral Differential Equation Without the

Unknown Coefficient

In this section we briefly describe how to obtain the nonlinear integral differential equation
mentioned in the last paragraph of Introduction. Introduce the function H (x, s) = lnw/s2.
Under certain conditions linked with the regularity of geodesic lines generated by the
eikonal equation corresponding to the coefficient c (x) the following asymptotic behavior
takes place (see [5, 6] for details).

Dα
xD

k
sH (x, s) = O

(
1

sk+1

)
, s→ ∞, k = 0, 1. (7)



Also,
∆H + s2 (∇H)2 = c(x). (8)

Denote
q (x, s) = ∂sH (x, s) . (9)

By (7) and (9)

H (x, s) = −
∞∫

s

q (x, τ) dτ.

We truncate this integral as

H (x, s) ≈ −
s∫

s

q (x, τ) dτ + V (x, s) , (10)

where s > s is a large number and

V (x, s) ≈ H (x, s) =
lnw (x, s)

s2
. (11)

The number s should be chosen in numerical experiments. We call V (x, s) the “tail”, this
function is unknown, and this is why we use ” ≈ ” here. By (7) the tail is small for
large values of s. In principle, therefore, one can set V (x, s) := 0. However, our numerical
experience shows that it would be better to update somehow the tail function in an iterative
procedure. We call the updating procedure “iterations with respect to tails”.

Thus, we obtain from (8)-(10) the following (approximate) integral nonlinear differential
equation

∆q − 2s2∇q ·
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2

+ 2s2∇q∇V − 2s∇V ·
s∫

s

∇q (x, τ) dτ + 2s (∇V )2 = 0.

(12)

In addition, (5) and (9) imply that the following Dirichlet boundary condition is given for
the function q

q (x, s) = ψ (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] , (13)

where

ψ (x, s) =
ϕs

ϕs2
− 2 lnϕ

s3
.

Suppose for a moment that the function q is approximated together with its derivatives
Dα

xq, |α| ≤ 2. Then the corresponding approximation for the target coefficient can be found
via (8) as

c (x) = ∆H + s2 (∇H)2 , (14)

where the functionH is approximated via (10). Although any value of the pseudo frequency
s ∈ [s, s] can be used in (14), but we found in our numerical experiments that the best
value is s := s. If integrals would be absent and the tail function would be known, then this
would be the classic Dirichlet boundary value problem for the Laplace equation. However,
the presence of integrals implies the nonlinearity and represents the main difficulty here.

5



Another obvious difficulty is that equation (12) has two unknown functions q and V . The
reason why we can handle this difficulty is that we treat functions q and V differently:
while we iteratively find approximations for q being sort of “restricted” only to equation
(12), we find updates for V using solutions of forward problems (1), (2) and the formula
(11). In those forward problems corresponding approximations for the unknown coefficient
c, obtained from (14), are used. We refer to subsection 5.4 of [20] for the first procedure
of working with tails, which was applied to a linearized CIP.

4 A Sequence of Elliptic Dirichlet Boundary Value Problems

We approximate the function q (x, s) as a piecewise constant function with respect to the
pseudo frequency s. That is, we assume that there exists a partition s = sN < sN−1 <
... < s1 < s0 = s, si−1 − si = h of the interval [s, s] with a sufficiently small grid step size
h such that q (x, s) = qn (x) for s ∈ (sn, sn−1]. Hence,

∫ s

s

∇q(x, τ)dτ = (sn−1 − s)∇qn(x) + h
n−1∑

j=1

∇qj(x), s ∈ (sn, sn−1). (15)

We approximate the boundary condition (13) as a piecewise constant function,

qn (x) = ψn (x) , x ∈ ∂Ω, (16)

where

ψn (x) =
1

h

sn−1∫

sn

ψ (x, s) ds. (17)

On each subinterval (sn, sn−1] , n ≥ 1 we assume that functions qj (x) , j = 1, ..., n − 1 are
known. We obtain an approximate equation for the function qn (x) . Then we multiply this
equation by the Carleman Weight Function (CWF) of the form

Cn,λ(s) = eλ(s−sn−1), s ∈ (sn, sn−1], (18)

and integrate with respect to s over (sn, sn−1). In (18)λ >> 1 is a parameter, which should
be chosen in numerical experiments. Theorem 6.1 provides a recipe for this choice. We
obtain (see details in [5])

Ln (qn) := ∆qn −A1,n

(
h

n−1∑

i=1

∇qi
)
∇qn +A1n∇qn∇V − εqn = 2

I1,n

I0
(∇qn)2

−A2,nh
2

(
n−1∑

i=1

∇qi (x)
)2

+ 2A2,n∇V
(
h

n−1∑

i=1

∇qi
)

−A2,n (∇V )2 , n = 1, ..., N,

(19)

where I0 := I0 (λ, h) , A1,n := A1,n (λ, h) , A2,n := A2,n (λ, h) are certain integrals involving
the CWF. Thus, we have obtained the Dirichlet boundary value problem (16), ( 19) for
a nonlinear elliptic PDE with the unknown function qn (x) . In (19) the tail function V is
also unknown. An important observation is that

|I1,n (λ, h)|
I0 (λ, h)

≤ 4s2

λ
. (20)



Therefore, by taking λ >> 1, we mitigate the influence of the nonlinear term with (∇qn)2

in (19). This enables us to solve each elliptic Dirichlet boundary value problem (16),
(19) iteratively at each n via solving a linear problem on each step. Theorem 6.1 assures
convergence of this procedure. We have added the term −εqn to the left hand side of
equation (19), where ε > 0 is a small parameter.

5 The Algorithm

The above considerations lead to the algorithm described in this section. Below C k+α
(
Ω
)

are Hőlder spaces, where k ≥ 0 is an integer and α ∈ (0, 1) [23]. Denote |f |k+α =

‖f‖
Ck+α(Ω) ,∀ f ∈ Ck+α

(
Ω
)
.Our algorithm reconstructs iterative approximations cn,i (x) ∈

Cα
(
Ω
)

of the function c (x) only inside the domain Ω. On the other hand, to iterate with
respect to tails, we need to solve the forward problem (1), (2). To do this, we need to
extend each function cn,k (x) outside of the domain Ω in such a way that the resulting
function ĉn,k ∈ Cα

(
R3
)
, ĉn,k ≥ d1 in Ω and ĉn,k = 2d1 outside of Ω. The corresponding

procedure is rather standard and is described in section 5 of [5]. In this section we men-
tion convergences of certain “sub-procedures”. Specifications of corresponding convergence
criteria are given in subsection 9.1.

In accordance with (10), (14) and (15) denote

Hn,i (x) = hqn,i + h
n−1∑

j=1

qj (x) + Vn,i (x) , x ∈ Ω, (21)

cn,i (x) = ∆Hn,i + s2n (∇Hn,i)
2 , (22)

where functions qj, qn,i, Vn,i are defined in this section below. Here mn is the number of
iterations with respect to tails for the given n where i = 1, ...,mn. We set

q0 := 0, q0
1,1 := 0, V1,1 (x) := V 0

1,1 (x) , (23)

q0n,1 := qn−1, Vn,1 (x) := Vn−1,mn−1
(x) , for n ≥ 2, (24)

where V 0
1,1 (x) is a certain starting value for the tail function, which is specified in subsection

9.1.
In our iterative algorithm below we first iterate on k with respect to the nonlinear term

and construct the function qn,1 for each sub-interval (sn, sn−1]. Next, we iterate with
respect to the tail and construct functions qn,i, i = 2, ...,mn. However, we do not iterate
with respect to the nonlinear term for functions qn,i with i ≥ 2.

Step n1, n ≥ 1. Suppose that functions q1, ..., qn−1, q
0
n,1 := qn−1 ∈ C2+α(Ω), cn−1 ∈

Cα(Ω) and the tail function Vn,1(x, s) ∈ C2+α(Ω) are constructed, see (23), (24) . We
now construct the function qn,1. To do this, we solve iteratively the following Dirichlet
boundary value problems

∆qk
n,1 −A1n


h

n−1∑

j=1

∇qj


 · ∇qk

n,1 − εqk
n,1 +A1n∇qk

n,1 · ∇Vn,1 = 2
I1n

I0

(
∇qk−1

n,1

)2

−A2nh
2




n−1∑

j=1

∇qj (x)




2

+ 2A2n∇Vn,1 ·


h

n−1∑

j=1

∇qj (x)


−A2n (∇Vn,1)

2 ,

(25)

qk
n,1 (x) = ψn (x) , x ∈ ∂Ω, (26)
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where k = 1, 2, ... and functions qk
n,1 ∈ C2+α

(
Ω
)
. We call these “iterations with respect to

the nonlinear term”. We iterate here until the process converges. Then we set

qn,1 = lim
k→∞

qk
n,1 in the C2+α

(
Ω
)

norm.

