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POSITIVITY PRESERVING DISCRETIZATION OF TIME
DEPENDENT SEMICONDUCTOR MODEL EQUATIONS *

MARKUS BRUNK! AND ANNE KVAERNQ@*

Abstract. Positivity preserving space discretization of the semiconductor drift-diffusion equa-
tions is considered. The drift-diffusion equations are spatially discretized by mixed hybrid finite
elements. It is shown that this leads to a positive ODE or DAE system with index of at most one.
For time discretization a second order splitting technique based on a combination of explicit expo-
nential integration and implicit one-step methods is proposed. The technique allows for positivity
preservation with larger step sizes than corresponding one-step methods of higher order. A algo-
rithm is presented coupling the proposed splitting technique with the Gummel iteration scheme for
semiconductor equations allowing for efficient positivity preserving device simulation. Numerical re-
sults for a one-dimensional pn-diode are given, showing that the proposed scheme allows for runtime
acceleration.

Key words. Drift-diffusion equations, semiconductor model, positivity preservation, mixed
finite elements, splitting method

1. Introduction. In the field of semiconductor modeling we can distinguish
two classes of classical models. The kinetic models like the semiconductor Boltzmann
equation, and the fluid-dynamical models like the drift-diffusion (DD) or the energy-
transport (ET) model. The semiconductor Boltzmann equations allows for accurate
simulation results, however the numerical methods, like the Monte-Carlo method,
to solve the equation are very time consuming and numerically expensive. Good
accuracy to cheaper numerical costs is obtained by the solution of macroscopic fluid-
dynamical models derived from the Boltzmann equation [1], like the drift-diffusion
model. For sub-micron devices the energy-transport model might give better results,
as it additionally allows for the consideration of thermal effects. As in semiconductor
application the trend goes to devices driven by higher frequencies, transient model
equations are indispensable for accurate simulation.

The drift-diffusion and the energy-transport model consist of continuity equations
for the electron and hole densities where for the ET-model an additional continuity
equation for the energy density occurs. After suitable scaling the occurring continuity
equations can be written as

Og—divJ +og=f J=Vg—gVV in Q (1.1)
g=9gp on I'p J-v=0 on 'y, (1.2)

where Q C R? is the domain occupied by the device, g denotes a particle density and
J the corresponding current density. It is reasonable to keep the physical properties
of the continuous solution also for the discrete solution. In this paper we will apply
spatial and time discretization to (1.1) that allows to keep the continuity of the current
density as well as the positivity of the particle density.

For the stationary version of (1.1) and the case of vanishing zero-order term o = 0
a scheme based on the lowest order Raviart-Thomas elements has been proposed in
[17]. In [4] and [5] another discretization scheme has been discussed for the cases f =0
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and f > 0, respectively. It has been shown that in case of weakly acute triangulation,
the matrix associated with this scheme is an M-matrix. This guarantees a discrete
maximum principle and thus the non-negativity of the discrete particle density for
non-negative boundary conditions.

In [14] Marini and Pietra presented a mixed finite element scheme that allows to
keep the M-matrix property also for ¢ > 0 in the stationary equations. Moreover,
the presented finite element scheme guarantees the continuity of the current density
across interelement boundaries.

In [6] the Marini-Pietra elements are used for spatial discretization of the transient
energy-transport equations which partially fit into the framework of (1.1). There, the
equations have been discretized in time first and for positivity preservation solution
dependent time step size restrictions occur for methods of order larger than one.

In this paper we discretize the transient equation (1.1) by use of the method of
lines. For spatial discretization the Marini-Pietra elements are employed in one or
two space dimensions. Different approximations will be made leading to different
dynamical systems. Positivity of the different systems will be proven and as the
system might be of differential algebraic type, an index statement is given.

For time discretization with one-step methods of order larger than one, severe
time step size restriction occurs. We will present a splitting technique based on a
combination of explicit exponential integration and implicit one-step methods that
allows to increase the time step size and still keeps positivity. We will show, that the
presented splitting technique is efficient for semiconductor application when coupled
to the iterative Gummel-algorithm [11].

The paper is arranged as follows. In Section 2 we shortly present the semicon-
ductor drift-diffusion model. We fit the model equations into the framework of (1.1).
In Section 3 the spatial discretization is described. Three different approximative
dynamical systems are derived under different approximations. The positivity of the
systems is proven and it is shown that the index of the system is at most one.

In Section 4 we present the splitting technique for time discretization of order
two. The coupled Gummel-splitting algorithm is presented. In Section 5 we present
numerical examples for the simulation of a pn-diode. We show the good approximative
behavior of our dynamical systems. Moreover the efficiency of the coupled Gummel-
splitting algorithm is clarified. Finally we conclude in Section 6.

2. Semiconductor device modeling. A standard model in semiconductor de-
vice modeling is the well-known drift-diffusion model. It consists of continuity equa-
tions for the electron and hole densities n and p, respectively, and is stated in the
bounded domain €2 in scaled formulation

Ogn — divJ, = —R(n,p), In = (V(pn) — up,nVYV) (2.1)
Orp + divJp, = —R(n,p), Jp = =(V(upp) + pppV'V), (2:2)

coupled self-consistently to the Poisson equation for the electric potential V',
NAV =n—p—C(x). (2.3)

For scaling see [6], for instance. We notice that the more enhanced energy-transport
model is also based on the drift-diffusion equations (2.1)—(2.2).

Here, the function C'(z) models fixed charged background ions in the semicon-
ductor crystal (doping profile). The physical parameters are the (scaled) electron and



hole mobilities 1, and p, and the Debye length A, given by

2 _ 6stT
qC’oL’

where ¢ is the permittivity constant, Ur = kpT7,/q with the Boltzmann constant kg,
the lattice temperature 17, and the elementary charge ¢ denotes the thermal voltage,

Cy is the maximal doping value, and L is the device diameter. The function
np — n?