Next, we reconstruct an approximation cn,1 (x) , x ∈ Ω for the unknown function c (x)
using the resulting function qn,1 (x) and formulas (21), (22) at i = 1. Hence, cn,1 ∈ Cα
(
Ω
)
. Assume that cn,1 (x) ≥ d1 in Ω. Construct the function ĉn,1 (x) ∈ Cα

(
R3
)
. Next,

solve the forward problem (1), (2) with c (x) := ĉn,1 (x) . We obtain the function un,1 (x, t) .
Calculate the Laplace transform (6) of this function and obtain the function wn,1(x, s) this
way. Next, following (11), we set for x ∈ Ω

Vn,2 (x, s) =
1

s2
lnwn,1(x, s) ∈ C2+α

(
Ω
)
. (27)

Step ni, i ≥ 2, n ≥ 1. We now iterate with respect to tails. Suppose that functions
qn,i−1, Vn,i (x, s) ∈ C2+α

(
Ω
)

are constructed. That is, we solve the boundary value problem

∆qn,i −A1n


h

n−1∑

j=1

∇qj


 · ∇qn,i − εqn,i +A1n∇qn,i · ∇Vn,i = 2

I1n

I0
(∇qn,i−1)

2

−A2nh
2




n−1∑

j=1

∇qj (x)




2

+ 2A2n∇Vn,i ·


h

n−1∑

j=1

∇qj (x)


−A2n (∇Vn,i)

2 ,

(28)

qn,i (x) = ψn (x) , x ∈ ∂Ω. (29)

Having the function qn,i, we reconstruct the next approximation cn,i ∈ Cα(Ω) for the target
coefficient using (21), (22), and, assuming that cn,i(x) ≥ d1 in Ω, construct the function
ĉn,i ∈ Cα(R3). Next, we solve the forward problem (1), (2) with c (x) := ĉn,i (x) , calculate
the Laplace transform (6) and update the tail as in (27), where (wn,1, Vn,2) is replaced with
(wn,i, Vn,i+1) . We iterate with respect to i until convergence occurs at the step i := mn.
Then we set

qn := qn,mn ∈ C2+α
(
Ω
)
, cn := cn,mn ∈ Cα

(
Ω
)
,

Vn+1,1 (x, s) =
1

s2
lnwn,mn(x, s) ∈ C2+α

(
Ω
)
. (30)

If functions cn(x) did not yet converge, then we proceed with Step (n+ 1)1 , provided
that n < N , where N is a prescribed iteration number, N ≤ N, see Theorem 6.1. However,
if either functions cn(x) converged, or n = N, then we stop.

6 Global Convergence

By the concept of Tikhonov for ill-posed problems [31], which we follow, one should assume
first that there exists an “ideal” exact solution of an ill-posed problem with the exact data.
Next, one should assume the presence of an error of the level ζ in the data, where ζ > 0 is
a small parameter, which is used to provide more stability, see setails in [5]. Suppose that
an approximate solution is constructed for each sufficiently small ζ. This solution is called
a “regularized solution”, if it tends to the exact solution as ζ → 0.



6.1 Exact solution

First, we introduce the definition of the exact solution. We assume that there exists a
coefficient c∗ (x) ∈ [2d1, 2d2] satisfying condition (4), and this function is an exact solution
of our Inverse Problem with the “ideal” exact data in g∗(x, t) in (5). The Laplace transform
(6) of the function g∗ (x, t) leads to the exact function ϕ∗ (x, s) = w∗ (x, s) ,∀ (x, s) ∈
∂Ω × [s, s].

Also, let

H∗ (x, s) =
ln [w∗ (x, s)]

s2
, q∗ (x, s) =

∂H∗ (x, s)

∂s
, V ∗ (x, s) = H∗ (x, s) .

The function q∗ satisfies an obvious analogue of equation (12 ) with the following boundary
condition (see (13))

q∗ (x, s) = ψ∗ (x, s) , (x, s) ∈ ∂Ω × [s, s] , (31)

where

ψ∗ (x, s) =
1

ϕ∗s2
· ∂ϕ

∗

∂s
− 2 lnϕ∗

s3
.

Definition. We call the function q∗ (x, s) the exact solution of the problem (12), (13)
with the exact boundary condition ψ∗ (x, s).

Hence,
q∗ (x, s) ∈ C2+α

(
Ω
)
× C∞ [s, s] . (32)

We now follow (15)-(19). First, we approximate functions q∗ (x, s) and ψ∗ (x, s) in (31)
and (32) via piecewise constant functions with respect to s ∈ [s, s] . Let

q∗n (x) =
1

h

sn−1∫

sn

q∗ (x, s) ds, ψ
∗

n (x) =
1

h

sn−1∫

sn

ψ∗ (x, s) ds. (33)

Then

q∗ (x, s) = q∗n (x) +Qn (x, s) , ψ∗ (x, s) = ψ
∗

n (x) + Ψn (x, s) , s ∈ [sn, sn−1] ,

where by (31) functions Qn,Ψn are such that

|Qn (x, s)|2+α ≤ C∗h, |Ψn (x, s)|2+α ≤ C∗h, n = 1, ..., N, for s ∈ [sn, sn−1] , (34)

where the constant C∗ = C∗
(
‖q∗‖

C2+α(Ω)×C1[s,s]

)
> 0 depends only on the C2+α

(
Ω
)
×

C1 [s, s] norm of the function q∗ (x, s). Hence, we can assume that

max
1≤n≤N

|q∗n|2+α ≤ C∗. (35)

Without a loss of generality, we assume that

C∗ ≥ 1. (36)

By the Tikhonov concept, the constant C∗ should be known a priori. By (7), it is reasonable
to assume that C∗ is independent on s, although we do not use this assumption. By (33)

q∗n (x) = ψ
∗

n (x) , x ∈ ∂Ω. (37)

Hence we obtain the following analogue of equation (19)

9



∆q∗n −A1,n

(
h

n−1∑

i=1

∇q∗i (x)

)
∇q∗n +A1,n∇q∗n∇V ∗ = 2

I1,n

I0
(∇q∗n)2 −A2,nh

2

(
n−1∑

i=1

∇q∗i (x)

)2

+ 2A2,n∇V ∗

(
h

n−1∑

i=1

∇q∗i (x)

)
−A2,n |∇V ∗|2 + Fn (x, h, λ) ,

(38)

where the function Fn (x, h, λ) ∈ Cα
(
Ω
)

and

max
λh≥1

|Fn (x, h, λ)|α ≤ C∗h. (39)

We also assume that the function g(x, t) in (5) is given with an error. This naturally
produces an error in the function ψ (x, s) in (13). An additional error is introduced due to
the averaging in (17). Hence, it is reasonable to assume that

∥∥∥ψ∗

n (x) − ψn (x)
∥∥∥

C2+α(∂Ω)
≤ C∗ (σ + h) , (40)

where σ > 0 is a small parameter characterizing the level of the error in the data ψ (x, s) .
The parameter h can also be considered as a part of the error in the data, since we have
replaced a smooth s-dependent function with a piecewise constant one.

6.2 Global convergence theorem

First, we reformulate the Schauder theorem in a simplified form, which is convenient for
our case, see Chapter 3, §1 in [23] for this theorem. Assuming that

s > 1, λh ≥ 1, (41)

it was shown in [5] that
max

1≤n≤N
{|A1,n| + |A2,n|} ≤ 8s2. (42)

Introduce the positive constant M ∗ = M∗
(
‖q∗‖C2+α(Ω)×C1[s,s] , s

)
= M∗ (C∗, s) by

M∗ = 2C∗ max

(
8s2, max

1≤n≤N
{|A1,n| + |A2,n|}

)
. (43)

Hence, (42) and (43) imply that
M∗ = 16C∗s2. (44)

Consider the Dirichlet boundary value problem

∆u+
3∑

j=1

bj(x)uxj
− d(x)u = f (x) , x ∈ Ω,

u |∂Ω = g (x) ∈ C2+α (∂Ω) .

Assume that the following conditions are satisfied

bj, d, f ∈ Cα
(
Ω
)
, d (x) ≥ 0; max

(
|bj |α , |d|α

)
≤ 1.



By the Schauder theorem, there exists unique solution u ∈ C 2+α
(
Ω
)

of this boundary
value problem, and with a constant K = K (Ω) > 1, depending only on the domain Ω, the
following estimate holds

|u|2+α ≤ K
[
‖g‖C2+α(∂Ω) + |f |α

]
. (45)

In the formulation of Theorem 6.1 we provide estimates (49)-(54) via M ∗ and also use
(44) to obtain estimates via s. Note that the definition of the norm in the space Cα(Ω)
implies that

|f1f2|α ≤ |f1|α |f2|α , ∀f1, f2 ∈ Cα
(
Ω
)
. (46)

Theorem 6.1. Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C 3.
Suppose that inequalities (36) and (41) hold. Let the exact coefficient c∗ (x) ∈ C2(R3), c∗ ∈
[2d1, 2d2] and c∗ (x) = 2d1 for x ∈ R3�Ω, where numbers d1, d2 > 0 are given. For any
function c (x) ∈ Cα

(
R3
)

such that c (x) ≥ d1 in Ω and c (x) = 2d1 in R3�Ω consider the
solution uc(x, t) of the Cauchy problem (1), (2). Let wc (x, s) ∈ C3

(
R3� {|x− x0| < γ}

)
,∀γ >

0 be the Laplace transform (6) of uc(x, t) and Vc (x) = s−2 lnwc (x, s) ∈ C2+α
(
Ω
)

be
the corresponding tail function. Suppose that the cut-off pseudo frequency s is so large that
for any such function c (x) the following estimates hold

|V ∗|2+α ≤ ξ, |Vc|2+α ≤ ξ, (47)

where ξ ∈ (0, 1) is a sufficiently small number. Let V1,1 (x, s) ∈ C2+α
(
Ω
)

be the initial tail
function and let

|V1,1|2+α ≤ ξ. (48)