Tp(n 4+ 1) + 7(p +n4)

R(n,p) = (2.4)
models recombination-generation processes with the (scaled) intrinsic density n; and
the material-depending electron and hole lifetimes 7, and 7, respectively.

For the model equations (2.1)-(2.2) we impose appropriate initial and boundary
conditions. The initial conditions are given by n(-,0) = ny, p(-,0) = p7, in Q.
The device boundary is assumed to split into two parts, the union of Ohmic contacts
I'p and the union of insulating boundary segments I 5, where 02 = I'p UI' ;. On the
insulating parts, it is assumed that the normal components of the current densities
and of the electric field vanish,

I v=Jp-v=VV.v=0 onI'y, t>0. (2.5)

At the contacts, the electric potential, and the particle densities are assumed to be
known. The electric potential equals the sum of the applied voltage U and the so-
called built-in potential V4,

C(x
V=U+W; onlp, t>0, Vai(x) = arsinh(#). (2.6)
ng
The boundary conditions for the particle densities are derived under the assumptions
of charge neutrality, n — p — C(z) = 0, and thermal equilibrium, np = n?. Solving
these equations for n and p gives

nz%(C’—i-\/C’Q—I—éln?), pZ%(—C’—I—\/C’Q—l—Zln?) on I'p. (2.7)

We will apply an iterative algorithm to solve the coupled system (see Algorithm 2).
We semi-linearize the continuity equations by approximating the values of n and p in
the denominator of (2.4) by values from the former iteration step. Using the variables
gn = pnn and gp, = ppp we can write (2.1)-(2.2) as

M;latgn —divdy, + opgn = [, In = Vgn — gnVV,
u;latgp +divJ, + opgp = f, Jp=—(Vgp + 9, VV),
with
On = ?ﬂr_zl.UJ;lgpa Op = FM;1M519m f= Fn?,

r= (Tp(ﬂﬁlﬁn +n;) + Tn(ﬂglgp + ni))71

to fit the semiconductor model equations into the framework given by (1.1) — (1.2).
There, g, and g, denote the values of gy, g, in the former iteration step. We note
that the hole equations fit into the given framework with slightly different signs.
However, the discretization technique described in the following can be done for the
hole equations analogously.



3. Positivity preserving spatial discretization. In the following we describe
the spatial discretization of (1.1)—(1.2). Let Q C R? with d = 1,2 be a polygonal
domain and let 75 be a regular family of decompositions of €2 into triangles K such
that there is no element across the interface of the Dirichlet boundary I'p and the
Neumann boundary I'x. Let &, be the set of edges e of 7j, and &, p the set of edges
belonging to I'p. The idea of the discretization of the stationary version of (1.1)—(1.2)
described in [14] is to symmetrize the equations by introducing the Slotboom-variable
and to discretize the symmetric form by use of mixed finite elements. This enforces
the introduction of an independent current variable. A suitable discrete change of
variables then allows to return to the natural variable. We will use this approach
for the transient problem. Instead of a positivity preserving linear algebraic equation
we derive a positivity conserving linear DAE or ODE, respectively, for the semi-
discretized system.

With the notation v > 0 for a vector v € R with non-negative components we
state the following:

DEFINITION 3.1. Consider an ODE-system in R"™ fort >0

y'(t) = f(ty(t)). (3.1)
The system will be called positive if

y(0) >0 = y(t) >0 forallt > 0.

THEOREM 3.2 (See [12]). Suppose that f(t,v) is continuous and satisfies a Lip-
schitz condition with respect to v. Then the system (3.1) is positive iff for any vector
veER" and alli=1,...,n andt >0,

v>0, v;,=0 = fi(t,v) > 0.

COROLLARY 3.3. The system
y'(t) = Alt)y(t) + f(t)

is positive for f(t) > 0 witht >0, if a;; >0 for all j # 1.

3.1. Approximation and test spaces. We assume the potential V' to be piece-
wise linear. Thus, VV is constant on each element K and we introduce the Slotboom-
variable y = e~V g. Thus equations (1.1) turn into

ou(eVy) — divJ + ey = f, e VJ=Vy in Q. (3.2)

To define the approximation and test spaces for the mixed finite element approach
developed in [15] we introduce a set of polynomial vectors to approximate the current
density on the element K:

Y(K) = span(7y, T2, T3) with 1 =(1,0), 71=2=(0,1), 73=(w1,w2).

Let e; be the edge of the triangle K connecting the vertices with the smallest values
of the potential V. (We note that for the corresponding discretization of the hole
equation we denote by e; the edge connecting the vertices with the largest values of
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V.) We number the remaining edges counter-clockwise. We choose 73 = (w1, ws) with
w1, ws € ls(K) fulfilling the following conditions:

T3 - Voley = T3 * V3les = 0, T3 Vile, = 1, (3.3)
/ E Clll‘l()\l, )\2, )\3) dx dy = 0, (34)
K
/ wy dx dy = / we dx dy = 0, (3.5)
K K

where \; denotes the i—th barycentric coordinate. It can be easily checked that
dim(divE(K)) = 1.
With that we define the finite dimensional spaces

Vi = {7 € [L*(Q))?: 7|k € (K)VK € T} (3.6)
Wy ={¢c L*(Q): ¢|x € To(K)VK € Tp,},

Ape={q € L*(&) : q|lx € Uple) Vee Eh;/(q —&) ds=0 VYec&,p}t, (3.8)

€
with any function ¢ € L?(T'p). The spaces IIo(K) and Ily(e) denote the sets of
constant functions in K and on e, respectively, whereas the space II(K) denotes the
set of degree two polynomials on K. After going back to the natural variable g, the

mixed-hybrid formulation of the transient problem (1.1)—(1.2) reads:
Find J" ¢ V},," € Wy, ¢" € Ap g, such that

Z /QKJhT d:c+/ Skgidivr dz — Z SeighT-uds =0, (3.9)
KeT, \"¥ K e (K) Ve
> (/ gt dxf/ divJ"¢ dx+/ o dm) => / fé dz,
KeT, VK K K KeT, VK
(3.10)
> / qJ" - vds=0 (3.11)
KeT, V9K

forall 7 € Vi, ¢ € W), and g € Ap, 0. The functions Q) and S denote piecewise constant
functions defined on each triangle K by

1 ) 1 _
Qk = —/ e dz, Sk =maxSe (k)= Sey(k)s  Seir) = / e ds,
|K| . i |6i| e;

where the piecewise constant function S is defined via the average on the edges in order
to approximate large gradients of the potential with the correct order of magnitude
(see [15]).