Denote η := 2 (h+ σ + ξ + ε) . Let K be the constant of the Schauder theorem and N ≤ N
be the total number of functions qn calculated by the algorithm of section 5. Suppose that
the number N = N (h) is connected with the step size h via N (h) h = β, where the
constant β > 0 is independent on h. Let β be so small that

β ≤ 1

384Ks2
=

1

24KM∗
. (49)

In addition, let the number η and the parameter λ of the CWF satisfy the following esti-
mates

η ≤ η0 (K,C∗, d1, s) = min

(
1

16KM∗
,
3

8
d1

)
= min

(
1

256KC∗s2
,
3

8
d1

)
, (50)

λ ≥ λ0 (C∗,K, s, η) = max

(
(C∗)2

4
, 48KC∗s2,

1

η2

)
. (51)

Then for each appropriate n the sequence
{
qk
n,1

}∞
k=1

converges in C2+α
(
Ω
)

and the fol-
lowing estimates hold

|qn − q∗n|2+α ≤ 2KM∗

(
1√
λ

+ 3η

)
, n ∈

[
1, N

]
, (52)

|qn|2+α ≤ 2C∗, n ∈
[
1, N

]
, (53)

|cn − c∗|α ≤ η

2 · 9n−1
+

23

8
η, n ∈

[
2, N

]
. (54)

In addition, functions cn,k (x) , ĉn,k (x) ≥ d1 in Ω and ĉn,k (x) = 2d1 outside of Ω.

11



Remarks:

1. It often happens in the computational practice of ill-posed problems that theoretical
estimates of convergence theorems are more pessimistic than ones obtained in numeri-
cal studies, and also some discrepancies between analytical results and their numerical
implementations often occur. For example, we do not use the C 2+α(Ω) norm to verify
convergence, because it is rather complicated in the computational practice to consider
this norm, and also because all norms in finite dimensional spaces are equivalent, and we
work in a finite dimensional space of finite elements in our computations. In addition, we
have used the δ− function in (1) and the whole space R3 only for the sake of a convenient
formulation of the asymptotic behaviour (7). In our computations we use the plane wave
and a bounded domain G for the solution of the forward problem. Other main discrepan-
cies between our theory and the computational implementation are listed in subsection 7.2
of [5]. In particular, it is stated there that we verify the asymptotic behaviour at s → ∞
computationally.

2. In the spirit of the previous remark, in actual computations the estimate (54) is a
qualitative one in the sense that it is more likely that in the reality

|cn − c∗|α ≤ C

An−1
η +Bη, n ∈

[
2, N

]

with some positive numbers B,C and with a number A > 1. Even though it is shown in
the course of the proof of this theorem that |cn − c∗|α ≤ 8/3 · η the estimate (54) is still
quite helpful for an explanation of numerical results, see subsection 9.3.

3. Truncating integrals at a high pseudo frequency s is a natural thing to do, because one
routinely truncates high frequencies in physics and engineering. By truncating integrals,
we actually come up with a different, although a quite reasonable mathematical model.

4. One of the back bones of the theory of ill-posed problems is that the number of
iterations can be chosen as a regularization parameter, see, e.g., page 157 of [18]. Therefore,
we have a vector (s,N, λ, εn) of regularization parameters. Setting N (h) h = β = const. >
0 is in an agreement with, e.g., Lemma 6.2 on page 156 of [18], since this lemma shows
a connection between the error in the data and the number of iterations (that lemma is
proven for a different algorithm). The number β is small because our algorithm is originated
by equation (12), which contains nonlinear terms with s-integrals of the Volterra type. It
well known that, in general, solutions of nonlinear integral equations of the Volterra type
can be estimated only on sufficiently small intervals.

We assume below in this section that conditions of Theorem 6.1 hold. We obtain from
(36), (50) and (51) that

C∗

2
√
λ
≤ 1,

1√
λ

+ 3η ≤ C∗

2KM∗
,
KM∗

λ
≤ 1

3
,

1√
λ
≤ η, (55)

Denote

q̃k
n,1 = qk

n,1 − q∗n, q̃n,i = qn,i − q∗n,

Ṽn,k = Vn,k − V ∗, c̃n,k = cn,k − c∗, ψ̃n = ψn − ψ
∗

n

H̃n,i (x) = Hn,i (x) −H∗ (x, sn) , H̃n (x) = Hn (x) −H∗ (x, sn) ,

where H∗ (x, s) is the function Hn (x) in (5.1) in the case when functions qj and Vn are
replaced with q∗j and V ∗ respectively.



6.3 Proof of Theorem 6.1

This proof basically consists in estimating norms
∣∣q̃k

n,1

∣∣
2+α

,|q̃n,i|2+α
from the above. First,

we estimate norms
∣∣∣q̃11,k

∣∣∣
2+α

. By (6.17) and (6.18)

∣∣∣Ṽ1,1

∣∣∣
2+α

≤ 2ξ ≤ η. (56)

Substituting n = 1 in (38), subtracting it from (25) and subtracting (37) from (26), we
obtain

∆q̃k
1,1 − εq̃k

1,1 +A1,1∇V1,1∇q̃k
1,1 = 2

I1,1

I0
∇q̃k−1

1,1

(
∇qk−1

1,1 + ∇q∗1
)

−A1,1∇Ṽ1,1∇q∗1 −A2,1∇Ṽ1,1 (∇V1,1 + ∇V ∗) + εq∗1 − F1,

(57)

q̃11,1 (x) = ψ̃1 (x) , x ∈ ∂Ω. (58)

By (6.20) ε ≤ η/2 < 1. Also, since K,C∗ > 1, then by (6.12), (6.14), (6.18) and (6.20)

|A1,1∇V1,1| ≤ 4s2η ≤ 1

64KC∗
≤ 1

64K
< 1. (59)

Hence, combining the Schauder theorem (6.15) with (4.6), (6.9), (6.11)-(6.14), (6.17), (6.20)
and (6.26)-(6.29), we obtain

∣∣∣q̃k
1,1

∣∣∣
2+α

≤ KM∗

2C∗λ

∣∣∣q̃k−1
1,1

∣∣∣
1+α

∣∣∣qk−1
1,1 + q∗1

∣∣∣
1+α

+ 3KM∗η. (60)

First, let k = 1. Since by (5.3) q0
1,1 = 0, then q̃0

1,1 = −q∗1. By (6.5) |∇q∗1|2α ≤ (C∗)2 . Hence,
(6.30) implies that

∣∣q̃11,1

∣∣
2+α

≤ KM∗

[
C∗

2λ
+ 3η

]
.

Hence, using the first inequality (6.25), we obtain

∣∣q̃11,1

∣∣
2+α

≤ KM∗

(
1√
λ

+ 3η

)
≤ 2KM∗

(
1√
λ

+ 3η

)
.

Hence, the second inequality (6.25) and (6.5) imply that
∣∣q11,1

∣∣
2+α

≤
∣∣q̃11,1

∣∣
2+α

+ |q∗|2+α ≤ 2C∗. (61)

Assume now that ∣∣∣q̃k−1
1,1

∣∣∣
2+α

≤ 2KM∗

(
1√
λ

+ 3η

)
, k ≥ 2. (62)

Then similarly with (6.31) ∣∣∣qk−1
1,1

∣∣∣
2+α

≤ 2C∗. (63)

We obtain from (6.27), (6.28), (6.32) and (6.33)

∣∣∣q̃k
1,1

∣∣∣
2+α

≤ 3 (KM∗)2

λ

(
1√
λ

+ 3η

)
+ 3KM∗η.
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Hence, the third inequality (6.25) leads to

∣∣∣q̃k
1,1

∣∣∣
2+α

≤ 2KM∗

(
1√
λ

+ 3η

)
, k ≥ 1. (64)

Hence, we obtain similarly with (6.31) that
∣∣∣qk

1,1

∣∣∣
2+α

≤ 2C∗, k ≥ 1. (65)

Estimates (6.34) and (6.35) enable us to prove convergence of functions qk
1,1 for k → ∞.

Let m, r > 2 be two positive integers. Denote am,r = qm
1,1 − qr

1,1. Then am,r = q̃m
1,1 − q̃r

1,1.
Set in (6.27) k := m and then k := r. Next, subtract two resulting equations, and use the
following

∇q̃m−1
1,1

(
∇qm−1

1,1 + ∇q∗1
)
−∇q̃r−1

1,1

(
∇qr−1

1,1 + ∇q∗1
)

= ∇q̃m−1
1,1

(
∇qm−1

1,1 + ∇q∗1
)
−∇q̃r−1

1,1

(
∇qm−1

1,1 + ∇q∗1
)

+∇q̃r−1
1,1

(
∇qm−1

1,1 + ∇q∗1
)
−∇q̃r−1

1,1

(
∇qr−1

1,1 + ∇q∗1
)

= ∇am−1,r−1

(
∇qm−1

1,1 + ∇q∗1
)

+∇q̃r−1
1,1 · ∇am−1,r−1 = ∇am−1,r−1

(
∇qm−1

1,1 + ∇q̃r−1
1,1 + ∇q∗1

)
.

We obtain

∆am,r − εam,r +A1,1∇V1,1∇amr = 2
I1,1

I0
∇am−1,r−1 ·

(
∇qm−1

1,1 + ∇q̃r−1
1,1 + ∇q∗1

)
,

am,r |∂Ω= 0.