We notice, that the edge e; connects the vertices with the smallest values of V.
Moreover, v denotes the outer normal unit vector on 0K and e;(K) denotes the set
of edges of the triangle K. J" € V}, denotes the approximation to the current density
J, 3" € W), denotes the piecewise constant approximation of g and g" € Ap g, is the
approximation on the edges of the triangulation. Equations (3.9)—(3.10) are the weak
formulation of the equations in (3.2), (3.11) imposes a continuity requirement for the
normal component of the current density at the interelement boundaries.



We remark that the continuity of the current variable is not demanded in the
ansatz space (3.3) directly. It is stated as a constraint in the weak formulation, such
that the variable g" can be considered as corresponding Lagrange multiplier.

In the stationary case, the variables J" and g" can be eliminated by static con-
densation, thus that we end up with a system on the Lagrange multipliers ¢” only,
where the resulting stiffness matrix is an M-matrix. In the following we adopt this ap-
proach to the transient system in order to derive a positivity preserving ODE or DAE,
respectively. For this we state the weak formulation in the matrix-vector notation:

0 A BT —CT Jh 0
E |og"+| -B D 0 7 |=| F . (3.12)
0 cC 0 0 g 0

For the number of elements nx and the number of internal edges n; the matrices
A € R?nxx2nk B ¢ RreX2nk (O ¢ RMX2nk D € RMX"K and E € RPEXTK are
given by the corresponding elementary matrices denoted by the superscript K:

Aﬁ:QK/ 7 da, Bj,g:/ ¢idivry dz,  Cly :/ 47 - v ds,
K K oK

D}, :/ oojdr du, Ej, :/ ¢jor dx,
K K

where 7, ¢, and g are the canonical basis functions of the corresponding spaces in
(3.6)—(3.8). Moreover it holds

EK = BKSK, éK = diag(SeUSeQ’Ses)CK‘

Considering the terms containing the time derivative as right hand side, we can
accomplish the static condensation procedure applied in [15]. The complete elimina-
tion of the variable g enforces further approximations on the time derivative 9;g".

3.2. DAE for g¢". In the following we omit the superscript K denoting the
element matrices. Thus, in the following the notation B is used for the contribution
of one element to the overall matrix B as well as for the overall matrix itself. From
the context it will be clear, which matrix is meant.

The first weak equation then leads to

Jh=A"ICTgh — A7'BT" (3.13)

Inserting (3.13) into the second and third weak equations leads to
Ed,g" + (BA'BT + D)g" — BA'CT¢" = F, (3.14)
CA'CTg" = CA'BTg". (3.15)

The matrix A has diagonal structure an can be easily inverted. The same holds for
the matrix BA~'BT + D. The static condensation leads to equation

Adg" + Mg" =G, (3.16)
with
A=CA'BT(BA'BT + D) 'E,
M=CA'CT —CA'B"(BA'BT + D)"'BA~'CT,
G=CA'B"(BA'B" + D)"'F.
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Here we face the problem, of both approximations g" and g" occurring. At this
step we make use of the fact, that the Lagrange multipliers ¢” have good approxi-
mation property on the value of the density variable g at the element boundaries. In
stationary case we get the relation

7" = [BA'BT + D] ' (F + BA"'CT "), (3.17)

what for o = 0 and f = 0 in (1.1) reduces to a simple upwind scheme, see [15]. For the
exact shape of the matrices see below. Using this, we approximate the time derivative
term 8@?{ ~ O ggl by use of an upwind scheme. Thus we end up with a system of
equations operating on the Lagrange multipliers ¢”, only:

Adig" + Mg = G. (3.18)

3.3. Shape of the matrices. In order to analyze the DAE, respectively ODE,
(3.18) with respect to index and positivity, we have to consider the occurring matrices:
We introduce the following notation

n' = v'le;] i=1,2,3, (3.19)

7:/(wf,w§) de, (3.20)
K

with v? being the outer unit normal vector on edge e;. Then the element matrices are

K| 0 0 ni ny el

AKX =Qg | 0 |K| 0 CK=1{n? ni o0 (3.21)
0 0 n3 n3 0

BX =0 0 [e]) DX =5 |K| EX = |K|. (3.22)

This leads to the (elementary) matrices where the superscript K is omitted

Qi
Skletl + o|K|Qkv’

[BAT'BT + D' =

2
Sk <n1~n1 + |31|2) ifi=i=1 lealSk
~ — = ] = ~ Q -
(CATICT )y =¢ gx N CooocaTBT = "],
€j n'-n’
O TR else 0

Thus, the final elementary matrices M¥X = (m;;) and AX = (a;;) in (3.18) are given

as:
Sk ntnt fi=i=1 e . .
Qr |K| +06(U) Ir=73=1, 5(0) lf’L:j:]_,
Mij = Se; n'n? %ij = 0 else
O K] else
with

—1
50) = er ] (Jea* + ol K 25 )
K

In [15] it is shown, that the elementary matrix MX is an M-matrix for triangu-
lation of weakly acute type. This property holds for the assembled matrix M. We
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notice, that the elementary mass-matrix A is a diagonal but singular matrix. The
assembled matrix A then is still a diagonal matrix that is not necessarily singular.