Hence, by the Schauder theorem (6.15), second and third inequalities (6.25), (6.34), (6.35)
and (4.6)

|am,r|2+α
≤ KM∗

λ
|am−1,r−1|2+α

≤ 1

3
|am−1,r−1|2+α

. (66)

It follows from (6.36) that the sequence
{
qk
1,1

}∞
k=1

satisfies the Cauchy convergence cri-
terion. Convergence of other sequences

{
qk
n,1

}∞
k=1

can be proven similarly. Thus, these
proofs are omitted below.

Since functions q̃1,1 and q1,1 are estimated via (6.34) and (6.35), we now can estimate
the norm |c̃1,1|α . To do this, we note that it follows from (5.1) and (5.2) that

|c̃1,1|α ≤
∣∣∣H̃1,1

∣∣∣
2+α

[
1 + s2

(
|H1,1|2+α

+ |H∗
1 |2+α

)]
.

By (5.1), (6.17)-(6.19) and the fourth inequality (6.25)

∣∣∣H̃1,1

∣∣∣
2+α

≤ 8KM∗βη + η ≤ 1

3
η + η =

4

3
η.

Next, (5.1), (6.18), (6.19), (6.20) and (6.35) lead to

1 + s2
(
|H1,1|2+α + |H∗

1 |2+α

)
≤ 1 + 3s2C∗β + s2η ≤ 1 +

M∗

5
β +

1

256
≤ 1 +

1

120
+

1

256
< 2.

Thus, the last two inequalities and (6.20) imply that

|c̃1,1|α ≤ 8

3
η ≤ d1. (67)



Since c∗ ≥ 2d1, then (6.37) implies that c1,1 (x) ≥ d1 in Ω. Hence, the function ĉ1,1 ∈
Cα
(
R3
)
, ĉ1,1 (x) ≥ d1 in Ω and ĉ1,1 (x) = 2d1 in R3�Ω (see beginning of section 5).

This, along with one of conditions of Theorem 6.1, ensures that |V1,2|2+α
≤ ξ. Hence,

one can prove similarly with the above that estimates (6.34), (6.35) and (6.37) are valid
for functions q̃1,2, q1,2 and c̃1,2 respectively. To do this, one should use (5.8) and (5.9) at
n = 1, i = 2. Repeating this process m1 times, we obtain the same estimates for functions
q̃1, q1, c̃1. In addition, we also obtain that c1 (x) ≥ d1 in Ω, ĉ1 ∈ Cα

(
R3
)
, ĉ1 (x) ≥ d1 in Ω

and ĉ1 (x) = 2d1 in R3�Ω. Hence, |V2,1|2+α
≤ ξ.

Assume now that

|q̃j|2+α ≤ 2KM∗

(
1√
λ

+ 3η

)
, j = 1, ..., n − 1, (68)

|qj|2+α
≤ 2C∗, j = 1, ..., n− 1, (69)

cj (x) ≥ d1 in Ω, ĉj (x) ≥ d1 in R3, j = 1, ..., n − 1. (70)

We now obtain these estimates at j = n. It follows from (6.40) and (6.17) that

|Vn,1|2+α
≤ ξ ≤ η

2
,
∣∣∣Ṽn,1

∣∣∣ ≤ 2ξ ≤ η. (71)

For brevity consider only functions qn,i with i ≥ 2, since the case of qk
n,1 can be considered

very similarly, given convergence of the sequence
{
qk
n,1

}
. Thus, we assume that estimates

(6.38) and (6.39) hold for the function qn,1.
Subtracting (6.8) from (28) and (6.7) from (29), we obtain for i ≥ 2

∆q̃n,i −A1,n


h

n−1∑

j=1

∇qj (x)


∇q̃n,i +A1,n∇Vn,i · ∇q̃n,i − εq̃n,i = 2

I1,n

I0
[∇q̃n,i−1 (∇qn,i−1 + ∇q∗n)]

+


A1,n∇q∗n −A2,nh

n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,i




h

n−1∑

j=1

∇q̃j




+


2A2,nh

n−1∑

j=1

∇q∗j −A1,n∇q∗n −A2,n (∇Vn,i + ∇V ∗)


∇Ṽn,i + εq∗n − Fn,

(72)

q̃n,i |∂Ω= ψ̃n(x). (73)

We begin estimate the sum of 2nd, 3rd, 4th and 5th terms in the right hand side of (6.42).
As to the second term, using (6.5), (6.12)-(6.14), (6.20), (6.39) and (6.41), we obtain
∣∣∣∣∣∣
A1,n∇q∗n −A2,nh

n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,1

∣∣∣∣∣∣
α

≤ M∗

2
+

3M∗β

2
+
M∗

4
= M∗

(
1 +

3

2
β

)
.

On the other hand, by (6.38)

h

n−1∑

j=1

|∇q̃j|α ≤ 2KM∗β

(
1√
λ

+ 3η

)
. (74)
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Hence, (6.16) implies that
∣∣∣∣∣∣
A1,n∇q∗n −A2,nh

n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,1

∣∣∣∣∣∣
α

·

∣∣∣∣∣∣
h

n−1∑

j=1

∇q̃j (x)

∣∣∣∣∣∣
α

(75)

≤ 2K (M∗)2 β

(
1 +

3

2
β

)(
1√
λ

+ 3η

)
.

Estimate now the sum of 3rd, 4th and 5th terms in the right hand side of (6.42). We obtain
similarly with the above
∣∣∣∣∣∣


2A2,nh

n−1∑

j=1

∇q∗j −A1,n∇q∗n −A2,n (∇Vn,1 + ∇V ∗)


∇Ṽn,1 + εq∗n − F1

∣∣∣∣∣∣
α

≤ 2M∗

(
1 +

β

2

)
η.

(76)
Combining this with (6.44), (6.45) and (6.16), we obtain the following estimate

∣∣∣∣∣∣


A1,n∇q∗n −A2,nh

n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,1




h

n−1∑

j=1

∇q̃j



∣∣∣∣∣∣
α

+

∣∣∣∣∣∣


2A2,nh

n−1∑

j=1

∇q∗j −A1,n∇q∗n −A2,n (∇Vn,1 + ∇V ∗)


∇Ṽn,1 + εq∗n − F1

∣∣∣∣∣∣
α

≤ 2K (M∗)2 β

(
1 +

3

2
β

)(
1√
λ

+ 3η

)
+ 2M∗

(
1 +

β

2

)
η.

(77)

Since K,M ∗ > 1, then (6.19) and the 4th inequality (6.25) imply that

2K (M∗)2 β

(
1 +

3

2
β

)(
1√
λ

+ 3η

)
≤ 8K (M∗)2 β

(
1 +

3

2
β

)
η ≤ 1

2
M∗η.

By (6.19)

2M∗

(
1 +

β

2

)
η ≤ 5

2
M∗η. (78)

Hence, we obtain from (6.47) and (6.48) that

∣∣∣∣∣∣


A1,n∇q∗n −A2,nh

n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,1




h

n−1∑

j=1

∇q̃j



∣∣∣∣∣∣
α

+

∣∣∣∣∣∣


2A2,nh

n−1∑

j=1

∇q∗j −A1,n∇q∗n −A2,n (∇Vn,1 + ∇V ∗)


∇Ṽn,1 + εq∗n − F1

∣∣∣∣∣∣
α

≤ 1

2
M∗η +

5

2
M∗η = 3M∗η.

(79)

It follows from (6.12), (6.14), (6.19), (6.20) and (6.39) that Cα
(
Ω
)

norms of coefficients
at ∇q̃n,i, q̃n,i in equation (6.42) do not exceed 1. Hence, applying the estimate (6.15) to
the Dirichlet boundary value problem (6.42), (6.43) and using (4.6), we obtain

|q̃n,i|2+α
≤ KM∗

2C∗λ
|∇q̃n,i−1|α |∇qn,i−1 + ∇q∗n|α + 3KM∗η.



Consider first the case i = 2. Since estimates (6.38) and (6.39) hold true for q̃n,1, qn,1,then
(6.5), (6.38), (6.39) and the third inequality (6.25) imply that

|q̃n,2|2+α
≤ 3KM∗

λ
KM∗

(
1√
λ

+ 3η

)
+ 3KM∗η ≤ 2KM∗

(
1√
λ

+ 3η

)
,

which establishes (6.38) for the function q̃n,2. Hence, similarly with (6.31) we obtain
|qn,2|2+α

≤ 2C∗, which proves (6.39) for qn,2. Using (6.38) and (6.39), we obtain simi-
larly with (6.37) that |c̃n,i|α ≤ 8/3 · η ≤ d1. Hence, functions ĉn,2 (x) , cn,2 (x) ≥ d1 in Ω
and ĉn,2 (x) = 2d in R3�Ω, which establishes (6.40) for functions cn,2, ĉn,2 (x) . The latter,
(5.10) and one of conditions of this theorem guarantee that |Vn,3|2+α ≤ ξ. Recalling that
qn = qn,mn and applying the mathematical induction principle, we obtain that estimates
(6.38)-(6.40) are valid for j = n.

Having estimates (6.38)-(6.40) for j = 1, ..., n, we now obtain the estimate (6.24). Denote

pn :=

n∑

j=1

|q̃j|2+α
, gn = hpn, n ∈

[
2, N

]
.