REMARK 3.4. In one-dimensional case, the elementary mass-matriz AX is a
singular diagonal matriz. The complete mass-matriz A is singular if and only if the
potential V' has a local maximum in Q that is not on T.

Knowing the shape of the corresponding matrices, we can make statements about
the index and positivity of (3.18).

THEOREM 3.5. For given potential V, equation (3.18) describes a DAE with
index of at most 1.

Proof. If the assembled mass-matrix 4 turns out to be regular, the system is an
ODE and the index is zero.

If, however, the mass-matrix is singular, we notice, that it has diagonal structure.
Renumbering the edges allows us to write the DAE (3.18) in the shape

A10,gt = —Ma1gl — Maagh + f1(t), (3.23)
0= —Moaigl — Maagh + fo(t), (3.24)

with a regular diagonal matrix .4;. Independent of the numbering of elements and
edges, the assembled stiffness-matrix M is an M-matrix, what holds for the submatrix
Moo as well. Thus, Mg is invertible and the DAE has index 1. 00

THEOREM 3.6. Using the described upwind approximation for the time derivative,
i.e. Oigh = 8tggl the solution of the DAFE (3.18) is non-negative.

Proof. If A is non-singular, the statement follows from the M-matrix property
of M and the non-negativity of the diagonal of A with corollary 3.3. Otherwise
according to (3.23), the DAE can be written in semi-explicit shape. As My is a
M-matrix it can be inverted and the inverse has only positive entries. Moreover A,
can be inverted and the system can be written as a descriptor system:

Al = High + f1(2),
g2 = Hagh + fo(t),

with

Hy = .Al_l(*./\/ln + M12M2_21M21), Ho = *M2_21M21, (3.25)
AW = AT (AR = MisManfi(1), ) = My, f(#). (3.26)

As M1, and My are both M-matrices and M2, M3 contain only non-positive
entries (namely off-diagonal entries of the matrix M), the matrix H; is a —Z-matrix
(the off-diagonal elements are non-negative). Moreover the matrix Hs and the source
terms J?l, fQ are non-negative and thus according to [9, 22] the solution of the descriptor
system is non-negative. [0

We notice, that the matrix A; in (3.23) has to be an inverse positive matrix
in order to ensure positivity for the descriptor system above. However, use of the
trapezoidal rule in 1D or use of all three edge-approximations ggi to approximate the
integral f % 0¢g" ds in two dimensions, leads - with corresponding numbering of the
edges - to a tridiagonal mass matrix 4; with non-negative elements only. It is easy
to verify, that for positive off-diagonal entries, this matrix is not positive inverse, see
[10]. Thus, for another choice than the upwind scheme, the positivity of the DAE
can’t be ensured.
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3.4. ODE for g". Theorem 3.5 states, that for given potential V the index of
the system is at most one. However, for semiconductor application, the continuity
equation is coupled to the Poisson equation modeling the potential distribution in the
device. If the potential distribution changes, even the rank of the leading mass matrix
A might change and we face the problem of rank deficiency of the coupled system
described in Section 2.

A simple approximation of the mass matrix A allows to get rid of the rank defi-
ciency problem. For each edge, that does not contribute to the mass-matrix, i.e. the
corresponding entry on the diagonal is zero, we choose one of the elements, the edge
belongs to and approximate the elementary mass matrix by

1—e¢ 0 O 1—c¢
A =p80)[ 0 € 0], o AX=p5@0)| 0
0 0 0 0

Ol O
win O O

The complete mass matrix then will be a regular diagonal matrix with positive values.
Thus, according to Theorem 3.2 the resulting system will be a positive ODE for the
lagrange multipliers ¢g”. In the numerical experiments below, we have chosen a value
of e = %. The experience shows, that compared to the number of edges, the number
of edges not contributing to the mass-matrix is comparatively small.

Moreover, we remark that the singular mass-matrix results from the upwind ap-
proximation for 0;g. The introduction of the parameter ¢ > 0 counterworks this
approximation as it somehow also incorporates the the influence of the other nodes
on the corresponding interval in the one-dimensional case (and analogous in two di-
mensions). In experiments we even observed better accuracy after introduction of the
parameter ¢ = %.

3.5. Generalization to Petrov-Galerkin approach. We recall, that to en-
sure positivity of the space discretized system (3.18), the off-diagonal elements of M
have to be non-positive and the diagonal elements of A have to be non-negative. The
Marini-Pietra mixed finite elements allow us to keep positivity with the restriction
that the final equation is of differential-algebraic type and suffers from rank deficiency
when coupled to the Poisson equation.

We notice, that the conditions (3.5) are chosen such that the matrix A in (3.12) has
block diagonal structure, what makes it easily invertible. If we keep this condition in
order to keep the numerical effort low, no other choice of 73 allows to derive a positive
ODE for the semi-discretized system. Not even the generalization to a Petrov-Galerkin
approach using different ansatz and test space would lead to a semi-discretized system
fulfilling these conditions.