It follows from the above proof that
∣∣∣∣∣∣


A1,n∇q∗n −A2,nh

n−1∑

j=1

(
∇qj + ∇q∗j

)
+ 2A2,n∇Vn,1




h

n−1∑

j=1

∇q̃j



∣∣∣∣∣∣
α

≤M∗

(
1 +

3

2
β

)
hpn−1

≤ 2M∗hpn−1.

Hence, it follows from (6.46) and (6.48) that the sum of all terms in equation (6.42),
excluding the first one can be estimated from the above via 2M ∗hpn−1 + 5/2 ·M ∗η. First,
consider the case when in (6.42) q̃n,i is replaced with q̃k

n,1 and respectively q̃n,i−1 is replaced
with q̃k−1

n,1 . Since the sequence
{
qk
n,1

}∞
k=1

converges, we can replace in (6.42) the vector(
q̃k
n,k, q̃

k
n,1, q

k−1
n,1

)
with the vector (q̃n,1, q̃n,1, qn,1) . Hence, applying to the boundary value

problem (6.42), (6.43) the Schauder theorem (6.15), (6.20), (6.21) and the 4th inequality
(6.25), we obtain

|q̃n,1|2+α
≤

|q̃n,1|2+α

4
+ 2KM∗hpn−1 +

5

2
KM∗η.

Or
|q̃n,1|2+α

≤ 8

3
KM∗hpn−1 +

10

3
KM∗η.

Similarly we obtain the same estimate for |q̃n,i|2+α
. Hence, recalling that q̃n = q̃n,mn , we

obtain
|q̃n|2+α ≤ 8

3
KM∗hpn−1 +

10

3
KM∗η. (80)

Substituting in (6.50) q̃n−k for q̃n, we obtain the following sequence of estimates

|q̃n−k|2+α ≤ 8

3
KM∗hpn−k−1 +

10

3
KM∗η, 0 ≤ k ≤ n− 2. (81)

Summing up all estimates (6.51) for functions q̃n−k with 0 ≤ k ≤ n− 2, we obtain

pn − |q̃1|2+α ≤ 8

3
KM∗h

n−1∑

i=1

pi +
10

3
KM∗nη.
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Since |pi|2+α ≤ |pi+1|2+α and hN = β, then

|pn|2+α ≤ 8

3
KM∗βpn−1 +

10

3
KM∗Nη + |q̃1|2+α .

Hence, multiplying by h and using (6.38) and the 4th inequality (6.25), we obtain

gn ≤ 8

3
KM∗βgn−1 +

10

3
KM∗βη + 4KM ∗η2.

Hence, (6.19) and (6.20) imply that

gn ≤ 1

9
gn−1 +

7

18
η, n ∈

[
2, N

]
.

Iterating this inequality and using the formula for the sum of the geometrical progression,
we obtain

gn ≤ 1

9n−1
g1 +

7

16
η, n ∈

[
2, N

]
.

Since g1 = h |q̃1|2+α ≤ |q̃1|2+α η/2, then (6.20), (6.38) and the 4th inequality (6.25) imply
that

gn ≤ η

4 · 9n−1
+

7

16
η, n ∈

[
2, N

]
. (82)

We now derive the estimate (6.24). Repeating the above arguments, which were given
for |c̃1,1|α , we obtain

|c̃n|α ≤
∣∣∣H̃n

∣∣∣
2+α

[
1 + s2

(
|Hn|2+α + |H∗

n|2+α

)]
≤ 2

∣∣∣H̃n

∣∣∣
2+α

. (83)

Also, by (5.1) and (6.17)
∣∣∣H̃n

∣∣∣
2+α

≤ gn + η. Hence, it follows from (6.53) that |c̃n|α ≤
2 (gn + η) . Combining this with (6.52), we obtain

|c̃n|α ≤ 1

2 · 9n−1
η +

23

8
η, n ∈

[
2, N

]
.

�

7 Computations of the Forward Problem

In this paper we work with the computationally simulated data. That is, the data g(x, t)
in (5) are generated by computing the forward problem (85) with the given function c(x).
To solve the forward problem, we use the hybrid FEM/FDM method described in [13].
The computational domain in all our tests G = GFEM ∪GFDM is set as G = [−4.0, 4.0] ×
[−5.0, 5.0] × [−2.5, 2.0]. This domain is split into a finite element domain GFEM := Ω =
[−3.0, 3.0] × [−3.0, 3.0] × [−2.0, 1.5] and a surrounding domain GFDM with a structured
mesh, see Figure 1. The space mesh in Ω consists of tetrahedrons and in GFDM - of
cubes, with the mesh size h̃ = 0.25 in the overlapping regions. At the top and bottom
boundaries of G we use first-order absorbing boundary conditions [19] which are exact in
this particular case since the plane wave is initialized in normal direction into G in all our
tests. At the lateral boundaries, mirror boundary conditions allow us to assume an infinite
space domain in the lateral direction.

The forward problem is computed in the domain G ⊂ R3 (Figure 1). The coefficient
c(x) is unknown only in domain Ω ⊂ G and

c(x) = 1 in G�Ω. (84)



(a) GFDM (b) G = GFEM ∪GFDM (c) GFEM = Ω

Figure 1: The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is
applied, and a mesh (c), where we use FEM, with a thin overlapping of structured
elements. The solution of the inverse problem is computed in the hexahedron Ω
and c(x) = 1 for x ∈ G�Ω.

The trace of the solution of the forward problem is recorded at the boundary ∂Ω. Next,
the coefficient c(x) is “forgotten”, and our goal is to reconstruct this coefficient for x ∈ Ω
from the data ϕ (x, s) . The boundary of the domain G is ∂G = ∂G1 ∪ ∂G2 ∪ ∂G3. Here,
∂G1 and ∂G2 are respectively top and bottom sides of the largest domain of Figure 1 and
∂G3 is the union of left,right, front and back sides of this domain. In our tests the forward
problem is

c (x)
∂2u

∂t2
−4u = 0, in G× (0, T ),

u(·, 0) = 0,
∂u

∂t
(·, 0) = 0, in G,

∂nu
∣∣
∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣∣
∂G1

= ∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= ∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ),

(85)

where T is the final time and f(t) is the plane wave defined as

f(t) =
(sin (st−π/2) + 1)

10
, 0 ≤ t ≤ t1 :=

2π

s
, T = 8.22t1.

Thus, the plane wave is initialized at the top boundary ∂G1 and propagates into G for
t ∈ (0, t1]. First order absorbing boundary conditions [19] are used on ∂G1 × (t1, T ] and
∂G2 × (0, T ], and the Neumann boundary condition is used on the bottom boundary ∂G3.
In our computations the upper limit of the integral in the Laplace transform (6) is T .

8 The Adaptivity Technique

In this section we briefly describe the adaptivity technique referring for details to [9, 10, 11].
To use the adaptivity technique, we formulate the inverse problem for the boundary value
problem (85) as an optimization problem, where we seek the unknown coefficient c(x),
which gives the solution of the boundary value problem (85) for the function u(x, t) with
the best least squares fit to the time domain observations g (x, t) , see (5). Denote QT =
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Ω × (0, T ) , ST = ∂Ω × (0, T ) . Our goal now is to find the function c(x) which minimizes
the Tikhonov functional

E(u, c) =
1

2

∫

ST

(u |ST
− g(x, t))2dσdt+

1

2
γ

∫

Ω

(c− c0)
2 dx, (86)

where γ is the regularization parameter and c0 is an initial guess for the unknown coefficient
c. On the first step of the adaptivity we take the same mesh as one we have used for the
globally convergent method. The first guess c0 = c0 (x) is also taken the one, which was
obtained on the globally convergent stage. On each follow up step of the adaptivity when
mesh refinements are used, the function c0 (x) is again taken from the globally convergent
stage. In doing so, values of that function are linearly interpolated from the coarser grid
on the finer grid. Note that since c (x) = 1 in the domain G�Ω, then given the function
g(x, t) = u |∂Ω, one can uniquely determine the function u(x, t) for (x, t) ∈ (G�Ω)× (0, T )
as the solution of the boundary value problem for equation (85) with boundary conditions
on both boundaries ∂G and ∂Ω. Hence, one can uniquely determine the function p (x, t) ,

∂u

∂n
|ST

= p (x, t) . (87)

Since we deal with computationally simulated data, in our computations, both functions
p (x, t) and g (x, t) are calculated from the solution of the forward problem (85) with the
correct value of the coefficient c(x).

Denote

H2
u (QT ) = {f ∈ H2(QT ) : f(x, 0) = ft(x, 0) = 0},

H1
u(QT ) = {f ∈ H1(QT ) : f(x, 0) = 0},

H2
ϕ(QT ) = {f ∈ H2(QT ) : f(x, T ) = ft(x, T ) = 0},

H1
ϕ(QT ) = {f ∈ H1(QT ) : f(x, T ) = 0},

U = H2
u(QT ) ×H2

ϕ(QT ) × C2(Ω),

Ū = H1
u(QT ) ×H1

ϕ(QT ) × L2(Ω),

Ū1 = L2 (QT ) × L2 (QT ) × L2 (Ω) ,

(88)

where all functions are real valued. Hence, U ⊂ Ū ⊂ Ū1 as sets, U is dense in Ū and Ū is
dense in Ū1.