If we namely assume the ansatz functions given as in (3.6)—(3.8) with general
values for the ansatz function 73 and the test function 73

/Tg-udszm, /Tg-l/dszn2, /Tg'VdS:nZ%: /diVT3d$=5
€1 €2 €3 K

/7~'3'Vd3:7717 /7~'3-1/ds=7~72, /7~'3'VdS:7~737 /div?gdng
€1 €2 €3 K

a simple computation shows the shape of the resulting mass-matrix A = (@;;) and
stiffness matrix M = (m;;) in (3.16) is
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Se. ntend ~ _ ~ o~ o
mi; = Q_&T + O'|K|5(O’)’l7ﬂ7j ;1 = (S|K|,6(O')’m for 1,] = 1,2,3,
k |K]|

with
" _ -1
B(o) = (56+0|K|7—K) .
Sk

We assume B > 0 as it is for 6 = 6. For 6 > 0, in order to get a positive
contribution into each line of the mass matrix, it has to hold 71, n2,173 > 0. In order
to keep positivity of the final ODE, we have to ensure that the off-diagonal elements of
M are non-positive. Thus it has to hold  7,72,72 < 0. This leads to contradiction
as 71 + 7z +1m3 = 6 > 0. A similar arguments leads to contradiction for § < 0. If
we allow (o) to be smaller than zero (what can’t be ensured for any choice ¢ > 0),
again similar argumentation as above leads to contradiction.

3.6. ODE for g". In section 3.2 we used the weak formulation of the problem
to derive a DAE or ODE for the Lagrange multipliers using several simplifying as-
sumptions. On the other hand, using (3.13)—(3.15) we can derive an ODE for the
approximation g”. Under the assumption of homogenous Dirichlet boundary condi-
tions, i. e. gp = 0 this leads to :

Ed,g" + Mg" = F, (3.27)
M=BA'B" + D—BA~'CT[CA™'CT]"'CA'B". (3.28)

From section 3.3 we see, that the matrix BA“'BT 4 Disa positive 1 x 1 matrix per
element. Thus the corresponding overall matrix is a diagonal matrix with positive
entries. Moreover, the (elementary )matrices BA~!C", CA™1B" contain only non-
negative values. Finally, for triangulation of weakly acute type the (elementary)
matrix CA~'CT is a diagonally dominant M-matrix. Thus, the off-diagonal elements
of M are non-positive. As E is a regular diagonal matrix with positive values on the
diagonal, for non-negative initial conditions, ODE (3.27) is positive.

However, in contrast to the procedure in section 3.2 the computation is not that
straightforward, as the matrix to invert, CA~'C'T, does not have diagonal structure.
Thus the computation can not be accomplished elementwise. In Section 5.2 we will
see that this is the bottleneck and makes it preferable to use the approximation from
the previous section for simulation on fine grids.

3.6.1. Incorporation of boundary conditions. In case of inhomogeneous
Dirichlet boundary conditions, the positivity of the system can still be ensured, as
long as the boundary conditions are non-negative.

We notice that the elementary matrices CA~'C'T for boundary elements reduce
to 1 X 3 or 2 X 3 matrices, depending on wether the boundary element has two or one
boundary edges, respectively. The entries corresponding to the internal edges enter
the assembled matrix, whereas the ’off-diagonal’ elements enter the right hand side.
Thus equation (3.15) changes with boundary conditions into:

CA™'CT¢" = CA'B"g" + Np.1gp, (3.29)
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where gp denotes the vector containing the values of g on the boundary edges and
Np, is a ny x np matrix, with ny the number of internal edges and np the number
of boundary edges. The entries of Np 1 = (nl),-j are

1 ’
ij Qr |K]

Se D nligli .
—2Cpa) nlinli g I'; and e, belong to element K,
else,

where e, denotes the i-th internal edge of the triangulation. We notice that the
matrix BA=!CT in (3.14) causes, that only the values of ¢g" in the minimum edges,
i.e. the edge connecting the vertices with the smallest values of V', contribute to the
equation. As ¢ only denotes the internal edges, the case that the minimum edge at
the boundary elements are the boundary edges is not incorporated.

Considering this case we end up with

Edg+Mg=F, (3.30)
F:F—f—BA_léT[CA_laT]_lNDJgD+ND’29D (331)

with Np o = (n?);; having the shape

2
n?j _ { %, if I'; and ey, belong to element Kand I'; is the min. edge,
0 else.

The matrices Np 1, Np 2 and BA-1CT are all non-negative and CA=CT is an M-
matrix. Thus non-negative Dirichlet boundary values lead to non-negative contribu-
tion to the right hand side and ODE (3.30) is positive.

4. Positivity preserving time discretization. So far we described to ways
to use mixed finite elements for space discretization of the drift-diffusion equations in
order to achieve a positive system. In both cases, the ODE for g or ", the system
can be written as a linear inhomogeneous system

y'(t) = A®)y(t) + f(t) + b(t), (4.1)

where f(t) denotes the time dependent source term and b(t) contains the contribution
of the boundary conditions. We assume, that b(¢) > 0 and f(¢) > 0.

We have shown that the system is positive. However this is not necessarily true
for the numerical solution.

For linear systems there exists a complete theory developed by Bolley & Crouzeix
[2] concerning the positivity preservation of one-step methods. They showed that for
linear systems of type

where the matrix A satisfies
a;; > 0 for i # j and Gy > —Q (4.2)

with problem parameter a and furthermore A has no eigenvalues on the positive real
axis, the applied one-step method is positivity preserving if the condition

Ta < YR
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is fulfilled. There, 7 denotes the applied time step size and g stands for the threshold
factor of the method. It is known, that there does not exist any one-step method of
order p > 1 with yg = co. Thus, for any higher order method time step size restriction
occurs. For all known second order one-step methods it holds yg = O(1). In fact, for
the drift-diffusion equations solved for simulation of the semiconductor device below,
the (unscaled) time step size restriction is in the order of 10715 s.

By use of exponential integrators positivity preserving second order methods can
be constructed. This enforces the knowledge or computation of the exponential exp(.A)
in each time or iteration step, respectively, what is numerically expensive.

In the following we will describe a method based on a splitting method and com-
bining explicit exponential integration with implicit one-step methods. The resulting
method is of order two. It is not unrestricted positivity preserving but it allows to
increase the restriction to the time step size to the underlying one-step method by a
factor up to 10. The scheme is given in Algorithm 1.