To solve the problem of the minimization of the functional (86), we introduce the La-
grangian

L(v) = E(u, c) +

∫

QT

ϕ · (cutt − ∆u) dxdt,∀ϕ ∈ H2
ϕ (QT ) , (89)

where ϕ ∈ H2
ϕ (QT ) is the Lagrange multiplier and v = (u, ϕ, c) ∈ U . Since the function u

solves equation (85), then L(v) = E(u, c). This is because the second term in L(v) is zero.
Integration by parts and (89) lead to

L(v) = E(u, c) −
∫

QT

c(x)utϕtdxdt+

∫

QT

∇u∇ϕdxdt−
∫

ST

pϕdσdt. (90)

We search for a stationary point of the functional L(v), v ∈ U satisfying

L′(v) (v) = 0, ∀v̄ = (ū, ϕ̄, c̄) ∈ Ū (91)



where L′(v)(·) is the Frechet derivative of L at the point v. We obtain that (91) is equivalent
with (see details in [6])

cutt −4u = 0, (x, t) ∈ QT ,

u(x, 0) = ut(x, 0) = 0,

∂nu |ST
= p (x, t) , (x, t) ∈ ST ;

(92)

cϕtt −4ϕ = 0, (x, t) ∈ QT ,

ϕ(x, T ) = ϕt(x, T ) = 0,

∂nϕ |ST
= (u− g) (x, t) , (x, t) ∈ ST ;

(93)

γ(c− c0) −
∫ T

0
utϕt dt = 0, x ∈ Ω. (94)

The boundary value problem (93) is the adjoint problem to (92) and should be solved
backwards in time. Uniqueness and existence theorems for initial boundary value problems
(92) and (93), including the case of weak H1

u (QT ) and H1
ϕ (QT ) solutions, can be found

in Chapter 4 of [24]. We minimize L(v) in an iterative process via solving on each step
boundary value problems (92) and (93). We find weak solutions of these problems via the
FEM.

To formulate the FEM for boundary value problems (92) and (93), we introduce finite
element spaces W u

h ⊂ H1
u (QT ) and Wϕ

h ⊂ H1
ϕ (QT ) for functions u and ϕ respectively.

These spaces consist of continuous piecewise linear functions in space and time satisfying
initial conditions u (x, 0) = 0 for u ∈W u

h and ϕ (x, T ) = 0 for ϕ ∈W ϕ
h . We also introduce

the finite element space Vh ⊂ L2 (Ω) of piecewise constant functions for the target coeffi-
cient c(x) and denote Uh = W p

h ×Wϕ
h × Vh ⊂ Ū . The space Uh as a discrete analogue of

the space Ū . In order to use below one of results of [6], which provides an error bound for
the unknown coefficient, we set the norm in Uh to be same as the norm in Ū1. However, if
restricting attention to a more conventional case of estimating the error in the Lagrangian
only, one can set the norm in Uh to be the same as the norm in Ū . The functional L (vh)
is defined in terms of (90) and L′ (v) (v) is defined in terms of (91). The FEM for (91) now
reads: Find vh ∈ Uh, such that

L′ (vh) (v) = 0, ∀v ∈ Uh. (95)

We solve this discrete problem using the quasi-Newton method with the limited storage
[28], see details for our specific implementation in [6].

8.1 A posteriori error estimate for the Lagrangian

When performing computational experiments, we are concerned with the accuracy of ob-
tained results. We now address the issue of a posteriori error bound that estimates the
error of the finite element approximation of the function c in terms of the residual error
obtained in the reconstruction process. The latter error bound can be evaluated once the
FEM solution has been computed, since this solution is used then for the derivation of
that error bound. The resulting a posteriori error estimate enables us to estimate and
adaptively control the finite element error to a desired tolerance level via refining the mesh
locally.

Let v ∈ U be a minimizer of the Lagrangian L on the space Ū , and vh be a minimizer
of this functional on Uh. That is, v is a solution of the problem (91) and vh is a solution
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of the problem (95). Since the second stage of our two-stage procedure, the adaptivity,
is a locally convergent numerical method and the first good approximation for the second
stage is obtained on the first stage, we can assume that we work in a small neighbourhood
of the exact solution v∗ ∈ U of our original CIP. Thus, we assume that

‖v − v∗‖Ū ≤ δ and ‖v − vh‖Ū ≤ δ, (96)

where δ is a sufficiently small positive number. We now obtain a posteriori error estimate
for the error in the Lagrangian,

L(v) − L(vh) =

∫ 1

0

d

dε
L(εv + (1 − ε)vh)dε

=

∫ 1

0
L′(εv + (1 − ε)vh) (v − vh) dε = L′(vh) (v − vh) +R,

(97)

where R is the second order, with respect to v − vh, remainder term, |R| ≤ C ‖v − vh‖2
Ū

with a certain positive constant C. We ignore R because of (96).
Let Ph : Ū1 → Uh be the operator of the orthogonal projection of the space Ū1 on the

subspace Uh. Since v ∈ U and U ⊂ Ū1 as a set, we can apply the operator Ph to the
element v. In other words, Ph (v) := vI

h is the interpolant of v via finite elements of Uh.
Using the Galerkin orthogonality (95) with the splitting v − vh = (v − vI

h) + (vI
h − vh), we

obtain the following error representation:

L(v) − L(vh) ≈ L′ (vh) (v − vI
h), (98)

involving the residual L′(vh)(·) with v − vI
h appearing as the interpolation error. This

splitting is one of the main tricks of the adaptivity idea, because it allows one to use the
Galerkin orthogonality (95) and then to use the standard estimates of interpolation errors.
We estimate v − vI

h in terms of derivatives of v and the mesh parameters h in space and
τ in time. Finally we approximate the derivatives of v by corresponding derivatives of
vh, see details in [9]-[11]. It turns out that the dominating contribution of the error in the
Lagrangian (89) is presented in residuals of the reconstruction and it is estimated from the
above by

γmax
Ω

|ch − c0| + max
Ω

∫ T

0
|uhtϕht| dt.

This observation indicates that the error in the Lagrangian can be decreased by refining
the grid locally in those regions, in which the absolute value of the gradient with respect
to the unknown coefficient c(x), i.e. the left hand side of (94), attains its maximum. The
latter forms the basis for the adaptivity technique.

8.2 The adaptive algorithm

In this section we present our adaptive algorithm based on computations of the residuals
for the computed coefficient c(x). See more details for a posteriori error estimate for the
unknown coefficient in [11, 6].

Let M be the dimension of the finite dimensional space Uh and {ψk}M
k=1 be an orthonor-

mal basis in Uh. Assuming that a solution of a certain dual problem for the Hessian of
the Lagrangian exists, it was shown in [6] that the following approximate aposteriori error
estimate for the computed coefficient is valid

∥∥cIh − ch
∥∥

L2(Ω)
≤MC2A (Ω)max

K
|[c̃h]|

T∫

0

(
max

Ω
Rc1 (x, t) + max

Ω
Rc2 (x, t)

)
dt, (99)



where [c̃h] on a space element K denotes the maximum of the modulus of the jump of
the c̃h across a face of K, the maximum is taken over all space elements, Rc1 (x, t) =∣∣∣∂ϕh

∂t

∣∣∣ ·
∣∣∣∂uh

∂t

∣∣∣ , Rc2 = γ|(ch−c0)|, A (Ω) is the area of the domain Ω (volume in the 3-d case)

and C2 is an interpolation constant. See more details for arguments in [6]. If, however,
solution of the the dual problem for the Hessian of Lagrangian does not exist for some (or
all) functions ψk, then it follows from (98) that the integral term in (99) estimates from
the above the error in the Lagrangian,

|L(v)−L(vh)| ≈ |L′(vh)
(
v − vI

h

)
| ≤ C2A (Ω)max

K
|[ch]|

T∫

0

(
max

Ω
Rc1 (x, t) + max

Ω
Rc2 (x, t)

)
dt.

(100)
Thus, we can hope to decrease the error via locally refining mesh in those regions, where
values of residuals Rc1 (x, t) , Rc2 (x, t) are close to the maximal ones. Estimates (99) and
(100) allow us to control the error either in the computed reconstructed coefficient ch

or in the Lagrangian. In our computations we use the following version of the adaptive
algorithm.

Adaptive algorithm

0. Choose an initial mesh Kh and an initial time partition J0 of the time interval (0, T ].
Start with the initial guess c0 = cglob, which was computed in the above globally
convergent algorithm, and compute the sequence of cm in the following steps:

1. Compute the solution um of the forward problem (92) on Kh and Jk, with c(x) = cm.

2. Compute the solution ϕm of the adjoint problem (93) backwards in time on Kh and
Jk.

3. Update the coefficient c := ch on Kh and Jk using the quasi-Newton method, see
details in [6, 29]

cm+1 = cm − αHmgm.

4. Stop computing c if either the norm of the gradient gm of the Lagrangian with respect
to the coefficient in (94) is ||gm||L2(Ω) < θ or norms ||gn||L2(Ω) are stabilized or start
to grow. Otherwise set m = m + 1 and go to step 1. Here, θ is the tolerance in
quasi-Newton updates. In our computations we took θ = 10−5.

5. Compute residuals, Rc1 , Rc2 and refine the mesh at all points where

T∫

0

(
max

Ω
Rc1 (x, t) + max

Ω
Rc2 (x, t)

)
dt > tol. (101)

Here tol is a tolerance chosen by the user.