Algorithm 1: Splitting scheme
1. At time t,, split the linear system (4.1) for ¢ € [t,,, tn+1] as follows

y'(t) = (Ao + A1) y(t) + f(t) + o+ b1(t),  y(tn) = yn

where

Ao = wA(tr) bo = wb(ty),
Ai(t) = A(t) — Ao bu(t) = b(t) — bo.

2. Compute yn 41 ~ y(tn +7) With f1(t,y) = A1)y (t) + f(¢) + b1(t) by

Uni1 = RE (%,Ao,bo) o RK (7, f1(t,y)) o RE (%,Ao,bo) o Y-

There, RIC(7, fi(t)) o yo denotes the solution of the problem
y'(t) = filty)  with  y(0) =yo

after one time step with time step size 7 obtained by a one-step method of order two.
RE (%, Ao, bo) o yo denotes the exact solution of the problem

y'(t)=Aoy(t) +bo  with  y(0) =yo

solved by use of the exponential matrix

y(5) = exp(Ao)yo + fexp(Ao) — 1] [Ag"bo]

If the applied one-step method is of at least order two, the described method is
of order two. The explicit exponential solution namely is exact and the error of the
applied splitting method is known to be of order two. The method RE is positivity
preserving. As the matrix A has been split, the time step size restriction for positivity
preservation of the method RX now is approximately given by (1 —w)at < vg. Thus
for w = 0.5 the time step size can be increased by the factor 2 compared to the
application of the one-step method only.
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At that point the method does not seem to have any use, as the computation
of the exponential is necessary and that does not bring any advantage compared
to exponential integrators. However, for the semiconductor application described
in Section 2 it will turn out to be efficient. After semi-discretization according to
Section 3.4 of the drift-diffusion equations for electrons and holes are in the shape

g%(t) = An()gn(t) + fn() + bn()v gn(tO) = 9gn,0; (43)
g]/)(t) = A, (1)gp(t) + fp(-) + by (), 9p(to) = 9p,0: (4.4)

where the matrices, source terms and terms incorporating the boundary conditions
depend on time, potential and the densities themselves, namely ¢, V, gy, gp-

In semiconductor application, efficient iterative algorithms for solution of the
coupled system of Poisson and drift-diffusion equations for electrons and holes exist,
e.g. Gummel-iteration. We observe, that the leading matrices A,,, A, occurring in
(4.3)—(4.4) don’t change significantly in between iterations. That allows us to keep the
matrix Ag and thus its exponential constant over several iteration steps and update
the matrix A; only. For (4.3)—(4.4) the combined Gummel-splitting-algorithm is given
in Algorithm 2.

Computation of the exponential of the matrix. Compared to application of
the one-step method only, we are able to increase the step size for positivity preser-
vation by the factor (1 —w)~!. The necessary extra numerical effort is governed by
the computation of the exponential of the matrix, what especially for large matrices
enforces high effort. Thus an efficient algorithm for the computation of the matrix
exponential is indispensable for this scheme. For matrices A, where || 4] is large the
computation using Padé-Approximation or Taylor series is instable as it suffers from
severe roundoff error difficulties. Therefore we make use of the fundamental property

exp(A) = exp(A/m)™.

We use m to be a power of two, such that ||.A/m|| < 1. Then e? can be satisfactorily
computed by the Padé-approximation Rs3(A/m) and e? is computed by repeated
squaring, see [16]. To increase efficiency we apply Strassen’s algorithm [21] for the
occurring matrix multiplication for large matrices. The algorithm is implemented
recursively. For matrices with dimension smaller than 256, we then use the standard
matrix multiplication in MATLAB. This combination proved to be the fastest. For
larger matrices, the MATLAB multiplication is significantly slower than Strassen’s
algorithm. Moreover, due to it’s recursive structure, the algorithm turned out to be
slower than the MATLAB-solver for smaller matrices.

5. Numerical Results. In the following we apply the different discretization
schemes from Section 3 and compare the performance of the suggested Algorithm 2 to
those of the corresponding underlying standard one-step method. As one-step method
we employ the second order Rosenbrock method used in the MATLAB-solver ode23s.
For the ODE ¢’ = f(g) it is given by

(I —ard)k1 = f(g:),
(I —arJ)ks = f(g; + %kl) —arJkq,
Git1 = gi + Tko,

with a = (2 4+ v/2)7!, compare [19]. There, J denotes the Jacobian, I the identity
matrix, 7 the step size and g;, g;+1 the approximation on ¢(t;), g(ti+1), respectively.
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Algorithm 2: Coupling of Gummel-Iteration and Splitting method

for timesteps £ =1 : Ny do
1. Let g} —g,(f 1)79;; _gp -1 JV =y,
2. repeat
(a) Solve electron equation
i. Determine A, (t"V,V, g%, g%), b, (11, V, g%, g3)
ii. if first iteration step in each 2nd time step ¢
split A, 0 = wA, and b, o = wb,
iil. with A, 1(-) = An(-) — Apo and by 1(+) = bp(+) — bnyo
find g,, at time ¢, using Algorithm 1.2 such that

{ g;z(t) = (-An,O + An,l('))gn(t) + fn() + bn,O + bn,l(')a
gn(te-1) =g

(b) Solve hole equation

i. Determine A,(V, gn,gp) o (Viah,95):00(V, 03, 95)
ii. if first iteration step in each 2nd time step ¢

split Ay o0 = wA, and by o = wby,
iii. with A, 1(-) = Ap(-) — Apo and by 1(-) = bp(-) — bpo
find g, at time ¢, using Algorithm 1.2 such that

{gp() (Ap,o + Ap,1(4))9p(t) + fp(+) + bpo + bp,a (),
Ip(te—1 )—91(36 Y

(c) Set Vi =V + 8V with n = ;' gn,p = 11, 'g, and
NAV) = (p+n)dV = =X2AV +n—p-C,

(d) Set gy, :=gn, g =gp and V :=V;
until [|0V|2 < tol ;
3. Set g(e) = Ggn, g ( )= gp and Ve =y
end

The threshhold factor of this method can be proved to be yg = (1—2a)~! ~ 2.41. For
the splitting method we apply the splitting factor w = 0.9 and update the exponential
at each second time step.