6. Construct a new mesh Kh and a new time partition Jk. On Jk the new time step
τ should be chosen with respect to the CFL condition. Interpolate an initial guess
c0 = cglob to the new mesh. Return to the step 1 and perform all the steps of the
optimization algorithm on the new mesh.
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Figure 2: Test 1. On (a) we show computed and on (b) exact values of |I1,n|/I0 compared
with the estimation |I1,n|/I0 ≤ 4s̄2/λ (see (20)) for different values of λ. Com-
putations performed on pseudo-frequency interval [3.4, 7.4] with h = 0.05. Here,
x-axis presents pseudo-frequency interval. One can see that (20) significantly
overestimates the value of |I1,n|/I0.

9 Numerical Testing

9.1 Results of reconstruction using the globally convergent algorithm

We have performed numerical experiments to reconstruct the medium, which is homoge-
neous with c (x) = 1 except of two small cubes, where c (x) = 4, see Figure 1-c). How-
ever, we have not assumed a priori knowledge of neither the structure of this medium
nor of the background constant c (x) = 1 outside of those two small cubes, although,
following the Tikhonov concept (as mentioned in section 2), we have assumed the knowl-
edge of the constant d1 = 1/2, see (3) and (84). Because of this, the starting value for
the tail V1,1 (x, s) was computed via solving the forward problem (85) for c ≡ 1. Let
wc≡1 (x, s) be the corresponding function w (x, s) at s = s. Then, using (11), we took
V1,1 (x, s) = s−2 lnwc≡1 (x, s) .

We have found that the pseudo frequency interval s ∈ [3.3, 4.3] was the optimal one for
the above domains G,Ω (section 7). The step size in the s-direction was chosen as h = 0.05.
Hence, N = 20 in our case. We have chosen the same sequence εn of regularization
parameters as in [5]. However, unlike [5], where the sequence λn was chosen also, we
choose here the parameter λ independent on n, see below.

Once the function qn is calculated, we update the function c := cn as in (21), (22), see
subsection 7.3 of [5] for some numerical details. Comparing with [5], in the current work
we choose a completely different stopping rule. In calculating iterations with respect to
the nonlinear term (section 5), we consider norms F k

n,

F k
n = ||qk

n,1|∂Ω − ψn||L2(∂Ω).

We stop our iterations with respect to nonlinear terms when

either F k
n ≥ F k−1

n or F k
n ≤ ε,

where ε = 0.001 is a small tolerance number of our choice. In other words, we stop
iterations, when either F k

n start to grow or are too small. Next, we iterate with respect to



it. n i=1 i=2 i=3 it. n i=1 i=2 i=3
λ = 50 λ = 200

1 0.0522995 0.0522995 1 0.052307 0.052307
2 0.0523043 0.0521799 2 0.0523043 0.0521758
3 0.0535235 0.053353 3 0.0535235 0.053353
4 0.0516891 0.0556757 4 0.0516891 0.0556757
5 0.0467661 0.091598 5 0.0467661 0.091598
6 0.0466467 0.0440336 0.0464053 6 0.0466467 0.0440336 0.0464053
7 0.048653 0.0658041 7 0.048651 0.0658031
8 0.0631709 0.0893371 8 0.0631753 0.0893179
9 0.0851995 0.112022 9 0.085511 0.112321
10 0.0914011 0.106414 10 0.0915352 0.10644
11 0.0900873 0.104467 11 0.0905234 0.104808
12 0.111039 0.133793 12 0.111136 0.134055
13 0.141459 0.167344 13 0.141494 0.166125
14 0.176421 0.219103 14 0.174968 0.222117
15 0.238352 0.296523 15 0.240944 0.29716
16 0.327406 0.463613 16 0.328997 0.464465
17 0.528386 0.606531 17 0.53069 0.606824
18 0.630857 0.680105 18 0.630438 0.681458

Table 1: Test 1. Computed L2-norms of the F n,i =||qn,i|∂Ω − ψn||L2(∂Ω). with λ = 50 and
λ = 200.

the tails and use the same stopping criterion. Namely, we stop our iterations with respect
to tails when either

F n,i ≥ F n,i−1 (102)

or
F n,i ≤ ε, (103)

where F n,i =||qn,i|∂Ω − ψn||L2(∂Ω). So, in accordance with section 5 the number i, on
which these iterations are stopped, is denoted as i := mn. Once the criterion (102)-
(103) is satisfied, we take the last computed tail Vn,mn , set Vn+1,1 := Vn,mn and run
computations again. This procedure allows us to get a more flexible stopping rule in the
globally convergent algorithm than one in [5]. Hence, the number mn of iterations with
respect to tails is chosen automatically “inside” of each iteration for qn. Thus, numbers mn

vary with n. This is different from [5], where numbers mn where not chosen automatically.
In all our tests we have introduced the multiplicative random noise in the boundary

data, gσ, by adding relative error to computed data g using the following expression

gσ

(
xi, tj

)
= g

(
xi, tj

) [
1 +

αj(gmax − gmin)σ

100

]
.

Here, g
(
xi, tj

)
= u

(
xi, tj

)
, xi ∈ ∂Ω is a mesh point at the boundary ∂Ω, tj ∈ (0, T ) is

a mesh point in time, αj is a random number in the interval [−1; 1], gmax and gmin are
maximal and minimal values of the computed data g, respectively, and σ = 5% is the noise
level.

Computations were performed on 16 parallel processors in NOTUR 2 production system
at NTNU, Trondheim, Norway (67 IBM p575+ 16-way nodes, 1.9GHz dual-core CPU,
2464 GB memory).
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9.2 Test 1

We test the globally convergent method on the reconstruction of the structure given on
Figure 1-c). The plane wave f is initialized at the top boundary ∂G1 of the computational
domain G, propagates during the time period (0, t1] into G, is absorbed at the bottom
boundary ∂G2 for all times t ∈ (0, T ) and it is also absorbed at the top boundary ∂G1 for
times t ∈ (t1, T ).

In Table 1 we analyze computed L2 norms of the F n,i for different values of λ in CWF.
We observe that significant changes in λ cause only insignificant changes in L2 norms of
the F n,i. The results in Table 1 are in an agreement with results in Figure 2, where in
Figure 2a we present approximated and on Figure 2b exact values of the ratio |I1,n|/I0
compared with the estimate (19). Figure 2 shows that a significant growth of the value
of λ has a very small influence to the value of |I1,n|/I0 on the pseudo-frequency interval
[3.3, 4.3] which we take in actual computations. This fact indicates that L2 norms of the
F n,i will be almost unchanged for steeply growing λ. Therefore we can work only with one
value of λ for all n.

Figure 3 displays isosurfaces of resulting images of functions cn,k, n = 1, 3, 7, 11, 12, 13
with numerically approximated integrals I0, I1,n, A1,n, A2,n by midpoint rule, which corre-
sponds to the computed integrals of the Figure 2a with λ = 200. Comparison of images of
functions cn,k for different values n and k shows that the inclusion/background contrasts
growth with the growth of n and k.

One can see from Table 1 that the number mn of iterations with respect to tails indeed
varies with n, since mn is chosen automatically now, using the criterion (102)-(103). We
observe that the computed Fn,i decrease until computing the function q7. Next, F7,2 > F6,2

and norms Fn,i start to growth with the increase of n. They are stabilized for n = 10, 11 and
then growth steeply for n = 12, ..., 18. Thus, we conclude, that convergence of functions
cn occurs at n = 7 and we take c7,1 as our final reconstruction result of the first stage of
our two-stage procedure (see details in subsection 9.3).

9.3 Correspondence between Table 9.1 and the theory

The behaviour of norms Fn,i in Table 9.1 can be qualitatively explained by the estimate
(6.24) of Theorem 6.1. Indeed, the variable term in the right hand side of (6.24) says
that one should expect that these norms would decrease first with the growth of n for
rather small values of n. In particular, we note that these norms do not change when
n changes from 1 to 2, which is in a good agreement with (6.24), since n ≥ 2 in this
estimate. Next, after a certain value of n one essentially enters the “level of error” of
η · 23/8, also see the second remark after Theorem 6.1. It is natural therefore that as soon
as this level is achieved, one cannot guarantee that further iterations would still lead to
a better approximation of the correct solution. This is why norms Fn,i start to growth
with n for n ≥ 8. Hence, in our case the level of error is reached at n = 7. Hence, in our
case the level of error is reached at n = 7 and we do not need to do more iterations. To
explain this fact from the standpoint of the classic theory of ill-posed problems, we refer
to the following statement on p. 157 of [18] “it follows that the regularization properties of
iterative methods for ill-posed problems ultimately depend on reliable stopping rules for
detecting the transient from convergence to divergence. We therefore conclude that the
iteration index plays the role of the regularization parameter”.

The rapid growth of norms Fn,i with the increase of n for n ≥ 12 can also be explained
by the fact that the critical level β = Nh in (6.19) of the length of the s-interval is achieved
at n = 12. Indeed, Theorem 6.1 does not guarantee anything for n > N. Thus, in our



a) c1,1 ≈ 0.86 b) c3,1 ≈ 1.0424 c) c7,1 ≈ 1.6

d) c11,1 ≈ 3.28 e) c12,2 ≈ 3.66 f) c13,2 ≈ 4.09

Figure 3: Test 1: the spatial distribution of ch after computing qn,k;n = 1, 3, 7, 11, 12, 13
where n is the number of the computed function q. The starting point in adaptive
algorithm is c7,1. Results are presented with numerically approximated integrals
I0, I1,n, A1,n, A2,n, with the noise level σ = 5%, and with λ = 200.

case N = 12, β = 12 · 0.05 = 0.6. Finally, we again refer to Lemma 6.2 on page 156 of
[18]. Indeed, it can be derived from this lemma that in the case of ill-posed problems one
cannot have too many iterations. Conclusions of this subsection in turn pave the way for
a subsequent application of the adaptivity technique, which is free from such components
of η as ε, ξ and h, although is not free from σ.

9.4 The synthesis of the globally convergent algorithm with the adaptivity

The goal of two tests of this subsection is to demonstrate the performance of the synthesis of
our globally convergence algorithm with the adaptivity technique. The difference between
these two tests is in the noise level which we introduce in the boundary data g = u |∂Ω for
the adaptivity. These are 0% and 5% levels of noise. Note that on the globally convergent
stage we have introduced only 5% noise in the data. Nevertheless, we use the solution
obtained on that stage as the starting point c0 for the adaptivity for both noise levels. In
addition, we take the same starting point, although properly interpolated, for all refined
meshes. It seems to be at the first glance that it would be better to take on each follow
up step the function c0 (x) obtained on the previous step. However, our computational
experience has shown that images are worse in this case. In our opinion, this points
towards the robustness of the globally convergent method. In all tests let Γ be the bottom
side of the cube Ω, which is opposite to the side from which the plane wave is launched,
and ΓT = Γ × (0, T ) . In some sense the side ΓT is the most sensitive one to the resulting
data. We take the regularization parameter γ = 0.01 in all our tests.

The adaptive algorithm means that we find the solution of our problem in an iterative
process, where we start with a coarse mesh and find an approximate solution by the
quasi-Newton method on this mesh, see subsection 8.2. Next, we evaluate residuals as in
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(101). Then we refine the mesh locally at those regions where residuals have largest values,
construct a new mesh and a new time partition, and repeat computations again on this
new mesh. We stop the iterative process when L2-norms of the computed gradient for the
coefficient either are stabilized or start to grow for all further refinements of the mesh. Let
|Rc(x)| = |Rc1(x)| + |Rc2(x)| , see (100). We refine the mesh in all regions where

|Rc(x)| ≥ ζmax |Rc(x)|, (104)

where ζ = const ∈ (0, 1) is the tolerance number of our choice. The choice of the parameter
ζ depends on the behaviour of the computed value of max |Rc(x)| in the right hand side of
(104), see discussion in [6]. Thus, the choice of ζ depends on concrete values of the |Rc(x)|
and this should be done in numerical experiments. In (104) we take ζ = 0.2 on the all
computational meshes.

On all refined meshes we have used a cut-off parameter Ccut for the reconstructed coef-
ficient ch such that

ch =

{
ch, if |ch − cglob| ≥ Ccut

cglob, elsewhere.

We choose Ccut = 0.05 for m < 3, Ccut = 0.2 for m ≥ 3 in all tests. Here m is the number
of iterations in quasi-Newton method. The application of the adaptivity technique allows
us to get more correct locations of both small cubes depicted in Figure 1c.

In the adaptive algorithm we can use box constrains for the reconstructed coefficient.
We obtain these constraints using the solution obtained in the globally convergent part.
Namely, in Test 2 minimal and maximal values of the target coefficient in box constraints
are taken using results of Test 1. To choose box constraints, we note first that we have
already used the knowledge of the lower boundary d1 = 1 for the function c (x) . To
choose the upper bound, we observe that it follows from Figures 9.3-9.6 that before the
above mentioned steep growth with n of norms Fn,i for n ≥ 12 the maximal value of
the imaged coefficient did not exceed 4. Hence, we choose in (3) d2 = 2.1. Thus, in
Test 2 we enforce that the coefficient c(x) belongs to the set of admissible parameters,
c(x) ∈ CM = {c ∈ C(Ω)|1 ≤ c(x) ≤ 4.2}.

Testing was performed on 3-4 times adaptively refined meshes on 16 parallel processors.
Results of computations are presented in Table 2. The relative time Trel in these tables
(CPU time/node) is computed as

Trel =
T

n
, (105)

where T is the total CPU time, n is number of the nodes in computational mesh. We note
that Trel is approximately the same for all refined meshes which show efficiency of using
hybrid FEM/FDM method for solution of the inverse problem. The knowledge of Trel can
help to estimate in advance the timing T for the solution of this CIP for any number of
mesh points using (105).

9.5 Test 2

This test actually consists of two tests with 0% and 5% noise, see beginning of subsection
9.4. In both tests the function c7,1, which corresponds to Figure 3c, was taken as the
starting point on all meshes. In this test it was sufficient to use four adaptively refined
meshes shown in Table 2.

First, on the coarse mesh we get the same reconstruction as in globally convergent
method, which is similar with the 2-D case of [6]. We refine mesh locally by computing
residuals as in step 5 of the adaptive algorithm described in subsection 8.2. We repeat



a) xy-projection b) zx-projection c) zy-projection d) ch ≈ 1.84

e) xy-projection f) zx-projection g) zy-projection h) ch ≈ 2.75

i) xy-projection j) zx-projection k) zy-projection l) ch ≈ 4.0

m) xy-projection n) zx-projection o) zy-projection p) ch ≈ 4.1

Figure 4: Test 2: Adaptively refined computational meshes in different projections and
reconstruction coefficient, correspondingly. Noise level is σ = 0%. See Table 2
for the number of mesh points.
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a) xy-projection b) zx-projection c) zy-projection d) ch ≈ 2.52

e) xy-projection f) zx-projection g) zy-projection h) ch ≈ 4.0

i) xy-projection j) zx-projection k) zy-projection l) ch ≈ 4.1

m) xy-projection n) zx-projection o) zy-projection p) ch ≈ 4.1

Figure 5: Test 2: Adaptively refined computational meshes in different projections and
reconstruction coefficient, correspondingly. Noise level is σ = 5%. See Table 2
for the number of mesh points.



Mesh ||u |ΓT
−g||L2(ΓT ) Rc1

Rc2
q.N.it. CPU time (s) Trel

σ = 0% T
9375 0.0285508 0.502511 0.0159757 5 23.87 0.0025
9583 0.0259143 0.358853 0.0440558 5 24.26 0.0025
10885 0.0301035 0.115057 0.105189 6 27.44 0.0025
11500 0.028857 0.119722 0.0952689 6 29 0.0025
12031 0.0342642 0.318698 0.049062 7 30.55 0.0025
Mesh ||u |ΓT

−g||L2(ΓT ) Rc1
Rc2

q.N.it. CPU time (s) Trel

σ = 5% T
9375 0.031286 0.501337 0.0160262 4 23.77 0.0025
9555 0.0417805 0.18959 0.0497364 6 24.16 0.0025
11248 0.0293965 0.114448 0.0733725 6 28.18 0.0025
13042 0.0296054 0.126106 0.0723502 6 32.64 0.0025
20229 0.0398704 0.210689 0.105882 4 50.74 0.0025

Table 2: Test 2: ||u |ΓT
−g||L2(ΓT ), Rc1 and Rc2 on adaptively refined meshes. Here, q.N.it.

denotes the number of iterations in the quasi-Newton method. In this table coarse
mesh consists of 9375 nodes. CPU time T is given for one q.N.it.

the optimization procedure on every new mesh. Already on the two times adaptively
refined mesh we have reconstructed shifted location of cubes, see Figures 4, 5. Table 2
shows computed L2-norms of ||u |ΓT

−g||L2(ΓT ) as also residuals Rc1 and Rc2 . We observe
that residuals are decreasing as meshes are refined. Residuals are slightly increased for
all refinements n > 3 of the initial mesh. All refinements with n > 3 of the initial
mesh do not improve results of the reconstruction. We conclude that on the three times
adaptively refined mesh we get solution to our CIP, where we obtain the maximal value
of the reconstructed coefficient is ch ≈ 4.0, and it is reached within each of two imaged
inclusions. Thus, our final images for both levels of noise are presented on Figures 4-l and
5-l, which display images for n = 3.

10 Summary

We have presented a further development of the new globally convergent numerical method
of [5]. This method does not use a least squares residual functional. Instead, it relies on the
structure of the underlying PDE operator. It was numerically demonstrated that results
obtained by the globally convergent part are in a good agreement with the convergence
Theorem 6.1 as well as with the theory of ill-posed problems (subsection 9.3).

The convergence analysis implies that this method provides a good first guess for the
Finite Element Adaptive method. This leads to a synthesis of both approaches. The main
achievement of the adaptivity is that it provides the error analysis without a priori knowl-
edge of the solution. When the adaptivity is applied to an optimal control problem, it is a
locally convergent numerical method. Hence, we have obtained a natural synthesis of both
approaches. In this synthesis, the solution obtained by the globally convergent numerical
method is used as a good first approximation for a further enhancement. Similarly with
[6] we have observed that the application of the quasi-Newton method on the same mesh,
which was used by the globally convergent method, does not lead to an improvement of the
solution. Hence, it is necessary to apply the adaptivity in order to refine mesh locally. Nu-
merical results in the 3-D case demonstrate that the adaptivity enhances images obtained
by the globally convergent method.
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