We employ a one-dimensional simulation of a 400 nm pn-diode consisting of a
200 nm p-doped region with a doping concentration Cy and a 200 nm n-doped region
with a doping concentration —Cj. The physical parameters of the device are listed in
Table 5.1. The device is modeled by the drift-diffusion equations as given in Section 2
and discretized in 1D by use of the Marini-Pietra mixed finite element approach
presented in Section 3.

As initial conditions we assume the device to be in thermal equilibrium, see [6, 18].
The diode is backward biased once with 2 V and once with 0.25 V. We choose these
two values in order to consider the case of strong backward bias (2 V) and the case
when the potential distribution has a local maximum what causes the leading mass-
matrix to be singular (0.25 V). A rough estimation assuming n,p ~ Cjy and assuming
a linear potential distribution leads to a (unscaled) step size restriction of 7 < 1071°
s for a one-step method with threshold factor vr ~ 1. In numerical examples, larger
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Parameter | Physical meaning Numerical value
L length of device 4-107"m
q elementary charge 1.6-10719 As
Es permittivity constant 10712 As/Vem
Ur thermal voltage at Tp, = 300K 0.026 V
Hon/ fhp low-field carrier mobilities 1500/450 cm? /Vs
Tn/Tp carrier lifetimes 107%/1075s
n; intrinsic density 1016 m=3
Co maximum doping concentration | 1022 m—3

TABLE 5.1

Physical parameters for a silicon pn-junction diode.

step sizes were applicable but we will see that the step size restriction still will be
severe.

We restrict our numerical examples to the backward biased diode, as especially
in these cases strong depletion zones occur that can lead to negative values for the
densities, if standard discretization is applied.

We simulate the device and compute the nodal approximation to the electron
density distribution g/ after 1 ps. This is before the stationary state is reached and
thus allows for a comparison of the simulated transient behavior. In the following we
distinguish between the different discretization approaches and numerical methods,
respectively:

e ODE(g"): Simulation using the ODE for g" in (3.30). As numerical method
the given Rosenbrock scheme is applied and finally ¢” is computed according
to (3.17).

e R-ODE(g"):Using the ODE for g" derived by upwind approximation and
modification of the mass-matrix. As numerical method the given Rosenbrock
method is is applied.

e S-ODE(g"): Using the ODE for ¢g" as in R-ODE. As numerical method the
coupled Gummel-splitting algorithm is applied with w = 0.9 and the given
Rosenbrock scheme as underlying one-step method.

5.1. Accuracy. In order to compare the different approaches in terms of accu-
racy we compare them to a numerical reference solution. The reference solution is
computed using ODE(g") on a very fine grid with time step size 7 = 107!° s and
spatial step size h = 1/500.

Firstly, in Figure 5.1 we compare the values of the nodal and piecewise constant
approximation of the electron density in the diode for the different applied bias. The
values have been obtained by use of ODE(g"). We observe that in both cases (high
and low bias) the upwind approximation is appropriate, ever for low bias, where the
local extremum of the potential occurs.

In Figure 5.2 we depict the relative L? deviation of the different approaches from
the reference solution. For all approaches we applied a time step size of 7 = 10714
s and we depict the deviation for different spatial step sizes. We see that even for
the relatively coarse grid of 32 discretization nodes the accuracy of the different ap-

proaches is comparable. This justifies our approximations to derive the ODE for

g".

In Figure 5.3 we compare the relative error of the different approximations on a
grid with 64 discretization nodes. The resulting ODEs thereby have been solved with
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Fia. 5.1. Comparison of piecewise constant and nodal approximation for the electron density.
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—--ODE(g")
—+R-ODE(g")
==S-0DE(g")

&
T

)

relative error
relative error
L

i i 10 .
102 4-1072 407 107 10"
h

3.10-3

F1G. 5.2. Relative deviation of the different approaches from the reference solution after 1 ps
for backward bias of 0.25 V (left) and 2 V (right).

different time step sizes. Again we observe that the results are all comparable and our
approximations done in Section 3 do not introduce larger errors. Moreover, we see that
even for rather big time step sizes in the range of 7 = 107!3 s the time discretization
error is smaller than the space discretization error in the described example. This
shows that with respect to accuracy smaller time steps are not needed.

5.2. Runtime acceleration by splitting method. Finally we compare the
different approaches with respect to runtime and positivity preservation. We recall
that the bottleneck of ODE(g") is the inversion of the matrix CA™'CT (see Section
3.6). The bottleneck of S-ODE(g") is the computation of the exponential of the
matrix. On the other hand for R-ODE(g") and again ODE(g") we face the problem
of severe step size restriction for positivity preservation.

In Table 5.2 we depict the runtime needed for the different approaches for the
performance of one iteration step for different fine grids. We notice that the imple-
mented matrix multiplication using Strassen’s algorithm is most efficient for matrices
with a dimension given by a power of two, what explains the chosen number of dis-
cretization nodes. As expected R-ODE(g") performs fastest. As for finer grids the
computation of the matrix inverse and the exponential of the matrix need significantly
more effort, the other two approaches fall behind for finer grids. However, we notice
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F1G. 5.3. Relative deviation of the different approaches from the reference solution after 1 ps
for bias of 0.25 V (left) and 2 V (right).

# nodes 64 128 256 512 1024
ODE(g") 5.1-1073% | 1.4-1072 0.12 1.24 6.44
R-ODE(¢") | 1.46-10=% | 1.8-1073 | 24-1073 | 42-107% | 7.2.-107°
S-ODE(¢") | 39-10=% | 1.3-1072 | 9.1-1072 1.01 10.25
(83-107%) | (1.0-1073) | (1.7-1073) | (3.1-1073) | (7.1-1073)
TABLE 5.2

Runtime for iteration step with different methods for different number of discretization inter-
vals: The number in parentheses denote the runtime without consideration of the computation of
the exponential.

that the computation time for one iteration step does not reflect the entire perfor-
mance of the algorithm S-ODE(g"). In the coupled Gummel-splitting algorithm, the
exponential only has to be computed once per time step (or even less) instead of
each iteration step. On the other hand the numerical effort for the approximation
ODE(g") increases significantly with finer grids. As the matrix has to be inverted
in each iteration step the slightly better accuracy this approach might have does not
pay off for the significantly higher effort.

In Tables 5.3-5.4 we compare the runtime of the different approaches for the
simulation of the pn-diode for 1 ps backward biased with 2 V. Moreover we list the
minimum nodal density value g" computed by the different approaches. Obviously
the effort of the ODE(g")-approach is very high and out of question for large matrices
as they easily occur for two-dimensional geometries.

Comparing the Rosenbrock scheme and the splitting algorithm we see that for
small matrices the extra numerical effort for the computation of the exponential is
almost negligible. Only if we update the exponential once per iteration step, the nu-
merical costs would be significantly higher. On the other hand, the splitting algorithm
allows us to increase the time step size for positivity preservation. For the relatively
coarse grid of 64 nodes we observe that increasing the step size by the factor five
or ten and applying the splitting algorithm allows us to speed up our computation
almost by the factor of three. As we already saw in Figure 5.3 the smaller step size
for the Rosenbrock scheme does not even lead to better accuracy.

For finer grids and larger matrices, the costs for the exponential of the matrix
increase, as we see from Table 5.4. But even for a discretization with 256 nodes we
see that with a ten times larger time step size the splitting algorithm keeps positivity
and is approximately 20% faster than the applied Rosenbrock scheme. For larger
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time step 5-10713 2.10°13 1013 5.10714 2.10714
min value

ODE(g") —7.57-10%° | —4.08-10%° | —1.94-10" | —7.58 10" | 5.93-10°
R-ODE(¢") | —7.6-10%° | —4.23-10%° | —2.24-10" | —1.91-10' | 6.03 - 10°
S-ODE(g") 5.94 - 10° 6.01 - 10° 6.03 - 10° 6.03-10° | 6.03-10°

run time s]

ODE(g") 0.39 0.51 0.49 1.25 2.08
R-ODE(¢") 0.06 0.22 0.11 0.39 0.56
S-ODE(g") 0.08 0.18 0.33 0.45 1.07

TABLE 5.3

Runtime and minimal value for the nodal approrimation of electron density g by use of the
different approzimations for 64 discretization nodes different time step sizes. Backward bias: 2 V.

time step 5-10713 2.10°13 1013 5.10714 2.10714
min value

ODE(g") —7.75-10%0 | —4.40-10%° | —2.63-10'° | —4.53-10'% | 5.94-10°
R-ODE(g") | —7.75-10%° | —4.42-10%° | —2.66-10'° | —4.89-10'° | 6.03-10°
S-ODE(g") 5.94 - 10° 6.01 - 107 6.03 - 10° 6.03-10° | 6.03-10°

run time s]

ODE(g") 2.53 5.39 9.77 17.92 39.21
R-ODE(g") 0.06 0.09 0.18 0.36 0.88
S-ODE(g") 0.49 0.71 1.28 2.18 4.70

TABLE 5.4

Runtime and minimal value for the nodal approximation of electron density g by use of the
different approzimations for 256 discretization nodes different time step sizes. Backward bias: 2 V.

matrices, however, the one-step method with small step size will be faster than the
proposed splitting algorithm.

Lastly we notice the following. In the numerical examples we observed that the
Rosenbrock method keeps positivity for small time steps and for time step sizes larger
than 10712 s. This is due to the fact that the final matrices A,, A, in (4.3)—(4.4) not
only fulfill the conditions in (4.2) but are M-matrices. This corresponds to positivity
preservation in the stationary case. For time steps larger than 10712 s the M-matrix
property ’dominates’ the system and leads to positivity preservation. Thus, by use
of the splitting method with a splitting factor of w = 0.9 we were not only able to
increase the allowed step sizes but we also were able to close this ’gap’. This holds
only for the numerical experiments and could not been proved yet. However, in the
numerical experiments step sizes larger than 3-107'3 s led to very inaccurate results.

6. Conclusion. In this paper we discretize the transient drift-diffusion equa-
tions occurring in semiconductor simulation such that the positivity of the particle
densities is kept. Therefor we apply the mixed finite element scheme presented by
Marini and Pietra in [14] for spatial discretization of the transient drift-diffusion equa-
tions. We present several approximative methods leading to a positive ODE or DAE,
respectively, for the semi-discretized model equations. We have shown, that for known
potential distribution the index of the system is at most one. The coupled system of
Poisson and drift-diffusion equations suffers from rank deficiency. The index compu-
tation of the coupled system is subject of current work.

For preservation of positivity after time discretization a splitting technique is



19

proposed as a combination of explicit exponential integration and implicit one-step
methods. In combination with the Gummel-iteration the suggested splitting technique
allows to increase the step size for positivity preservation. Thus, for one-dimensional
positivity preserving semiconductor device simulation and even for two-dimensional
simulation on coarse grids, the suggested algorithm performs faster than the underly-
ing one-step method with the smaller time step size. The extension of the suggested
algorithm to the application of the more enhanced energy-transport model is post-
poned to future work.
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